
1006 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

Analysis of the (1 + 1)-EA for Finding
Approximate Solutions to Vertex Cover Problems

Pietro S. Oliveto, Student Member, IEEE, Jun He, Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract— Vertex cover is one of the best known NP-Hard
combinatorial optimization problems. Experimental work has
claimed that evolutionary algorithms (EAs) perform fairly well
for the problem and can compete with problem-specific ones.
A theoretical analysis that explains these empirical results is
presented concerning the random local search algorithm and
the (1 + 1)-EA. Since it is not expected that an algorithm can
solve the vertex cover problem in polynomial time, a worst case
approximation analysis is carried out for the two considered
algorithms and comparisons with the best known problem-
specific ones are presented. By studying instance classes of the
problem, general results are derived. Although arbitrarily bad
approximation ratios of the (1 + 1)-EA can be proved for a
bipartite instance class, the same algorithm can quickly find
the minimum cover of the graph when a restart strategy is
used. Instance classes where multiple runs cannot considerably
improve the performance of the (1 + 1)-EA are considered and
the characteristics of the graphs that make the optimization
task hard for the algorithm are investigated and highlighted. An
instance class is designed to prove that the (1 + 1)-EA cannot
guarantee better solutions than the state-of-the-art algorithm for
vertex cover if worst cases are considered. In particular, a lower
bound for the worst case approximation ratio, slightly less than
two, is proved. Nevertheless, there are subclasses of the vertex
cover problem for which the (1 + 1)-EA is efficient. It is proved
that if the vertex degree is at most two, then the algorithm can
solve the problem in polynomial time.

Index Terms— Combinatorial optimization, computational
complexity, evolutionary algorithms, vertex cover, worst-case
approximation.

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) are randomized
search heuristics that have been widely used for solving

combinatorial optimization problems since the 1970s [2].
However, the field of the analysis of the time complexity of
EAs is fairly new, spawning in the 1990s with the analysis of
the basic (1 + 1)-EA on simple pseudo-boolean functions [3].
These functions were artificially created to understand what
characteristics of a problem may make its optimization easy
or hard for an EA. The behavior of the (1 + 1)-EA on toy
problems such as Onemax [3], on Trap Functions [4], or
on plateaus of constant fitness [5] was examined. Besides

Manuscript received October 28, 2008; accepted December 21, 2008.
Current version published September 30, 2009. This work was supported by
an EPSRC grant (EP/C520696/1). Part of the work presented in this paper has
previously appeared in the Proceedings of the 2007 Congress on Evolutionary
Computation (CEC2007).

The authors are with the Center of Excellence for Research in
Computational Intelligence and Applications, School of Computer Sci-
ence, University of Birmingham, Birmingham, B15 2TT U.K. (e-mail:
P.S.Oliveto@cs.bham.ac.uk; J.He@cs.bham.ac.uk; X.Yao@cs.bham.ac.uk).

Digital Object Identifier 10.1109/TEVC.2009.2014362

proving whether the algorithm is efficient or not in optimizing
the problems, these efforts have led to the introduction of a
range of techniques [6] and to the design of a general Markov
chain framework [7] for the analysis of EAs. Building upon
this first basis, the (1 + 1)-EA has been analyzed on linear
functions [8] and on quadratic polynomials [9]. Nowadays its
analysis is possible for combinatorial optimization problems
with “practical” applications, such as maximum matching [10],
[11], the minimum spanning tree problem [12], the partition
problem [13], and the subset sum problem [14]. In these papers
a new technique, known as drift analysis [14], [15], has proved
to be a useful tool, often (but not only) for finding exponential
lower bounds. A recent survey describing the available results
is in [16].

In this paper, the (1 + 1)-EA is analyzed for the vertex
cover problem, a well known NP-Hard combinatorial opti-
mization problem having practical applications in fields such
as networking and scheduling. In general, randomized search
heuristics, such as EAs, are problem-independent algorithms
designed to perform fairly well on large classes of problems.
Usually they are used when there are not enough available
resources for the construction of a specialized algorithm for
solving a specific problem. Hence, it is not generally expected
that an EA would outperform a problem-specific algorithm, far
less being likely when optimizing NP-Hard problems. How-
ever, experimental studies have claimed that EAs are particu-
larly successful on vertex cover instances [17]. In particular,
the paper shows that a genetic algorithm (GA) finds better
covers than a widely known approximation algorithm (i.e.,
Vercov) on random graphs with various edge densities [17].
This result appears surprising, and gave the initial motivation
for the theoretical work presented in this paper.

It is important to point out that this paper is not an
attempt to design competitive algorithms for the vertex cover
problem. The main goal is that of understanding the search
capabilities of EAs on a difficult combinatorial optimization
problem, since it is not possible to analyze EAs on a practical
problem with an “unknown” structure. Experimental results
have shown that EAs can produce qualitatively good results
on a wide range of problems (see for example [2]). In this
sense, NP-Hard problems are good test beds for EAs and
a theoretical analysis emphasizing the approximation quality
that can be guaranteed by an EA and how approximation
affects its computation time for vertex cover is highly desired.
Even for a nontrivial P-problem, such analyzes can shed
light on the relationship between the algorithm and problem
characteristics, as demonstrated by Sasaki and Hajek’s seminal
work on simulated annealing for maximum matching [18].

1089-778X/$26.00 © 2009 IEEE

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

OLIVETO et al.: ANALYSIS OF THE (1 + 1)-EA FOR FINDING APPROXIMATE SOLUTIONS TO VERTEX COVER PROBLEMS 1007

For the maximum matching problem, Giel and Wegener have
shown that the (1 + 1)-EA requires exponential expected
runtime in the worst case [10]. They have also proved that
the (1 + 1)-EA is a polynomial randomized approximation
scheme (PRAS) [19] for the problem. This means that it
guarantees near-optimal solutions in polynomial time. For
the partition problem which is NP-Hard, not only has the
(1 + 1)-EA proved to be a PRAS, but it has also been proved
to be competitive with problem-specific algorithms in the
average case [13]. Understanding when and why improving the
current approximate solution requires a considerable increase
of the runtime on an NP-Hard combinatorial optimization
problems will give greater insights to the application of EAs
in practice.

As a first significant step in the analysis of vertex cover, it is
necessary to analyze simple versions of EAs. By understanding
on which kind of fitness landscape algorithms using only
one individual may get trapped and for which reasons this
happens, it may be possible to understand which conditions a
vertex cover instance needs to satisfy such that populations or
operators such as crossover may be useful or necessary for ob-
taining good solutions. Similar extensions to population-based
EAs have been achieved for other combinatorial optimization
problems. For example (1+1)-EA results have been extended
to the (1 + λ)-EA for the spanning tree problem [12] and to
the (μ + 1)-EA for cliques on planar graphs [20].

In this paper, two simple and well-known algorithms are
analyzed, the random local search (RLS) algorithm and the
(1 + 1)-EA. Since it is not expected that any algorithm solves
an NP-Hard problem in polynomial time, their evaluation
will be performed in terms of approximate solutions and
will be compared with the best and widely used approxima-
tion algorithms for vertex cover (i.e., the best ratio known
is roughly 2 − (ln ln n)/ ln n where n is the number of
nodes in the graph, which converges to but is always less
than two [21]).

Four significant instance classes of the problem are in-
vestigated in order to draw some general conclusions about
the performance of the algorithms for the problem. Each
instance class is designed with characteristics that help to build
on the knowledge gained from the analysis of the previous
class.

The theoretical analysis of the “Papadimitriou–Steiglitz
(PS)” instance class shows how the (1 + 1)-EA has a very
similar behavior to that conjectured for the GA using the
results of the empirical analysis obtained in [17]. Furthermore,
the analysis also shows that there is a constant probability that
the algorithm gets trapped on a local optimum. This means
that multiple runs are necessary to guarantee the minimum
cover is found in polynomial time. However, for the considered
graph class, the cover size of the local optimum is roughly
doubled compared to that of the minimum cover. This is still a
better solution compared to the one found by Vercov [17], and
explains the better performance of the EAs for this instance
class. However, it is also shown that that this is not the case
for variants of the “PS” instance class.

The analysis of the (1 + 1)-EA and the RLS algorithms on
a bipartite instance class shows that there exist graphs with

similar characteristics to those of the previous instance class
that may lead to arbitrarily bad approximation ratios. However,
for both instance classes, if multiple runs are considered, then
the algorithms find the global optimum quickly.

The analysis of an instance class called Gh,l shows a
different kind of problem the algorithm may encounter when
tackling a vertex cover problem so that, even if a restart
strategy is used, the performance may not be improved con-
siderably. As a byproduct of the analysis it is also possible to
derive a general result about the (1+1)-EA on any vertex cover
problem with vertex degree at most two (i.e., Vd ≤ 2). The al-
gorithm will optimize every instance with such characteristics
in polynomial time but in higher expected time compared to
that of problem-specific algorithms for which the problem is
trivial ([22], p. 84).

With the aim of proving bad approximation ratios for the
(1 + 1)-EA using restarts, it has been possible to build an
instance class containing the characteristics of the bipartite
graph and those of the Gh,l graph. Through the analysis of this
instance class it is finally proved that the (1 + 1)-EA cannot
guarantee a worst case approximation ratio that is better than
that of the state-of-the-art algorithms for vertex cover (i.e.,
roughly 2 − (ln ln n)/ ln n [21]).

