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ABSTRACT
Motivation: Cluster analysis of genome-wide expression
data from DNA microarray hybridization studies has
proved to be a useful tool for identifying biologically
relevant groupings of genes and samples. In the present
paper, we focus on several important issues related to
clustering algorithms that have not yet been fully studied.
Results: We describe a simple and robust algorithm
for the clustering of temporal gene expression profiles
that is based on the simulated annealing procedure. In
general, this algorithm guarantees to eventually find the
globally optimal distribution of genes over clusters. We
introduce an iterative scheme that serves to evaluate
quantitatively the optimal number of clusters for each
specific data set. The scheme is based on standard
approaches used in regular statistical tests. The basic idea
is to organize the search of the optimal number of clusters
simultaneously with the optimization of the distribution
of genes over clusters. The efficiency of the proposed
algorithm has been evaluated by means of a reverse
engineering experiment, that is, a situation in which the
correct distribution of genes over clusters is known a
priori. The employment of this statistically rigorous test has
shown that our algorithm places greater than 90% genes
into correct clusters. Finally, the algorithm has been tested
on real gene expression data (expression changes during
yeast cell cycle) for which the fundamental patterns of
gene expression and the assignment of genes to clusters
are well understood from numerous previous studies.
Availability: The source code of the program implement-
ing the algorithm is available upon request from the au-
thors.
Contact: alex lukashin@biogen.com

INTRODUCTION
Rapid advances in microarray technologies over the last
several years have made it possible to simultaneously
monitor the expression profiles of thousands of genes

∗To whom correspondence should be addressed.

under various experimental conditions (for reviews see
Lockhart and Winzeler, 2000; Young, 2000). The pro-
duction of increasingly reliable and accessible expression
data has stimulated the development of computational
tools to interpret such data and to organize them efficiently
in system-level conceptual schemes. Current methods for
the analysis of gene expression data typically rely on the
use of clustering algorithms applied to gene expression
profiles (Hartigan, 1975; Jain and Dubes, 1988). The fun-
damental biological premise underlying these approaches
is that genes that display similar expression patterns are
co-regulated and may share a common function or con-
tribute to a common pathway. Although this assumption
may be overly simplistic and will not always be true,
cluster analysis has been demonstrated to be of significant
value for the exploration of gene expression data (Wen
et al., 1998; Eisen et al., 1998; Spellman et al., 1998;
Tamayo et al., 1999; Alon et al., 1999; Perou et al., 1999;
Tavazoie et al., 1999; Zweiger, 1999; White et al., 1999;
Brown et al., 2000; Roberts et al., 2000; Ross et al., 2000).

In spite of the fact that a variety of different cluster-
ing algorithms is now available, a number of important
questions remain to be addressed. For example, techniques
based on hierarchical clustering (e.g. Eisen et al., 1998;
Alon et al., 1999) have problems related to robustness,
uniqueness, and optimality of linear ordering which com-
plicates the interpretation of the resulting hierarchical re-
lationships. On the other hand, algorithms that are based
on the optimization of a given cost function (e.g. Tamayo
et al., 1999; Tavazoie et al., 1999) cannot guarantee that
the resulting solution corresponds to the global optimum
rather than to a local one. A problem common to both of
these popular clustering techniques is how to determine
the optimal number of clusters. Hierarchical clustering ap-
proaches leave this problem to the observer who has to
interpret tree topologies and identify branch points that
segregate clusters of biological relevance. In optimization-
based approaches, the number of clusters is introduced as
a fixed, external parameter of the algorithm that is being
used.
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In the present paper, we address some of the problems
raised above. First, we propose a robust clustering algo-
rithm based on the simulated annealing procedure (Kirk-
patrick et al., 1983; Aart and van Laarhoven, 1987). The
advantage of this technique is its ability to cope with the
local minima problem; it is guaranteed to eventually find
the global optimum. Second, we describe a methodology
that serves to identify quantitatively the optimal number of
clusters for any specific data set. Finally, we present both
statistical and biological validation of our approach.