The rest of this paper is organized as follows. The vertex
cover problem, the algorithms considered in this paper, and
the previous related work are introduced in Section II. The
“PS” instance class is analyzed in Section III. In Section IV,
through an analysis of the bipartite instance class, it is proved
that restarts are necessary to avoid bad approximation ratios
for the (1 + 1)-EA and RLS. An instance class that cannot
be optimized even by using multiple runs is analyzed in
Section V. Section VI shows that the (1 + 1)-EA is efficient
for any graph with vertex degree lower than 3. Finally,
Section VII shows that the (1+1)-EA and the RLS algorithm
cannot guarantee better approximations than problem-specific
algorithms for vertex cover.

II. PRELIMINARIES

A. Vertex Cover Problem and the Algorithms

Given an undirected graph G = (V, E), with V being
the set of vertices, or nodes, and E the set of edges, the
vertex cover problem is that of finding the smallest subset
C of V such that for any edge e ∈ E at least one of its
endpoints is in C . All the subsets C of V having, for each edge
e ∈ E , at least one of its endpoints in C are called covers. All
the other subsets of V are infeasible solutions. Since vertex
cover has been proved to be NP-Hard [23], it is not expected
that an algorithm may optimize any vertex cover instance in
polynomial time (unless P = NP). An alternative is to accept
near-optimal solutions rather than the optimal one. In fact,
there exist various approximation algorithms for vertex cover
that in polynomial running time return near-optimal solutions.
Vercov is a well-known 2-approximation algorithm for the
vertex cover problem [23]. This means that whatever the graph
instance, Vercov returns a solution which is at most twice the
size of the optimal cover.

Vercov starts with an empty cover set and randomly chooses
an edge (u, v). Then it deletes all the edges in the graph

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

1008 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

incident to either u or v and inserts the two endpoints in the
cover. The process is repeated until all the edges are removed
from the graph.

The two randomized search heuristics considered in this
paper are the RLS algorithm and the (1 + 1)-EA. Both the
algorithms use bit strings to represent possible solutions to
the problem they are trying to optimize. We will also use the
term cover set to refer to the set of vertices corresponding to
the 1-bits in the bit string representing a solution.

Different initializations are examined, varying from an ini-
tial empty cover set (i.e., the initial solution has no nodes in the
cover set), a uniform distribution (i.e., each node is inserted
in the cover set with probability 1/2), to an initial full cover
set (i.e., the initial solution is a cover containing all the nodes
of the graph), with the hope of getting an idea of whether
one should be preferred to the others. Unless some available
information about the problem suggests differently, in practice
the uniform distribution is usually used.

For the (1 + 1)-EA and the RLS to be adapted to optimize
a vertex cover instance, each subset C ∈ V is represented by
a bit string (s1, . . . , sn) with n being the number of vertices
of the graph G = (V, E). For each node vi belonging to the
subset C , the relative bit si is set to 1. Otherwise it is set to
0. Given the above representation, a fitness function for the
vertex cover problem can be introduced as in [17] and [24]

f (C) =
n∑

i=1

(
si + n(1 − si)

n∑
j=1

(1 − s j)ei, j

)
.

Since vertex cover is a minimization problem, the lower
the value of f (C), the better the quality of the solution. The
first part of the above formula counts the number of nodes
in the cover and the second part gives a penalty of n to
each uncovered edge ei, j (i.e., an edge connecting the nodes
i and j) with ei, j ∈ {0, 1}. Since the minimum cover may
be at most n for any graph, any cover has a better fitness
value than that of an infeasible solution. The mutation operator
used by the RLS algorithm to create new solutions flips one
bit per iteration. The (1 + 1)-EA, instead, flips each bit with
probability 1/n. Both algorithms use elitist selection.

Randomized algorithms make random choices during their
execution, so they do not perform the same operations in
every run, even if the input is the same. Also, they do not
necessarily output the same result on a given input if they
are run more than once. Hence, the runtime of the algorithm
is a random variable. As a consequence, when analyzing
randomized algorithms such as RLS algorithms or EAs, the
expected runtime of the algorithm is used as a measure of their
performance.

In particular, if T f is a random variable measuring the time
required by the algorithm to find the solution for a certain
function f , the runtime analysis consists of estimating E(T f),
the expected value of T f .

Sometimes E(T f) is not sufficient to give an idea of how
likely it is that the algorithm will be efficient (i.e., will return
the optimal solution in polynomial time with respect to the size
of the problem). For this reason, results about pr(T f ≤ t),
which is the success probability given a certain number of

steps t , are also desired. As will be shown throughout the
paper, both the (1 + 1)-EA and the RLS algorithm may have
exponential expected runtimes, but at the same time they may
have high probabilities of finding the optimum in a time that
is considerably lower. When this is the case, a restart strategy
may change an inefficient algorithm into an efficient one.

Let the probability that the optimum is found in time T
be a constant c or greater. If the algorithm is restarted 1/c
times, then the optimum is found in expected time (1/c) · T .
In practice, however, it may not be trivial to understand when
it is the case to stop the algorithm and run it again. This
depends on the available knowledge about the problem. A
simple restart strategy is that of performing c parallel runs of
the algorithm. Then the expected time to find the optimum will
still be (1/c) · T . A relationship between the number of restarts
(i.e., parallel runs) and the probability that the optimum is
found may be derived. The probability that a given run of the
algorithm does not find the optimum in time T is at most a
constant c′ = 1 − c, and the probability that all k runs do not
find the optimum after time T is at most (c′)k . Hence with a
probability of at least 1 − (c′)k the optimum has been found
in k runs and k · T total fitness evaluations. The bigger the k,
the higher the probability the optimum is found (for example
for k = √

n the optimum is found in
√

n · T generations with
probability at least 1 − (c′)

√
n). In the rest of the paper, with

restart strategy we refer to the parallel run method described
above.

In this paper, we are dealing with an NP-Hard problem, and
hence we do not expect the algorithms to be efficient on all
instance classes. So the performance of the algorithms will
also be evaluated according to their worst case approximation
ratio for the vertex cover problem and the expected runtime re-
quired for obtaining a given approximation quality. The worst
case approximation ratio of an algorithm A on a minimization
problem R is defined as

max
I∈R

A(I)

OPT(I)

where A(I) is the solution obtained by A on the instance
I and OPT(I) is the value of the best solution of I . The
computational complexity results will be defined as a function
of the size of the problem (i.e., the number of nodes in the
graph) and the time required to find the solution. It is assumed
that the reader is familiar with asymptotic notation (see [25]).
Furthermore, the reader should refer to [19] for detailed ex-
planations of classical mathematical tools used in the analysis
of randomized algorithms. In particular, throughout the paper
Chernoff inequalities and the Coupon Collector Theorem will
be frequently used.

The main difference between the RLS algorithm and the
(1 + 1)-EA is that the former only flips one bit in each
iteration. This means that the RLS algorithm gets stuck on
the same local optima as those of a local search algorithm
with a neighborhood defined by a hamming distance of 1. For
this reason we will also call all such local optima with the
exception of the minimum cover local search covers.

Since the (1+1)-EA may flip multiple bits in one generation
(i.e., each bit is flipped with probability 1/n), the (1 + 1)-EA

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

OLIVETO et al.: ANALYSIS OF THE (1 + 1)-EA FOR FINDING APPROXIMATE SOLUTIONS TO VERTEX COVER PROBLEMS 1009

cannot get stuck forever on any local optima, and hence on a
local search cover. When analyzing the (1 + 1)-EA it will be
useful to consider the probability that a certain number of bits
flip. The following definition of an i-bit flip will be used in
the rest of the paper.

Definition 1 (i-bit Flip): Let n be the number of nodes in
the graph to be optimized by the (1 + 1)-EA. When the
mutation operator of the (1 + 1)-EA flips i bits in one single
generation, for any i such that 0 ≤ i ≤ n, then we will say an
i-bit flip has occurred.

B. Related Work

This paper is an attempt to understand the capabilities and
the limits of EAs when tackling a difficult combinatorial
optimization problem. Since the design of efficient algorithms
for the vertex cover problem is beyond the scope of this paper,
in this section we will only overview previous work focusing
on understanding how well or how badly EAs may perform
for vertex cover.

Various experimental work have shown that EAs may be a
promising approach for the problem (see [17], [26]). The first
theoretical analysis of EAs for vertex cover was presented
by [24]. It compares an EA without any problem domain
knowledge with other two EAs that use different kinds of
problem-specific information. However, in this paper, only the
convergence of the algorithms is proved while the runtime
comparisons are performed empirically.

The first runtime results concerning EAs for vertex cover,
which have recently appeared, are those of Friedrich et al. [27]
and Oliveto et al. [1]. The latter work is presented and
extended in this paper. Friedrich et al. have proved, through an
analysis of a bipartite instance class, that the (1 + 1)-EA has
a worst case approximation rate which can be arbitrarily bad
given polynomial time. In the same paper, it is also proved that
a simple evolutionary multiobjective optimizer (SEMO) can
optimize the bipartite graph in time O(n2 log n). The bipartite
instance class will be further discussed in an analysis of a
(1 + 1)-EA using restarts in Section IV.

An analysis of the improvements that can be obtained by
combining the (1 + 1)-EA with problem-specific algorithms
was presented in [28].

III. PAPADIMITRIOU–STEIGLITZ INSTANCE CLASS

Experimental studies have claimed that EAs are successful
on some vertex cover instances [17]. In particular, the
empirical results suggest that they can find better approximate
solutions than those found by a very well-known approxima-
tion algorithm for vertex cover problems (i.e., Vercov [23]),
although with higher expected optimization times. It is not sure
whether the above experimental observation is generally true
and how good the solutions are, and especially what time the
EA takes to find such solutions which are supposedly better.

Bäck and Khuri [17] perform experiments comparing a GA
with Vercov on random graphs with different edge densities,
and the GA produces better results. Furthermore, they show,
again empirically, that the GA performs very well on instances
of sizes n = 100 and n = 202 of the PS graph [23]

k + 2

k

n = 3k + 4

Fig. 1. Optimal cover for the PS graph with k = 3. The total number of
nodes is n = 3k + 4.

since it finds the optimal cover on average 6 times out of
10 in a runtime of approximately cn2 where c is a constant
greater than zero. In the remaining runs it only reaches a local
optimum which, however, is better than the one Vercov finds
on this graph. This problem seems to be simple for the GA,
although it is not clear what polynomial time is to be expected
as the graph size grows, both in the worst and in the average
case. Also, the reasons for the GA not finding the optimum in
some runs are not clear. We will give a theoretical explanation
of the behavior of the evolutionary algorithm on the PS graph
and explain the better performance compared to that of Vercov
for this instance class. Although the EAs that are analyzed are
simpler than the GA used in [17], the results show that the
performance of the RLS and the (1 + 1)-EA is asymptotically
as good as those conjectured for the GA through the results of
the empirical paper. Obviously, both the RLS algorithm and
the (1+1)-EA use the same fitness function and representation
as those used by the GA in the experimental work.

The main goal of this section is to understand the behavior
of the RLS and the (1+1)-EA on the PS graph and to give an
explanation for their better performance compared to Vercov
for this instance class. However, it will also be shown that
for a slight variation of the instance class (i.e., an instance
class called PS-2) the (1+1)-EA does not perform better than
Vercov anymore. As a consequence, by the end of the section
it will be clear that the best approximation algorithms for
vertex cover produce better worst case approximations than the
(1 + 1)-EA.

The PS graph and its optimal cover are described in Fig. 1.
Each graph of the instance class contains two rows with k +2
nodes and a third row with only k nodes. Hence, the total
number of rows is n = 3k + 4. Each node of the first row
is connected to the node of the second row which is in the
same column. Each node of the third row, instead, is connected
with every row of the second row. As a consequence, the
optimal cover is the set containing all the second row nodes.
This is true because all the third row nodes have to be in
the cover if one or more second row nodes are not in the
cover. Furthermore, another k + 2 nodes have to be added
to the k third row ones to ensure the covering of the edges
between the first and the second rows. Hence, a local optimum
has at most 2k + 2 nodes while the minimum cover has
k + 2 nodes.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

1010 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

This section is divided into three parts. The first part is
dedicated to the analysis of the RLS algorithm for the PS
graph. The second part analyzes the performance of the (1+1)-
EA for a simplified version of the PS instance class called
PS-2 and for the original PS instance class. Hence, also the
effects that flips of a higher number of bits may produce are
considered. The third section analyzes the Vercov algorithm
and shows why it produces worse covers for the PS graph than
those of the EAs even when the latter algorithms get stuck on
a local optimum.

A. Random Local Search

In this section it will be shown that there is a constant
probability that the RLS algorithm finds the global optimum.
However, the algorithm may get stuck on a local optimum.
In that case it will be stuck forever because it only flips one
bit at a time. So, even a simple randomized algorithm such as
RLS has a behavior which is very similar to the conjectured
one of the GA for the PS instance class. The main result of
this section is presented in the following theorem.

Theorem 1: The expected time for the RLS algorithm to
optimize the PS graph is infinite. With probability at least
k/(2k + 2) ≥ 1/4 the algorithm finds the global optimum in
time O(n log n).

The following lemmas consider different initializations of
the algorithm. Lemma 1 considers the situation when the
algorithm is initialized with all the nodes in the cover set. In
Lemma 3, the algorithm is initialized with an empty cover set.
Lemma 4, instead, considers the classical uniform distribution
initialization.

Lemma 1: If the RLS algorithm is initialized with a full
cover set, then the expected time to optimize the PS graph
is infinite. With probability at least k/(2k + 2) ≥ 1/4 the
algorithm finds the global optimum in time O(n log n).

Proof: The fitness value of the initial solution is f (C) = n
because all the nodes of the graph are in the initial cover. Since
the algorithm flips one bit at a time, after the first iteration one
node will have been removed from the cover. The obtained
solution, being feasible (two nodes need to be removed before
an infeasible solution may be obtained), will be accepted by
the RLS algorithm because it uses an elitist selection strategy
and the new solution will have a fitness value of f (C) =
n − 1. Let E1 be the event that a node of the third row is
chosen before one of the second row. With probability at least
k/(2k + 2) ≥ 1/4 event E1 happens. This is the probability
that one of the k third row nodes is chosen in the first step
out of the total of all the second and third row nodes (i.e.,
k+(k+2) = 2k+2). If a first row node is chosen instead, then
the probability of event E1 happening becomes higher (i.e.,
k/(2k + 1)) because one of the second row nodes, if chosen,
will produce an infeasible solution. If event E1 happens, then
no bit flips of second row nodes will be accepted because they
would produce an infeasible solution which, having a worse
fitness value, will not replace its parent. When all the nodes
of the first and the third row have been selected at least once,
they will have all been removed and the global optimum will
have been found. For the Coupon Collector Theorem [19], the

expected time for this to happen is O(n log n) and the second
statement of the lemma is proved. On the other hand, with a
probability of (k + 2)/(3k + 4) a second row node is the first
node to be removed from the cover. In such a case a local
search cover (i.e., a cover with all the third row nodes and,
for each column, one node belonging to either the first or the
second row) will be found. At this point the algorithm will be
trapped forever since it does not flip more than one bit at a
time. Hence the expected optimization time is

E(T) ≥ k

2k + 2
O(n log n) + k + 2

3k + 4
∞ ≥ k + 2

3k + 4
∞ = ∞.

In Lemma 3, the same result will be proved for an empty
cover set initialization. The following lemma will be useful
for the proof of Lemma 3.

Lemma 2: A bin contains m white balls and l black balls.
At each step one randomly chosen ball is removed from the
bin without replacement until there is either no white ball or
no black ball left in the bin. With probability m/(m + l), all
the black balls are removed before all the white ones. With
probability l/(m + l), all the white balls are removed before
all the black ones.

The proof of Lemma 2 can be found in [27].
Lemma 3: If the RLS algorithm is initialized with an empty

cover set, then the expected time to optimize the PS graph
is infinite. With probability at least k/(2k + 2) ≥ 1/4, the
algorithm finds the global optimum in time O(n log n).

Proof: First it will be proved that with a probability
of at least k/(2k + 2) ≥ 1/4, the algorithm finds the global
optimum in time O(n log n) (i.e., the second statement of the
theorem). If the algorithm is initialized with an empty cover
set, then any node that is initially chosen to be inserted in
the cover set will be accepted. As a consequence, the fitness
value improves according to how many edges are covered by
the chosen node. A first row node will always be accepted
except when the second row node on the same column is
already in the cover. Second row nodes, instead, will always
be accepted if at least one third row node is not in the cover.
The same holds for the third row nodes (i.e., if there is at least
a second row node that is not in the cover then any third row
node, if chosen, will be accepted). It follows that if all the
second row nodes are inserted in the cover before all the third
row nodes, then the algorithm will eventually find the global
optimum. The probability of such an event is k/(2k + 2). This
probability follows from Lemma 2. We consider that there are
2k + 2 balls in the bin, k (i.e., the third row nodes) are white
while k +2 (i.e., the second row nodes) are black. Our process
is equivalent to that of removing one random ball at a time
and stopping when we have removed all the balls of one color.

Hence, with probability at least k/(2k + 2), all the second
row nodes are inserted in the cover before all the third row
nodes. For the Coupon Collector Theorem [19], the expected
time is at most O(n log n). Since, the expected time to remove
all the first and the third row nodes left in the cover is also
O(n log n) (from the Coupon Collector Theorem again), the
second statement of the lemma is proved. The proof of the
first statement follows.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

OLIVETO et al.: ANALYSIS OF THE (1 + 1)-EA FOR FINDING APPROXIMATE SOLUTIONS TO VERTEX COVER PROBLEMS 1011

Let event E1 occur if all the third row nodes are inserted
in the cover before all the second row nodes. If E1 happens,
then there is at least one second row node that is not in the
cover. Let v2 be this node and v1 be the first row node in the
same column as v2. Let E2 be the event that v1 is inserted
in the cover before v2. If events E1 and E2 happen, then the
RLS algorithm will reach a local optimum and be stuck there
forever. This occurs because if v2 is selected for insertion in
the cover, then the fitness value will be incremented by 1,
hence the solution will not be accepted by the elitist selection
scheme. On the other hand, if v1 is removed from the cover
then an infeasible solution will be obtained (i.e., the edge
connecting v1 and v2 will not be covered), and hence not
accepted.

The probability that event E1 happens is p(E1) =
(k + 2)/(2k + 2) (Lemma 2). The probability that event E2
happens is at least p(E2) ≥ 1/2 (i.e., the probability of
choosing v1 out of v1 and v2). Hence, with probability at
least 1/2 ((k + 2)/(2k + 2)), the algorithm reaches a local
search cover in time O(n log n) due to the Coupon Collector
Theorem [19]. Since RLS only flips one bit at a time, it will
remain stuck forever on the local optimum. This leads to the
infinite expected optimization time.