METHODS
Clustering by simulated annealing
Let N be the number of time-course gene expression
profiles with M time points each. Since we focus on
the shapes of expression patterns rather than on absolute
levels of expression, each profile is normalized such
that the expression level varies between 0 and 1. Each
i th profile is represented by an M-dimensional vector,
{ei

1, ei
2, . . . , ei

M }, with component ei
m corresponding to

the normalized expression level of gene i at time point
m (0 � ei

m � 1). The similarity metric we use is the
Euclidean distance, di j , between vectors i and j :

di j =
[

M∑
m=1

(ei
m − e j

m)
2
]1/2

(1)

For a given number of clusters, K , we optimize the
distribution of profiles over the clusters by minimizing the
sum of distances di j within clusters using Equation (2)

E(K ) = 1

K

K∑
k=1

[∑
i∈Ck

∑
j∈Ck

di j

]
(2)

where i ∈ Ck stands for vector i that belongs to the cluster
number k. To minimize the E-value in Equation (2) we
apply the simulated annealing algorithm (Kirkpatrick et
al., 1983; Aart and van Laarhoven, 1987). Initially, the
distribution of vectors over clusters is randomly assigned.
At each iterative step, a randomly selected vector is
taken out from its cluster and reassigned to another
randomly chosen cluster. A new value Enew is calculated
and compared with the previous value Eold. If Eold is
larger than Enew, the new assignment of the vector is
unconditionally accepted and used as the starting point
for the next iteration. Otherwise, the new assignment is
accepted with probability exp[−(Enew − Eold)/T ], where
the parameter T can be interpreted as the ‘temperature’,
if the E-value is treated as the ‘energy’ of the system.
This algorithm guarantees that after a sufficient number of
iterative steps the system obeys the Boltzmann distribution
at a given temperature. Consequently, if the temperature T

approaches zero slowly enough the system will reach the
global minimum of the E function avoiding local minima.
Routinely, we use an exponential cooling schedule Tn+1 =
cTn , where n is the step number and the value 1 − c is
positive and close to zero. We verified that the E-value
and the corresponding optimal distribution of genes over
clusters resulting from the simulated annealing procedure
applied to minimization of the E function Equation (2) did
not depend on the random number seed if 1 − c � 10−6

(data not shown).

Conceptual framework for determining the optimal
number of clusters
Obviously, the optimal number of clusters depends pri-
marily on the variation between profiles within a given
data set. A measure of this variation is the distribution
function p(d) of Euclidean distances between the vectors
that represent the profiles in the data set. Function p(d) is
normalized so that the integral over all d is equal to one.
An example of such a function is shown in Figure 2A (see
below for details). The wider the function p(d) the more
clusters are needed to obtain tight clusters with distinctive
patterns of expression. However, beyond some number of
clusters K the further increase of K is often meaningless:
eventually, K may become so large and clusters so tight
that the standard deviation within clusters is less than the
experimental error.

To treat the problem of identifying the optimal number
of clusters quantitatively we introduce a cutoff distance
D and postulate that the assumption that vectors i and j
belong to the same cluster is incorrect if di j � D. A closer
look at the relationship between the distribution function
p(d) and the distance D may help to clarify the meaning
of D. Suppose that we have only one cluster for all genes.
Then for a given D the fraction of incorrect vector pairs
f (D, K = 1) is defined by the integral

f (D, K = 1) =
∫ ∞

D
p(x) dx (3)

that is, by the probability to find a pair of vectors with the
distance between them equal to or greater than D.

Integral (3) yields the upper boundary (with respect to
the number of clusters K ) for the fraction of incorrect
vector pairs f (D, K ). In general, for a given number
of clusters K and for an optimal assignment of vectors
to clusters, the probability of finding an incorrect vector
pair can be estimated as the weighted average fraction of
incorrect vector pairs:

f (D, K ) = 1

K

K∑
k=1

number of incorrect vector pairs in cluster #k

total number of vector pairs in cluster #k

(4)
This probability monotonously decreases with the increase
of the number of clusters K .
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The lower boundary for the function f (D, K ) can be
set by a straightforward analogy with the pre-assignment
of P-values in regular statistical tests. We define the
lower boundary as the maximal allowed probability to
find an incorrect vector pair in a cluster. Therefore, in our
conceptual framework the optimal number of clusters is
defined as the solution of Equation (5):

f (D, K ) = P. (5)

Given parameters D and P , we solve this equation by
sequentially increasing the number of clusters K and
repeating the minimization of function (2) for each value
of K , until the fraction of incorrect vector pairs f (D, K )

reaches the P-value. Note, that the shorter the cutoff
distance D the more clusters are needed to reach the same
value for the fraction of incorrect vector pairs.

Of course, the result of this process, the number of
clusters K , will depend on the particular values we choose
for parameters D and P . The problem of identifying the
optimal number of clusters has therefore now become a
problem of optimizing those two parameters.

The relationship between parameters D and
P—reverse engineering experiment
Parameter P represents the fraction of allowed false
positives, and we assign it arbitrarily within a reasonable
interval. Routinely, we use P = 0.055. Once parameter
P is fixed, the optimal value of the cutoff distance
D can be derived as follows. Suppose we know the
optimal number of clusters K opt for a given data set
a priori. Then the value of D can be determined by
solving the equation f (D, K opt) = P . To this end we
utilized the following reverse engineering procedure. First,
we randomly generated 24 seed patterns of expression
with 10 time points each. Second, each pattern was
transformed into a cluster by splitting the pattern into
individual profiles (from 10 to 200 profiles per cluster
with the total number of profiles equal to 2000; for the
specific number of profiles in clusters see Table 1). This
splitting step is a random procedure but controlled in
such a way that the weighted average standard deviation
from the seed patterns within clusters does not exceed
a pre-assigned value SD. In this experiment, we used
SD = 0.15, a value that reflects the typical variation
observed in published expression profiling experiments.
Figure 1 shows the clusters produced by this approach.
The Euclidean distances between profiles are depicted in
Figure 2A. Because of the way this particular data set was
constructed we know that the optimal number of clusters
is K opt = 24. Parameter D can thus be determined by
finding a solution for the equation f (D, K opt = 24) =
0.055. To do this, we applied the simulated annealing
algorithm to our data set and calculated the optimal

Table 1. Comparison of the expected distribution of profiles over clusters
with the calculated distribution

Expected Calculated

Cluster Number Number
number of profiles of profiles Missed Added

1 10 16 2 8
2 15 19 0 4
3 20 52 20 52
4 25 31 1 7
5 30 33 0 3
6 35 40 0 5
7 40 40 0 0
8 50 50 0 0
9 55 52 4 1

10 60 59 1 0
11 70 56 16 2
12 75 91 15 31
13 80 87 0 7
14 85 80 5 0
15 90 99 1 10
16 95 100 10 15a

17 105 77 39 11
18 120 122 7 9
19 130 129 2 1
20 140 143 3 6
21 145 151 0 6
22 160 155 6 1
23 165 123 53 11
24 200 195 6 1

Sum 2000 2000 191 191

aAll from cluster #3.

distribution of profiles for different values of K (the
running time for one set of parameters K and D is
approximately 1 min on a standard SGI workstation). For
each resulting distribution we then calculated the fraction
of incorrect vector pairs f (D, K ) over various distances
D using Equation (4). The results are shown in Figure 2B.
This graph demonstrates how the fraction of incorrect
vector pairs decreases with the number of clusters for
different cutoff distances D. It is apparent that for the
chosen P-value of 0.055 the known optimal number of
clusters K = 24 is found at an optimal cutoff distance
of D = 1.10. We verified that the optimal cutoff distance
D did not depend on a particular choice for the optimal
number of clusters (for a given number of time points):
we repeated the above procedure for K opt = 10 and
K opt = 34 and obtained values of D = 1.10 ± 0.02 (data
not shown).

Obviously, parameter D depends on the number of time
points. Therefore, we address the question: having deter-
mined D for our reverse engineering data set, how can D
be established for other data sets with different numbers of
data points? To this end, we consider the normalized dis-
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Fig. 1. Shapes of 2000 randomly generated temporal patterns of gene expression grouped in 24 clusters. The horizontal axis on each template
represents time in linear scale. The vertical axis is the expression level ranging from 0 to 1. Each cluster is represented by the average pattern
for profiles in the cluster (filled circles). Smooth curves indicate the standard deviation of average expression. Ck/n stands for ‘cluster #k
contains n individual profiles’. The weighted average standard deviation SD for this data set is equal to 0.15.

tribution function of distances between profiles with ran-
domly shuffled data points. The probability Q that two
randomly generated profiles will have a distance between
them of less than or equal to D is defined by Equation (6)

Q(D) =
∫ D

o
g(x) dx (6)

where g(x) represents the normalized distribution func-
tion of distances between profiles with randomly shuffled
time points. Q(D) is a measure of the probability of find-
ing two profiles randomly clustered together in a given
data set. The dashed curve in Figure 2A shows the dis-

tribution function of randomized profiles for our reverse
engineering data set and yields Q(D) = 0.05 for our
choice of P and the corresponding optimized cutoff value
D = 1.10. We can now derive D for a new data set as the
solution of Equation (6), where the function g(x) is the re-
sult of the randomization of the new data set. The optimal
number of clusters K can then be determined as described
above.