Lemma 4: If the RLS algorithm is initialized with a uniform
distribution, then the expected time to optimize the PS graph
is infinite. With probability at least k/(2k + 2), the algorithm
finds the global optimum in time O(n log n).

Proof: After initialization, half of the nodes of each row
are expected to be in the cover set. Let m be the number
of nodes of the second and the third row that are inserted
in the cover set during the initialization phase. For Chernoff
bounds [19] the probability that all the nodes of one of the
rows are in the cover after initialization is exponentially small.
Hence m < 2k with overwhelming probability. So, just like for
Lemma 3, we need to bound the probability that all the second
row nodes are inserted in the cover before all the third row
nodes. Since during initialization they have been inserted in
the cover set independently and all with the same probability
(i.e., 1/2), Lemma 2 can also be applied to this scenario. We
consider having 2k + 2 balls in a bin where k are white and
k + 2 are black. First we remove m balls from the bin (i.e.,
initialization phase where with exponentially high probability
m < 2k) and then we remove as many balls as required until
there are either no black balls or no white balls left. Then, by
Lemma 2 the probability that all the second row nodes are in
the cover before all the third row nodes is k/(2k + 2). At this
point for the Coupon Collector Theorem [19], the expected
time to reach the optimum is O(n log n). On the other hand,
with probability at least 1/2 ((k + 2)/(2k + 2)) (Lemma 2) the
local optimum is found and the algorithm will be stuck forever.
This leads to the infinite expected optimization time.

The proof of Theorem 1 follows from Lemmas 1, 3, and 4
according to which initialization is considered.

B. (1 + 1)-EA

The (1 + 1)-EA has a positive probability of flipping many
bits at a time, so it cannot remain stuck on a local optimum

forever. However, it may take a long time before it manages
to escape.

Since many bits may be flipped in one step, the proofs for
the (1 + 1)-EA turn out to be more complicated than those
for the RLS algorithm. First, the following simplified instance
class, called PS-2, will be considered.

Definition 2 (PS-2 Instance Class): The PS-2 instance
class is obtained by removing two nodes from the first row
and two nodes from the second row of the PS instance class.
All the edges adjacent to the four nodes are also removed
from the instance class graphs.

By considering the PS-2 instance class, we obtain consider-
ably simpler proofs which are easier to follow. Calculating the
probabilities that all the nodes of the PS-2 graphs are removed
from (or inserted in) a given row is easier because the number
of nodes in each of the three rows is the same.

The main result of this section is stated in the following
theorem.

Theorem 2: The expected time for the (1 + 1)-EA to op-
timize the PS graph is 2�(3√n). With constant probability the
(1+1)-EA finds the global optimum in time O(n log n). Both
statements also hold for the PS-2 instance class.

The theorem states that the expected time is exponential.
This happens because there is a constant probability that the
algorithm finds a local optimum before finding the minimum
cover. When this happens, the (1+1)-EA requires exponential
time to escape from the local optimum and find the global
optimum. However, there is a constant probability that the
algorithm finds the global optimum in O(n log n) time (i.e.,
the second statement of the theorem).

Lemmas 6, 7, and 8 prove, each considering a different
initialization, that there is a constant probability that the
algorithm finds the minimum cover without getting trapped
in any local optimum of the PS-2 graph. After the analysis
of the PS-2 instance class, it will be shown how the results
can be transferred to the PS instance class for a full cover
initialization. The first statement of Theorem 2 will, instead,
follow from Lemmas 10 and 11. These two lemmas hold for
both instance classes (i.e., PS and PS-2).

For the proof of the following lemmas the concept of an
inversion will be useful. The definition follows.

Definition 3 (Inversion):
1) Let all the nodes of the second row be in the cover set

while i > 0 third row nodes are not. Then an inversion
happens if one mutation inserts all the missing third row
nodes in the cover set while removing at the same time
at least i second row nodes.

2) Let all the nodes of the third row be in the cover set
while i > 0 second row nodes are not. Then an inversion
happens if one mutation inserts all the missing second
row nodes in the cover set while removing at the same
time at least i third row nodes.

The following lemma about inversions will be useful for the
proof of Theorem 2.

Lemma 5: Let all the second-row nodes be in the cover
while at least one third row node is not in the cover. Then
with probability at least (1/e) − e−�(n) no inversions occur
before the global optimum is found in time O(n log n).

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

1012 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

Lemma 5 is general enough to hold for both the PS and the
PS-2 instance classes.

Proof: For an inversion to occur, all the third row nodes
have to be inserted in the cover while at least the same amount
of second row nodes have to be removed. The probability that
the third row nodes are all inserted in the cover is highest when
there is only one third row node missing from the cover. Let
E� be the event that the third row node is inserted while at
least one second row node is removed. The probability that E�

happens is bounded above by 1/n because one precise third
row node has to flip and the probability each node is flipped
is 1/n.

If other j third row nodes are missing from the cover, then
the bound has to be multiplied by 1/n j , because all the third
row nodes missing in the cover have to be flipped at the same
time (i.e., each bit flips with probability 1/n) for an inversion
to happen. Hence the above 1/n bound holds whatever is the
amount of third row nodes missing in the cover.

Let E1 be the event that another third row node is removed
from the cover. The probability that E1 happens is

p(E1) ≥ (k − 1)
1

n

(
1 − 1

n

)n−1

≥ k − 1

en
.

Hence, the probability that E� occurs before E1 is less than

p(�)

p(�) + p(E1)
≤ 1

n

/(
1

n
+ k − 1

en

)
= e

e + k − 1
≤ e

k + 1
.

It follows that with a probability of at least 1−(e/(k+1)) event
E1 happens before E�. Let Ei be the event that i third row
nodes are missing and that they are inserted in the cover while
at least the same number of second row nodes are removed
from the cover. As explained previously, the probability of
event E� is higher of a factor of 1/ni than that of any other
event Ei with 2 < i ≤ k−1. On the other hand, the probability
E1 is only higher of at most a 1/n factor than any other 1-bit
flips removing a third row node if there are less than (k − 1)
third row nodes in the cover. Hence, e/(k + 1) is an upper
bound on the probability of E1 happening before any event Ei .

It follows that (1 − (e/(k + 1)))((k+1)/e)−1 ≥ 1/e is a lower
bound for the probability that any event Ei may happen before
another ((k + 1)/e) − 1 third row nodes have been removed
from the cover. At this point the expected time for a third row
node to be inserted in the cover is exponential in the number
of nodes since at least (k + 1)/e = (n − 1)/3e third nodes
have to flip.

In the mean time the nodes of the first and third row that are
still in the cover will be removed. For the Coupon Collector
Problem [19], this requires time O(n log n).

Now Lemmas 6, 7, and 8 may be stated and proved.
Lemma 6: If the (1 + 1)-EA is initialized with a full cover

set, then with probability at least (1/6e) − e−�(n) it finds the
minimum cover of the PS-2 graph in time O(n log n). With
probability at least (1/6e) − e−�(n) a local optimum will be
found before the minimum cover.

Proof: If the EA is initialized with all the nodes in the
cover, throughout the whole optimization process it will only
accept bit flips reducing the cover size or creating a different

cover of the same size as the current one. This differs from the
optimization process starting with an empty cover set where
nodes are added to the cover until a feasible solution has been
found.

The proof consists of two parts. The first part proves that
with a probability higher than 1/6 a node of the third row
of the graph is removed from the cover before any of the
middle row nodes. Then from Lemma 5 it follows that with a
probability of at least (1/e) − e−�(n) the algorithm finds the
optimal cover. The same idea will be used to prove that a local
search cover is found with at least the same probability.

For the first part, the probability that no bits flip can be
ignored since it is not influential.

The probability that no bits flip in one generation is
P(0 − bit flip) = (1 − (1/n))n ≥ 1/3. This gives a probabil-
ity that at least one bit flips of less than 2/3. The probability
that exactly one bit flips in one generation is P(1−bit f li p) =
n · (1/n) (1 − (1/n))n−1 = (1 − (1/n))n−1 ≥ 1/e. The
conditional probability that exactly one bit flips given that at
least one bit flips is

P(1 − bit f li p)

1 − P(0 − bit f li p)
≥ 1/e

2/3
≥ 1/3

2/3
= 1

2
.

Given that a 1-bit flip occurs, the probability that a third
row node is chosen rather than a second row node is 1/3
because each row has got the same number of nodes. Hence,
(1/2)(1/3) = 1/6 is a lower bound on the probability that at
least one node of the third row is selected before a second row
node. If a bit belonging to the third row of the graph is chosen
in the first step, then any 1-bit flip concerning a node in the
second row (i.e., all the nodes of the global optimum) will not
be accepted since one of the edges between the second and
the third row would become uncovered and the new solution
would not be a cover. However, flips of multiple bits may
insert all the third row nodes again by removing at the same
time some second row nodes (i.e., an inversion occurs). From
Lemma 5 with probability (1/e)− e−�(n) no inversions occur
before the optimum is found. Hence with a probability of at
least (1/(6e)) − e−�(n) the global optimum is found in time
O(n log n).

The second statement of the lemma is proved following
the same line of thought. With a probability of at least 1/2
exactly one bit flips in the first generation. The probability that
a second row node is the one chosen is exactly 1/3. Finally,
the probability that no inversions occur before the optimum
is found is at least (1/e) − e−�(n). By multiplying the three
probabilities, the proof follows.

Lemma 7: If the (1 + 1)-EA is initialized with an empty
cover set, then with probability at least (1/2e) − e−�(n), it
finds the global optimum of the PS-2 instance class in time
O(n log n).