RESULTS AND DISCUSSION
We validated the clustering approach described here in
two ways. The efficiency of the algorithm was evaluated
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Fig. 2. Reverse engineering experiment. (A) Solid curve represents
the normalized distribution function of distances between the 2000
profiles generated to form 24 clusters as described in the text (see
also Figure 1). This function is the result of the overlay of two
curves, one that corresponds to distances between profiles within
clusters (the left shoulder), and another that corresponds to distances
between profiles belonging to different clusters (the right peak). For
comparison, the dashed curve shows the distribution function for the
same set with shuffled time points (the shuffling destroys similarity
between profiles within a cluster, and the left maximum disappears).
(B) The fraction of incorrect pairs (Equation 4) as a function
of the number of clusters for the optimized distribution
of profiles over clusters. The thick lines correspond to
three different values of the cutoff distance D. The thin
horizontal line corresponds to a P-value of 0.055.

in a statistically rigorous way by means of a reverse
engineering experiment in which the correct solution
was known a priori. The biological relevance of the
clustering produced by our algorithm was illustrated by its
application to a gene expression data set (Cho et al., 1998)
for which correct clustering was recognized previously by
means of a variety of different approaches including visual
inspection.

Reverse engineering experiment
The similarity metric (1) and the cost function (2) we use
for the clustering represent only one possibility among
a variety of other approaches. For example, a Bayesian
model could be used instead of Euclidean distances or
a term that maximizes distances between clusters could
be added to the cost function (2). Our specific choices
were motivated by the simplicity of the expressions (1)
and (2), the fact that the simulated annealing algorithm
generates robust output, and the corresponding fast speed
of its software implementation. Of course, this particular
choice may affect the results, and a statistically rigorous
test for the efficiency of the algorithm is desirable. As
a rule, different clustering algorithms are tested on real
gene expression data in situations in which the ‘correct’
solution is unknown, and the quality of clustering is
assessed by the biological relevance of the results. In the
present paper, we evaluate the efficiency of our algorithm
by means of a reverse engineering experiment, that is,
by utilizing an approach in which the correct solution is
known a priori.

The details of constructing a data set for our reverse
engineering experiment are described in the Methods.
Figure 1, along with the list of the distribution of particular
profiles over clusters, represents the expected solution.
Our goal was to retrieve this solution from the individual
profiles only, without any knowledge about the correct
assignment of profiles to clusters. We clustered all profiles
by minimizing the cost function (2) for the number of
clusters K = 24 which is the optimal number of clusters as
described above. Figure 3 presents the resulting clustering
for the set of parameters (P = 0.055; D = 1.10; K =
24).

A visual comparison of Figures 1 (the expected cluster-
ing) and 3 (the calculated clustering) shows only two sig-
nificant changes: (i) the standard deviation of cluster #1 is
markedly larger for the calculated clustering, and (ii) clus-
ter #3 disappeared (15 members of this cluster migrated
to cluster #16), and instead of it a new cluster appeared,
which we placed arbitrarily into the position of the for-
mer cluster #3. Table 1 provides detail information about
the re-distribution of profiles over clusters. Our algorithm
distributes 1809 profiles out of 2000 as expected, demon-
strating an efficiency of the algorithm at a level of 90%
correct answers. Note that this is a lower boundary of its
efficiency because not every re-distribution of profiles be-
tween clusters may actually be wrong. For example, the
initial clusters #3 and #16 (Figure 1) are quite similar, and
the fact that our clustering procedure transfers 15 mem-
bers of cluster #3 into cluster #16 is thus not surprising.
Of course, we verified that for the trivial case of standard
deviation SD = 0 (all profiles within a given cluster are
identical) our algorithm is able to find the exact solution
(data not shown).
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Fig. 3. The results of the reverse engineering experiment. The same 2000 temporal profiles whose fundamental patterns are shown in Figure 1
were clustered by means of the simulated annealing algorithm without utilizing any previous knowledge. The shapes of the patterns presented
in this figure should be compared with Figure 1. To make the comparison easier we re-assigned cluster numbers for calculated clusters such
that if a calculated cluster and one of the expected clusters are similar to each other they would be in the same topographical position in both
figures.