Proof: As in the case of the RLS algorithm, if all the
nodes of the second row are inserted in the cover before all
the nodes of the third row, then by just using 1-bit flips the
algorithm will reach the global optimum. In the case of the
(1 + 1)-EA more than one bit may flip at the same time.
From Lemma 5, with a probability of at least (1/e) − e−�(n)

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

OLIVETO et al.: ANALYSIS OF THE (1 + 1)-EA FOR FINDING APPROXIMATE SOLUTIONS TO VERTEX COVER PROBLEMS 1013

the algorithm will find the minimum cover in O(n log n)
time.

Let E1 be the event that all the nodes of the second row are
inserted in the cover before all the nodes of the third row. We
want to find a lower bound on the probability that E1 happens.
Since the (1 + 1)-EA may flip more than one bit at a time,
some nodes of a row may be exchanged with those of another
row.

If the current solution is infeasible, then the bit flip will be
accepted if at least the same number of edges are covered by
the new solution. If we only consider the second and third
rows then, by symmetry of the instance class, the probability
that the second row is filled before the third would be exactly
1/2. This follows from the facts that the number of nodes in
each row is the same and each node covers the same number
of edges. In the following we will show that the first row
influences the process so that the probability the second row is
filled before the third row is at least 1/2. This will follow from
the following arguments, which hold for any configuration of
the graph if the current solution is infeasible.

1) The probability that a second row node is added to the
cover set is higher if the first row is in the instance rather
than if it was not there.

2) The probability that a second row node is removed from
the cover set is lower if the first row is in the instance
than if it was not there.

Point 1) holds because if a first row cover node is exchanged
for the second row node on the same column then the step
will be accepted since it covers all the third row nodes which
are not in the current cover while the first row node only
covers one edge. Furthermore, if a third row cover node is
exchanged for a second row node, then if the first row node
in the same column is not in the cover an extra edge will be
covered compared to the case that the first row is not in the
graph.

Point 2) holds because a bit flip exchanging a second row
cover node for a first row one will not be accepted unless the
current solution has all the third row nodes in the cover. If
at least a third row node is not in the cover, the second row
node covers more edges (i.e., all the ones connecting third
row nodes which are not in the current cover) than the first
row node which covers only one edge (which was previously
covered by the second row node anyway).

Hence, the probability that the second row node is filled be-
fore the third row node is higher than 1/2. Since by Lemma 5
no inversions occur with probability at least (1/e) − e−�(n),
the proof follows.

Lemma 8: If the (1 + 1)-EA is initialized with a uniform
distribution, then with probability at least (1/(4e))− e−�(n) it
finds the global optimum of the PS-2 graph in time O(n log n).

Proof: By Chernoff bounds [19] after initialization neither
row has k nodes in the cover with overwhelming probability.
Hence, like in Lemma 7 we need to prove that with constant
probability all the second row nodes are inserted in the cover
before all the third row nodes. Both rows have the same
number of nodes and during initialization each node is inserted
in the cover independently with probability 1/2. Hence, with
probability at least 1/2 after initialization there will be at

least the same number of second row nodes in the cover
compared to the number of third row nodes. Let x be the
number of second row nodes and y the number of third row
nodes inserted in the cover during initialization. As discussed
above, x ≥ y with probability at least 1/2. Then, the rest of
the proof is the same as that of Lemma 7 by considering that
k − x second row nodes have to be inserted before k − y.
From Lemma 7 with probability at least (1/(2e))−e−�(n) the
global optimum is found in time O(n log n). Multiplying, we
get a total probability of finding the minimum cover of at least
(1/(4e)) − e−�(n).

Since a constant probability to find the minimum cover has
been proved, the following corollary of Lemmas 6, 7, and 8
can be stated.

Corollary 1: The (1+1)-EA with a restart strategy will find
the minimum cover of the PS-2 instance class in expected time
O(n log n).

Now the result of Lemma 6 will be transferred to the PS
instance class in the following lemma.

Lemma 9: If the (1 + 1)-EA is initialized with a full cover
set, then with probability at least (1/8e) − e−�(n), it finds
the global optimum of the PS graph in time O(n log n). With
probability at least (1/6e) − e−�(n) a local optimum will be
found before the minimum cover.

Proof: The proof follows exactly the same line of thought
as that of Lemma 6. The probabilities have to be calculated
by considering that the second row has k + 2 nodes while the
third row only has k nodes.

The conditional probability that exactly one bit flips given
that at least one bit flips is 1/2.

Given that a 1-bit flip occurs, the probability that a third
row node is chosen is at least (k/n) ≥ (n/4)/n = 1/4,
because k nodes may be chosen out of n and k > n/4. Hence,
(1/2)(1/4) = 1/8 is a lower bound on the probability that at
least one node of the third row is selected before a second
row node. From Lemma 5 with probability (1/e) − e−�(n) no
inversions occur before the optimum is found. Hence with a
probability of at least (1/(8e)) − e−�(n) the global optimum
is found in time O(n log n).

Since in the first step a second row node is chosen with
probability at least 1/2 ((k + 2)/n) ≥ 1/2 ((n/3)/n) = 1/6,
it follows that with a probability of at least (1/(6e)) − e−�(n)

a local optimum is found before the minimum cover.
This corollary follows:
Corollary 2: The (1 + 1)-EA with a restart strategy, initial-

ized with a full cover, will find the minimum cover of the PS
instance class in expected time O(n log n).

Lemmas 6, 7, and 8 prove that with a probability of at least
(1/(6e)) − e−�(n), the (1 + 1)-EA finds the global optimum
of the PS-2 instance class in time O(n log n) (i.e., the second
statement of Theorem 2 for the PS-2 graph). Lemma 9, instead,
proves a constant probability for the (1 + 1)-EA with a full
cover initialization of finding the global optimum of the PS
graph in time O(n log n). If this does not happen, then the
algorithm will find some local optimum (i.e., a local search
cover) before finding the minimum cover. Lemmas 6 and 9
give lower bounds for the constant probability that a local
search cover is found for a full cover initialization. In fact,

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

1014 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

(a) (b) (c) (d)

Fig. 2. (a) Worst local search cover for the PS graph with k = 3. (b) and (c) Different local search covers: all the local search covers, not being the optimal
one, have all the third row nodes in the cover, and one node from either of the other two rows for each column. (d) Best local search cover with k = 3.

for the rest of the proof even an inverse polynomial lower
bound on the probability would be sufficient (i.e., to prove
the exponential expected runtime to find the minimum cover).
For the other two initializations considered in this paper the
proof is like that of Theorem 5 in [27]. The proof holds
for both the PS and the PS-2 instance classes. Using the
multiplicative weight decrease method [12] it is proved that
in a phase of at most 12n log n a cover including all the
third row nodes is found. Then there is at least an inverse
polynomial probability that at least one of the second row
nodes has not been chosen in the 12n log n steps, implying
that a local search cover has been found. Since the calcula-
tions are the same, the complete proof is not reported again
here.

The rest of the proof of Theorem 2 is concerned with
showing that, if the (1+1)-EA finds a local search cover of the
PS graph, then it will require exponential time to escape and
find the optimum. In particular, the following will be proved.

1) With probability at least 1/9−o(1) the algorithm reaches
a local search cover with at least 3

√
n first row nodes

(Lemma 10).
2) The expected time from such a cover to the minimum

one is exponential in n (Lemma 11).

Once the two above results have been proved, the first state-
ment of Theorem 2 will follow. Since the results and the proofs
of Lemmas 10 and 11 are essentially the same for the PS and
the PS2 instance class, from now on only the original PS graph
will be considered.

A local search cover of the PS instance class has all the
third row nodes in the cover and one node for each of the
k + 2 columns belonging to either the first or the second row.
Fig. 2 shows four examples of local search covers of the PS
instance class with k = 3.

Definition 4 (Worst Local Search Cover): The worst local
search cover is that having all the k + 2 first row nodes in
the cover, hence none of the second row [Fig. 2(a)].

The worst local search cover is the one having maximum
hamming distance from the global optimum since, in order to
obtain the optimal solution, all the nodes in the cover have to
be removed and all the others need to be inserted.

Definition 5 (Best Local Search Cover): A best local
search cover is that having all the second row nodes in the
cover but one [Fig. 2(d)].

A best local search cover has the minimum hamming
distance from the optimum (i.e., all the third row nodes have
to be flipped together with one node each taken from the other
two rows; the hamming distance is k+2). Fig. 2(b) and (c) are
just two other examples showing how one node per column
belonging either to the first or the second row has to be in
the local search cover together with all the other third row
nodes.

Lemma 10: From a best local search cover with probability
at least 1/9−o(1) the (1+1)-EA reaches a local search cover
with at least 3

√
n first row nodes before finding the minimum

cover.
Proof: On a best local search cover the algorithm has

only one node missing in the second row [Fig. 2(d)]. In order
to find the global optimum the (1 + 1)-EA needs to insert
it in the cover (i.e., a necessary condition). If this happens,
then the third row nodes may be removed from the cover
even by just using 1-bit flips. The node may be inserted in
the cover by a 2-bit flip of the only first row node in the
cover together with the only second row node not in the cover.
Alternatively, the node may be added by two or more bit flips
concerning the second row node together with one or more
third row nodes. In total there are k + 1 possible 2-bit flips
and

(k+1
i

)
possible i +1-bit flips with 2 < i ≤ k. Let the event

that the missing second row node is inserted in the cover be
event E1. If event E1 happens, then the third row nodes may
be “quickly” removed by 1-bit flips and the minimum cover
reached in time O(n log n) (Coupon Collector Theorem [19]).
In the following we will prove that with constant probability
E1 does not happen. Afterward it will be shown that if E1
does not happen, then with probability close to 1 3

√
n first row

nodes are inserted in the cover before the minimum cover is
found.