Biological validation: yeast cell cycle
The yeast cell cycle data set provided by Cho et al.
(1998) has established itself as a de facto standard for
the assessment of newly developed clustering algorithms.
This set contains time-course expression profiles for
more than 6000 genes, with 17 time points for each gene
taken at 10-min intervals covering nearly two yeast cell
cycles (160 min). This data set is very attractive because
a large number of genes contained in it are biologi-
cally characterized and have been assigned to different
phases of the cell cycle. Our goal here was to demonstrate

that our algorithm is able to extract biologically relevant
fundamental patterns of expression, such as cell-cycle
periodicity, without any a priori knowledge.

The raw expression profiles were downloaded from
http://genomics.stanford.edu. A variation filter was used
to eliminate those genes whose expression levels were
relatively low and genes that did not show significant
changes during the time-course. Specifically, the follow-
ing conditions had to be satisfied for a gene to be retained
in the data set: (i) an absolute value of expression at all
17 time points of equal to or greater than 100 (in units
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Fig. 4. Yeast data set. (A) Solid curve shows the normalized dis-
tribution of Euclidean distances between the 1306 gene expression
profiles that passed our variation filter. As in Figure 2A, for compar-
ison, the dashed curve represents the distribution function for pro-
files with randomly shuffled time points. (B) The fraction of incor-
rect pairs (Equation 4) as a function of the number of clusters
for the optimized distribution of profiles over clusters. The
thick lines correspond to three different values of the cut-
off distance D. The thin horizontal line corresponds to a
P-value of 0.055.

used in the downloaded file); (ii) at least a 2.5-fold change
in expression level during the time-course. The profiles
for the 1306 genes that passed the variation filter were
normalized such that expression level for each gene varied
between 0 and 1. After transforming the profiles into vec-
tors the Euclidean distances (1) between all vectors were
calculated. Figure 4A shows the distribution function of
those distances. Next we used our simulated annealing
approach to generate clusters of expression profiles and
applied the conceptual framework described above to
identify the optimal number of clusters for this data set.
We calculated the fraction of incorrect vector pairs as

described above for different numbers of clusters K and
cutoff distances D. Figure 4B depicts the dependence of
the fraction of incorrect vector pairs (4) on three different
values of the cutoff distance D (compare with Figure
2B). Those specific values were chosen to relate the
statistical and biological validation of our algorithm in a
quantitative manner: the distances displayed in Figure 4B
yield the same fraction Q(D) of distances di j � D
between vectors with shuffled components for the cell
cycle data set as the corresponding distances from the
reverse engineering experiment shown in Figure 2B. For
example, comparing the dashed curves in Figures 2A
and 4A indicates that Q(D) = 0.05 for D = 1.10 in the
reverse engineering experiment and D = 1.45 for the
cell cycle data set. Having determined by applying our
conceptual framework that an accepted fraction of false
positives P = 0.055 corresponds to Q(D) = 0.05, we
can now derive the optimal cutoff distance D = 1.45 from
Figure 4A and the optimal number of clusters K = 20
from Figure 4B. Figure 5 shows the 20 fundamental pat-
terns of gene expression during two yeast cell cycles that
our simulated annealing clustering algorithm identified.
Note that these clusters are distinctive (there is no strong
visual similarity between patterns) and that some of
them exhibit vividly the periodic behavior (for example,
clusters #3, 4, 12, 18) that is to be expected from this data
set. It is useful to compare 20 clusters shown in Figure 5
of the present paper with clusters shown in Figure 2a of
the paper by Tamayo et al. (1999), where practically the
same set of profiles were grouped into 30 clusters. It is
seen that 30 clusters in this case overestimate the optimal
number of clusters. For example, clusters #24, 28 and 29
(Tamayo et al., 1999, Figure 2a), demonstrate the same
shape and definitely could be combined into one group.
Our algorithm generates only one cluster of this shape
(Figure 5, cluster #18).