The probability of E1 is

p(E1) ≤
(

k + 1

1

)
1

n2 +
k+1∑
i=2

(
k + 1

i

)
1

ni+1 =
k+1∑
i=1

(
k + 1

i

)
1

ni+1

≤
k+1∑
i=1

(
n/3

i

)
1

ni+1 ≤
k+1∑
i=1

(n/3)i

i!

1

ni+1 =
k+1∑
i=1

1

i!3i n

≤ 1

3n

∞∑
i=1

1

i!
= e − 1

3n
≤ 2

3n
.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

OLIVETO et al.: ANALYSIS OF THE (1 + 1)-EA FOR FINDING APPROXIMATE SOLUTIONS TO VERTEX COVER PROBLEMS 1015

On the other hand, the probability that at least another node
is removed from the second row is greater than

(k + 1)
1

n2

(
1 − 1

n

)n−2

≥ 1

e

n − 1

3

1

n2 ≥ 1

4en

because a second row node has to flip together with the first
row node of the same column.

Let E2 be the event that at least another second row node
is removed before all the second row nodes are inserted. The
probability that E2 happens is greater than

1/(4en)

1/(4en) + 2/(3n)
= 3

3 + 8e
≥ 1

9
.

The above calculations prove that if the algorithm was
lucky enough to reach the local search cover with smallest
distance from the optimum, then there is a constant probability
of 1/9 that a local search cover with greater distance from
the optimum will be reached (event E2). In the following it
will be proved that if event E2 happens, then with probability
1 − o(1) a local search cover with at least 3

√
n first row nodes

will be reached before finding the optimum. The probability
of performing a move adding second row nodes to the cover
(p+) is maximized at distance d = 3

√
n. This is true because

there are
(3√n

j

)
combinations out of

(k+2
j

)
which add j second

row nodes to the cover. The rest of the points in the space with
1 < i < 3

√
n have less combinations leading to an increment

of second row nodes (i.e., if there are less than 3
√

n first row
nodes, then there are also less combinations that if selected
will remove them). First we consider only 2-bit flips (moves
of length 1 because one first row node is added to the current
cover while one second row node is removed, or vice-versa).
The probability of adding a second row node (p+

1), given that
only 2-bit flips occur, is at most 3

√
n/n2 = n−5/3. The proba-

bility of performing a move heading away (p−
1) from the local

search cover with all the second row nodes is minimized at the
same position (i.e., d = 3

√
n). The probability p−

1 is at least

(k + 2) − 3
√

n

en2 ≥ n/3 − 3
√

n

en2 = n − 3 3
√

n

3en2

= n2/3 − 3

3en5/3
≥ n2/3

4en5/3
= 1

4en
.

And the probability that p+
1 happens before p−

1 is at most

1/(n5/3)

1/(n5/3) + 1/(4en)
= 4e

4e + n2/3 ≤ 4e

n2/3 .

This means that with a probability of at least (1 − (4e/n2/3))
the opposite event happens. Hence, with a probability of at
least

(
1 − 4e

n2/3

)n1/3

≥ 1 − 4e

n2/3 n1/3 = 1 − 4e

n1/3 = 1 − o(1)

3
√

n negative moves occur before any positive moves.
The above calculations only consider 2-bit flips. Since the

probability for a negative move is at least 1/4en, its expected
time is at most 4en. Then the expected time for 3

√
n negative

moves to happen is bounded below by 4e 3
√

nn = 4en4/3.

By Markov inequality the probability that these 3
√

n negative
moves happen in a time phase greater than t = 4en5/3 is

P(t ≥ 4en5/3) ≤ 4en4/3

4en5/3
= 1

3
√

n
.

Hence, the probability that the 3
√

n moves happen before the
end of phase t = 4en5/3 is at least

1 − 1
3
√

n
= 1 − o(1).

Now we will prove that there is at least a constant probability
that in the time phase t , no moves of length 2 or greater,
heading toward the optimum, happen. At a given position j
with 1 < j ≤ 3

√
n the probability of a move of length 2

heading toward the optimum is

P2 ≤
4∑

i=3

(
j

i

)(
k + 2 − j

4 − i

)
1

n4

≤
(

3
√

n

3

)
(n − 3

√
n)

1

n4 + 2

(
3
√

n

4

)
1

n4

≤ 2
n2

6

1

n4 = 1

3n2 .

The above bound also takes into account the probability that
the third row cover nodes are exchanged with the missing
second row nodes to fill in the second row.

Moves of length greater than 2 have lower probabilities
because at least four of the bits considered above have to
flip anyway. Hence, the probability that a move of length 2 or
greater does not happen in one step is higher than 1 − 1/3n2

and the probability it does not happen in a time phase of length
t = 4en5/3 is at least

(
1 − 1

3n2

)4en5/3

≥
(

1

e

)�
(

1
3√n

)
= 1 − o(1).

Summing up we get a probability of 1/9−o(1) that at least
3
√

n first row nodes are in the cover before the global optimum
is found.

Lemma 11: With probability 1 − 2−�(3√n) the (1 + 1)-EA
does not reach the global optimum from a local search cover
with at least 3

√
n first row nodes in 2c 3√n steps.

If the current solution is a local search cover with at most
(k + 2) − 3

√
n second row nodes, then for at least one node

belonging to the third row to be removed from the cover it is
necessary that at least all the second row nodes that are not in
the cover get flipped together with the same number of third
row nodes. The expected time for such an event to happen is
at least �(n

3√n) which is exponential in n. Hence the case of
the first row nodes that are exchanged gradually with those
of the middle row should be examined to see if the algorithm
can reach the global optimum in polynomial time. When all
the nodes of the second row have been exchanged with those
of the first one, then the third row nodes will quickly be
removed from the cover even by just flipping one bit at a
time.

In the following, the drift theorem will be introduced as
a tool to prove Lemma 11. This proof method was initially
introduced by Hajek [29] and afterward was extended to the

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

1016 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

run-time analysis of EAs by He and Yao [14]. A general
description of the technique can be found in [16]. Giel and
Wegener introduced a useful extension of the general proof
method for proving run-time lower bounds that hold with
exponentially high probabilities [10]. Recently, Oliveto and
Witt [30] have presented the following theorem which allows
considerably simpler calculations. This simplified version will
be used to prove Lemma 11.

Theorem 3 (Simplified Drift Theorem): Let Xt , t ≥ 0, be
the random variables describing a Markov process over the
state space S := {0, 1, . . . , N } and denote �t (i) := (Xt+1 −
Xt | Xt = i) for i ∈ S and t ≥ 0. Suppose there exist an
interval [a, b] of the state space and three constants δ, ε, r > 0
such that for all t ≥ 0:

1) E(�t (i)) ≥ ε for a < i < b;

2) Pr(�t (i) = − j) ≤ 1/(1 + δ) j−r for i > a and j ≥ 1.

Then there is a constant c∗ > 0 such that for T ∗ := min{t ≥
0 : Xt ≤ a | X0 ≥ b} it holds Pr(T ∗ ≤ 2c∗(b−a)) = 2−�(b−a).

The proof of Lemma 11 follows.
Proof of Lemma 11: Let Xt be the random variable denoting

the number of second row nodes missing from the cover
set (hence the number of first row nodes in the cover set).
Furthermore let l be the number of nodes of the first row. So
l = k +2 = ((n − 4)/3)+2 = (n/3)+ (2/3) = �(n). a is set
to be equal to one (i.e., a = 1), hence any cover containing
all the second row nodes, but one, and only one of the first
row.

Let the algorithm be in position i when the current solution
is a cover with i first row nodes (i.e., Xt = i). In the following
the drift theorem will be used to prove that exponential time
is needed with overwhelming probability before position a (or
better) is reached by the (1+1)-EA. b = 3

√
n +1 so any cover

with 3
√

n + 1 first row nodes and l − 3
√

n − 1 second row ones.
Hence b − a = 3

√
n = �(3

√
n).

Now it remains to check that the two conditions of
Theorem 3 hold. The first condition is E(�t (i)) ≥ ε for
a < i < b.

Let a move of length j occur when exactly j second row
nodes are selected to be inserted in the cover and at the same
time j first row nodes are selected for removal from the cover.
A move will be of length − j when exactly j second row nodes
are selected to be removed from the cover together with j
first row nodes which are selected for insertion in the cover.
Let p j (i) be the probability that an individual in position i
performs a move of length j .

The probability of performing a move of length 1 drifting
away from the optimum, given that the process is in position
i is

p1(i) = (l − i)
1

n2

(
1 − 1

n

)n−2

≥ (l − 3
√

n)
1

n2

(
1 − 1

n

)n−2

≥ (n/3 − 3
√

n)
1

n2

(
1 − 1

n

)n−2

.

The other moves of length j , with j positive, are omitted as
they represent a drift moving away from the optimum. If these
steps occur, it will be assumed that the process remains in the
current state. This assumption means that the actual process

will take longer than the one that is being analyzed. Hence,
an exponential runtime for the analyzed process, if proved,
will also be an upper bound for the runtime of the actual
process.