The next step of our analysis was the use of known
biological information to verify that our algorithm is
indeed able to extract patterns that correspond to different
phases of the yeast cell cycle. To this end, we used the
list of biologically characterized genes together with their
assignment to particular cell cycle phases from Table 1
of the paper by Cho et al. (1998). Table 2 of the present
paper shows how the 111 genes from Cho’s list that
passed our variation filter are distributed between the
clusters depicted in Figure 5. These genes are found
in six clusters (Table 2). In Figure 6 five clusters are
presented that obviously correspond to five cell cycle
phases: early G1, late G1, S, G2 and M. Note that some
genes that were assigned to the same phase in the Cho
paper (Cho et al., 1998) are placed in different clusters
by our algorithm (Table 2). We verified that these genes
indeed have significantly different patterns of expression
(data not shown).
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Fig. 5. The 1306 yeast genes that passed the variation filter were grouped into 20 clusters. The horizontal axis on each template represents
time ranging from 0 to 160 min. The vertical axis is the normalized expression level ranging from 0 to 1. Each cluster is represented by the
average pattern for profiles in the cluster (filled circles). Smooth curves indicate the standard deviation of average expression. Ck/n stands
for ‘cluster #k contains n genes’.

Table 2. Distribution of biologically characterized genes (Cho et al., 1998)
over the clusters shown in Figure 6

Cluster # 1 3 4 5 12 18

Early G1 (22/32) 15 2 – 5 – –
Late G1 (43/83) 1 – 4 – – 38
S-phase (18/46) – – 14 – 4 –
G2-phase (13/33) – – 4 – 9 –
M-phase (15/34) 1 10 – – 4 –

After the name of each cell cycle phase, the number of genes that passed
our variation filter is shown relative to the total number of genes belonging
to this category listed in Table 1 of Cho et al. (1998). The total number of
genes in each cluster is depicted in Figure 5. Only those clusters are shown
which contain at least one biologically characterized gene that passed the
variation filter.

CONCLUSION
In this paper we propose a simple and robust clustering
algorithm aiming to find not only an optimal distribution

of expression profiles over clusters but also to simultane-
ously identify the number of clusters that is optimal for a
given data set. We have verified the efficiency of the al-
gorithm by means of reverse engineering experiment and
by analyzing real experimental data for which the biolog-
ical relevance of the results can be recognized. The next
crucial question to answer is: what constitutes the biolog-
ical meaning behind the clustering? In other words, given
a set of clusters having characteristic shapes of expression
profiles, how can we extract information about intercon-
nectivity and mutual regulation of genes that belong to
different clusters? Several computational schemes that are
trying to address this issue can be found in the current lit-
erature (see, for example Chen et al., 1999; Tavazoie et al.,
1999; Weaver et al., 1999). The input data for these tech-
niques is a set of expression patterns grouped into clusters;
the output is a regulatory network. Obviously, the quality
and biological relevance of the resulting regulatory net-
work depend strongly on the quality of clustering as well
as the chosen number of clusters. We believe that the algo-

412

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/17/5/405/277425 by U
.S. D

epartm
ent of Justice user on 16 August 2022



Clustering by simulated annealing

0

1

0 20 40 60 80 100 120 140 160
E

xp
re

ss
io

n 
le

ve
l

Early G1 genes (n=15) from cluster # 1   

0

1

0 20 40 60 80 100 120 140 160

E
xp

re
ss

io
n 

le
ve

l

Late G1 genes (n=38) from cluster # 18 

0

1

0 20 40 60 80 100 120 140 160

E
xp

re
ss

io
n 

le
ve

l

S phase genes (n=14) from cluster # 4

0

1

0 20 40 60 80 100 120 140 160

E
xp

re
ss

io
n 

le
ve

l

G2 genes (n=9) from cluster # 12

0

1

0 20 40 60 80 100 120 140 160

Time (min)

E
xp

re
ss

io
n 

le
ve

l

M phase genes (n=10)  from cluster # 3 

Fig. 6. Five fundamental patterns taken from Figure 5 that correspond to the five cell cycle phases. Expression levels are shown on the vertical
axis and time points on the horizontal axis. On each template, open circles represent the average pattern for all profiles in the cluster. Solid
lines represent individual expression profiles. The genes presented are only those that belong to this cluster and are biologically characterized
and assigned to a specific cell cycle phase (Cho et al., 1998). The cell cycle phases to which these genes were assigned are shown on the top
of each template together with the number of genes that passed the variation filter (see Table 2). Note the periodic behavior of the fundamental
patterns and consistency of cell cycle phase changes with sequential shifts of peak positions from early to late time.

rithm we presented here that controls both issues can be a
helpful tool for the identification and modeling of biolog-
ically meaningful regulatory networks.
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