The probability of performing a move of length −1, heading
toward the optimum, given that the process is is position i , is

p−1(i) = i
1

n2

(
1 − 1

n

)n−2

≤ 3
√

n
1

n2

(
1 − 1

n

)n−2

.

Since most of the other possible mutations will create
infeasible solutions and be rejected, we consider the condition
R that a step is relevant, meaning that the step is accepted
and changes the current state. The probability of a relevant
step prel is bounded by

1

n2

(
1 − 1

n

)n−2

≤ prel ≤ l + 1

n2 ≤ n/2

n2 .

The lower bound holds because in the considered search space
(i.e., between 1 and 3

√
n + 1 first row nodes) there are always

two bits that if flipped lead to an accepted solution hence
it is sufficient to flip these two bits for a relevant step to
occur. The upper bound holds because at least two nodes
have to be flipped for a step to be accepted (i.e., relevant)
and there are l + 1 couples of such nodes. If more than two
bits flip in a relevant step then at least one of the considered
l + 1 couples of nodes must flip and since other bits also
flip the probability the event happens is lower than that of
the given bound. Hence the upper and lower bounds are
correct.

Let R(i) = (�(i)|R) be the random increase of the number
of first row nodes in relevant steps for a current state i . Then
the contribution of relevant steps of length 1 is

E(R1(i)) = p1(i)

prel
− p−1(i)

prel

≥ (n/3 − 3
√

n − 3
√

n)(1/n2)(1 − 1/n)n−2

(n/2)(1/n2)

≥
(

2

3
− 2 3

√
n

n/2

)
1

e
= 2

3e
− O(n−2/3).

Let �−
>1(i) be the unconditional increase in the number of

second row nodes when more than one second row node is
added to the cover, hence steps leading toward the optimum.
Then

E(�−
>1(i)) ≤

3√n∑
j=2

j · p− j ≤
3√n∑

j=2

j ·
(

i

j

)
1

n2 j

≤
3√n∑

j=2

j ·
(

3
√

n

j

)
1

n2 j

≤
∞∑
j=2

j · (3
√

n) j

j!

1

n2 j
≤

∞∑
j=2

(
3
√

n

n2

) j

=
∞∑
j=2

(
1

n5/3

) j

.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

OLIVETO et al.: ANALYSIS OF THE (1 + 1)-EA FOR FINDING APPROXIMATE SOLUTIONS TO VERTEX COVER PROBLEMS 1017

Let r = n−5/3. Then
∞∑
j=2

r j = r2
∞∑
j=2

r j−2 = r2
∞∑
j=0

r j

= r2
(

1

1 − r

)
= n−10/3

(
1

1 − r

)
= O(n−10/3).

Hence, the total conditional drift is

E(R(i)) ≥ E(R1(i) − E(�−
>1(i))

prel

≥ 2/(3e) − O(n−2/3) − O(n−10/3) · en2

= (2/3e) − O(n−2/3)

and condition 1 is proved.
Since there are at most (k + 2) < n/2 first row nodes,

condition 2 with δ = 1 and r = 1 follows from

p− j

prel
≤

(
n/2

j

)
1

n2 j
· en2 ≤

(
n

j

)
1

n j
≤ 1

j!
≤

(
1

2

) j−1

.

From Theorem 3 the proof follows.
Lemmas 6, 7, and 8 prove that with constant probability at

least 1/(6e)−e−�(n), the (1+1)-EA finds the global optimum
before a local search cover of the PS-2 graph. This means
that by using a restart strategy, the (1+1)-EA finds the global
optimum in time O(n log n) as stated in Corollary 1. The same
result for the PS instance class with full cover initialization is
stated in Corollary 2. However, if the algorithm does not find
the global optimum straight away, it will end up on a local
search cover. Lemma 10 proves that if a local search cover is
found, then with probability 1/9 − o(1) the (1 + 1)-EA will
end up on a local search cover with at least 3

√
n first row nodes

before finding a local optimum. Finally, Lemma 11 proves that
from a local search cover of at least 3

√
n first row nodes with

probability at least 1 − 2−�(3√n) the global optimum is found
in more than 2�(3√n) steps. Theorem 2 for the PS-2 graph with
the three initializations and for the PS graph with full cover
initialization follows.

C. Vercov

In the last section it has been shown that the RLS algorithm
and the (1+1)-EA find the minimum cover of the PS instance
class in time O(n log n) with constant probability. Otherwise,
in time O(n log n) they only find a local search cover of size
at most 2k + 2. The following theorem shows that Vercov
always produces a cover of size 2k + 4. This explains the
better performance of EAs compared to Vercov on the PS
instance class. Given the similarity of the behavior of the
(1 + 1)-EA compared to that conjectured for the GA, it can
also be assumed that populations and crossover are not useful
on this instance class.

Theorem 4: Vercov always finds a cover of size 2k + 4 on
the PS graph.

Proof: The proof is divided into three points.

1) All the nodes of the central row of the graph have to
be in the cover. This is because each node in row 1 is
connected only with a node of row 2 of the same column.
The proof of point 1 follows by considering that Vercov

|V2| = (1 – ε)n

|V1| = εn

Fig. 3. Bipartite graph with n = 9 and ε = 1/3. The optimal cover is
represented by the dark nodes.

cannot insert a node of row 1 without inserting the node
of row 2 in the cover as well.

2) For each central row node in the cover another node is
also inserted belonging to a different row. This follows
by considering again that Vercov inserts two adjacent
nodes at a time in the cover, and that no nodes belonging
to the central row are connected with each other.

3) There are no nodes “i” and “ j,” belonging to the
central row and connected to each other by an edge.

It follows directly from points 1) and 2) that the cover
generated by Vercov is at least of size 2k +4, since the nodes
in row 2 are k + 2. From point 3) it follows that the cover
is at most of size 2k + 4 since once there are no edges left
Vercov returns the result.

The cover size that the (1+1)-EA can guarantee (i.e., 2k+2)
leads to an approximation ratio of

2k + 2

k + 2
= 2k + 4

k + 2
− 2

k + 2
= 2 − o(1).

Assuming that the similar performance of the GA analyzed
empirically in [17] and the (1 + 1)-EA occurs for the reasons
described in this section, the above approximation result
explains why the GA showed a better performance than Vercov
on the PS graph in [17]. However, for the PS-2 instance class,
which has four nodes less, the approximation ratio that the
(1+1)-EA can guarantee is 2k/k = 2. Since Vercov guarantees
approximations of at most 2, this means that the (1 + 1)-EA
cannot produce better approximations in the worst case, far
less compared to the best approximation algorithms for vertex
cover which guarantee ratios strictly lower than 2. In the next
section it will be discussed how the performance of the (1+1)-
EA can be much worse.

IV. BIPARTITE INSTANCE CLASS

In [27], the (1 + 1)-EA and a global simple evolutionary
multiobjective optimizer (SEMO) have been recently analyzed
on a bipartite instance class. The instance is depicted in Fig. 3.
The instance class contains two sets of nodes V1 and V2 of
sizes |V1| = εn and |V2| = (1−ε)n, respectively. V1 represents
the global optimum while V2 is the only local optimum.
Parameter ε determines the difference in size between the two
sets V1 and V2. In order for |V1| < |V2|, ε has to be ε < 1/2.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

1018 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

In [27] it is proved that for nδ−1 ≤ ε < 1/2 and δ > 0
a constant, the (1 + 1)-EA has an expected optimization time
which is exponential to produce an approximation that is better
than (1−ε)/ε. By changing the value of ε, the approximation
may be made arbitrarily bad. However, in the following, the
(1 + 1)-EA is further analyzed and it is pointed out that, by
using multiple runs, the (1 + 1)-EA finds the optimal solution
efficiently.

It is worth pointing out that for Koenig’s theorem [31],
in any bipartite graph, the number of edges in a maximum
matching equals the number of vertices in a minimum vertex
cover. Since the maximum matching problem is in P , it
follows from Koenig’s theorem that also the problem of finding
the minimum cover in a bipartite graph is in P . Nevertheless
without using a restart strategy, the (1 + 1)-EA requires
exponential runtime in the number of nodes of the graph.

Theorem 5: Let ε = i/n with 1 < i < n/2. The expected
optimization time of the (1+1)-EA to find the optimal solution
of the bipartite graph is �(ni). With probability at least
1/(2e) − 2−�(n) the (1 + 1)-EA finds the global optimum in
time O(n log n).

Proof: Since εn = i and |V1| = εn it follows that |V1| = i
and |V2| = n − i . It has already been proved in [27] that in
time O(n log n) the (1+1)-EA will find a cover. Furthermore,
in a similar manner as for the other instances analyzed in
this paper, it will be proved that the (1 + 1)-EA will find a
local optimum in expected time O(n log n). For the bipartite
graph there are only two local optima: C1 containing all the V1
nodes, and C2 containing all the V2 nodes. If the algorithm
finds C1 before finding C2, then obviously it has found the
global optimum. With probability at least 1/2 in O(n log n)
time (Coupon Collector Theorem [19]) and whatever the
initialization, all the V1 nodes are in the current cover while all
the V2 nodes are not (Event E1). Event E1 with a full cover set
initialization follows immediately because the probability that
in the first step at least a V2 node is chosen before a V1 node,
and accepted, is greater than 1/2 since |V2|/n = 1 − ε > 1/2
(if more than one node flips and the step is accepted then the
probability is greater).

For an empty cover set initialization, we use the same proof
idea of Lemma 7 for the PS instance class. We assume the
algorithm is given the advantage that the first x nodes of V2
with x = |V2| − |V1| are inserted in the cover before any
V1 node. We call this position �. With this advantage, the
probability that E1 happens is exactly 1/2 if flips of at least
two bits removing cover nodes from one set and inserting
them in the other could not happen. Without the advantage
the probability is greater because, in order to put all the nodes
of V2 in the cover before all the V1 nodes, it is necessary that
at some point of time the number of nodes of the two subsets
missing in the cover is at least the same. By considering the
bit flips exchanging cover nodes, from position � on, at each
step there are εn more cover nodes that can be removed from
C2 and inserted in C1 than if the sets C1 and C2 were equal.
If the two sets were equal, the influence of the exchanges of
cover nodes from one set to the other would be “symmetrical,”
leading to a probability of exactly 1/2 that one set was filled
before the other. Hence, these extra εn C2 cover nodes lead to

a probability greater than 1/2 that C2 is filled before C1. The
case of uniform distribution initialization is a special case of
the empty cover set initialization. So, event E1 happens with
probability at least 1/2.

The conditional probability of finding the global optimum,
given that the event E1 has happened, will be proved to
be higher than 1/e. The probability that the V2 set is filled
by a flip of multiple bits, which removes at least the same
number of V1 nodes, is upper bounded by 1/n because at
least one precise V2 node has to be inserted in the cover
and the probability this happens is 1/n. The above probability
bound holds in the case with highest probability that the V2
set has all its nodes but one in the cover. The bound has
to be multiplied by 1/ni if other i V2 nodes are not in the
cover. Hence the above probability bound will be considered
for the following calculation because it leads to the lowest
probabilities of finding the optimum. When there are all the
V2 nodes in the cover but one and all the V1 nodes are also
in the cover, the probability of removing an extra V2 node is
at least

PV2 ≥ (1 − ε)n − 1

n

(
1 − 1

n

)n−1

≥ n/2

en
= 1

2e
.

Hence the probability an extra V2 node is removed before one
or more nodes are removed from the V1 set is at least

1/2e

1/2e + 1/n
≥ n

n + 2e
= 1 − 2e

n + 2e

and the probability that n/6 V2 nodes are removed before any
V1 node is at least(

1 − 2e

n + 2e

)n/6

≥
(

1 − 2e

n + 2e

) n+2e
2e −1

≥ 1

e

which proves the second statement of the theorem because at
this point the event that any V1 node is removed from the cover
requires that at least 2n/6 = n/3 bits flip. The expected time
for n/3 bits to flip is exponential while the optimal cover will
be found in time O(n log n) (Coupon Collector Theorem [19]).

If, instead, C2 is found first, then the time to reach C1 from
C2 has to be analyzed. It has already been proved in [27] that
the probability of ending up on the local optimum (i.e., the
set C2 is in the cover and not all C1) is bounded below by
an inverse polynomial. Once C2 has been obtained, the only
accepted moves will be those flipping all the V1 nodes together
with at least the same amount of nodes belonging to V2. The
probability that all the C1 nodes are flipped together with at
least the same amount of V2 nodes is less than n−i , giving an
expected runtime of at least �(ni).

For the RLS algorithms, inversions may not occur because
only one bit flips in each iteration. However, the part of the
proof of Theorem 5 that the (1 + 1)-EA finds the minimum
cover with probability at least (1−ε) ≥ 1/2 also holds if only
1-bit flips are allowed. However, when the RLS algorithm finds
the local optimum it will be stuck forever because it only flips
one bit at a time. Now, the following corollary of Theorem 5
can be stated.

Corollary 3: The expected time for the RLS algorithm to
optimize the bipartite graph is infinite. With probability (1−ε)
it finds the global optimum in time O(n log n).

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

OLIVETO et al.: ANALYSIS OF THE (1 + 1)-EA FOR FINDING APPROXIMATE SOLUTIONS TO VERTEX COVER PROBLEMS 1019

The problem the (1 + 1)-EA encounters when optimizing
the bipartite graph is that there is a good probability that it
finds a local optimum which is not global. If this happens,
then exponential time is required for the algorithm to escape.
Compared to the PS graph where the size of the local optima
is slightly less than twice that of the global optimum, for the
bipartite graph the difference in sizes between the local and the
global optimum can be made very large by varying parameter
ε. This is what leads to the very bad worst case approximation
ratios of both the RLS algorithm and of the (1 + 1)-EA if no
restarts are allowed. The following corollary of Theorem 5 can
be stated.

Corollary 4: Both the (1 + 1)-EA and the RLS algorithm
using a restart strategy will find the minimum cover of the
bipartite instance class in expected O(n log n) time.

V. EXPONENTIAL-TIME INSTANCE CLASS

The previous section shows how the worst case approxima-
tion ratio of both the RLS algorithm and the (1 + 1)-EA can
be arbitrarily bad if only single runs are considered. However,
the proofs rely on the fact that the algorithms are not allowed
to restart. In fact, by examining the bipartite instance class, the
worse the approximation ratio that the algorithm may produce,
the higher the probability that the minimum cover is actually
found. Hence, if a restart strategy was to be used, then the
more “difficult” is the instance because it may lead to a bad
approximation, the fewer are the restarts required for the global
optimum to be found in time O(n log n).

A more interesting result in the analysis of the (1 + 1)-EA
for vertex cover is that of finding the worst case approximation
ratio of the algorithm even when a restart strategy is allowed.
Such a result would also be useful for fair future comparisons
with population-based EAs. In this section the Gh,l instance
class is presented to address (1+1)-EAs with restart strategies.
It will be shown that depending on how the parameters of the
instance class are set the problem may be easy or difficult for
the (1 + 1)-EA and the results do not change if the algorithm
is run many times.

Each graph in the instance class Gh,l depends on two
parameters l and h, both integers, where n = l ∗ h is the
total number of nodes, and l is odd. Each of the l ∗ h nodes
is uniquely defined by a couple (i, j) with 1 ≤ i ≤ h
and 1 ≤ j ≤ l. Each node (i, j) is connected by an edge
to the nodes (k, j − 1) and to the nodes (k, j + 1), with
1 ≤ k ≤ h. The unique optimal cover of a graph Gh,l has
((l − 1)h) /2 = (n − h)/2 nodes. Fig. 4 depicts a graph G3,5
and its optimal cover is represented by the dark nodes.

The idea of analyzing a series of connected bipartite graphs
was previously used for proving exponential runtimes for
simulated annealing on maximum matching [18] and for the
(1 + 1)-EA for the same problem [10]. However, the Gh,l

instance class is similar but not the same as the instance class
used in the previous work.

The following theorem shows what the local search covers
look like, and hence helps to get a first idea of what the
approximation ratio may be. Afterward, various parameter
settings will be considered in separate sections.

l

h

Fig. 4. Optimal cover for the G3,5 graph.

Theorem 6: The (1 + 1)-EA finds a cover of at most
	(2/3)l
h nodes in expected time O(n log n) for the Gh,l

instance class.
The following three lemmas prove the theorem for the

different initializations considered in this paper.
Lemma 12: If the (1+1)-EA is initialized with all the nodes

in the cover set, then the expected time to reach a cover of
size at most 	(2/3)l
h is O(n log n) for the Gh,l graph.

For the proof of Lemma 12 the following definitions of
blocked nodes and of free nodes will be useful.

Definition 6 (Blocked Node): A node belonging to a cover
is said to be blocked if the selection operator does not accept
a 1-bit flip of such a node (i.e., by flipping the bit, the new
solution would not be a feasible cover anymore).

Definition 7 (Free Node): A node belonging to a cover is
said to be free if the selection operator would accept the
solution obtained by a 1-bit flip of such a node (i.e., by flipping
the bit the new solution is a cover of smaller size).

The above definitions can also be extended to columns of
nodes. If all the nodes of a column are blocked then the
column is said to be blocked. Given such definitions, the
following properties for covers of the instance class graphs
can be described.

1) Each node that is not present in the cover blocks 2h
nodes of the cover: the whole column on the left of the
node and the whole column on its right. The far left and
the far right columns make an exception by blocking
only h nodes each.

2) A node i is free only if all the nodes in the columns at
its right and at its left belong to the current cover. Since
all the nodes in a column are connected with the same
nodes of the adjacent columns, if a node is not in the
current cover then all the nodes of its column are free.

3) A column is blocked if at least one node belonging
to one of its adjacent columns does not belong to the
current cover.

Now, by considering the three properties described above, the
proof of Lemma 12 is given.

Proof of Lemma 12: Given a cover of the graph, in every
group of three adjacent columns at most two can be blocked,
hence one must be free (i.e., if the three adjacent columns
are all in the cover then the nodes in the middle column are
obviously free). It follows that there may be at most 	(2/3) l

blocked columns in total. It is worth pointing out that the first
two columns (or the last two columns) of the graph cannot both

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

1020 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

be blocked at the same time, because if the second column is
in the cover then the first is free (and if the column before the
last is blocked then the last column is free).

Hence, the selection operator of the (1 + 1)-EA will surely
accept 1-bit flips as long as the number of nodes in the
cover is larger than 	(2/3) l
h. From the Coupon Collector
Theorem [19], an upper bound of O(n log n) can be obtained
for the expected time to reach any local search cover. Only
1-bit flips are considered, since flips of higher number of bits
may exchange the columns being free and being blocked, or
may speed up the described process. In any case they will
never augment the cover size.

Lemma 13: If the (1 + 1)-EA is initialized with an empty
cover set, then the expected time to reach a cover of size at
most 	(2/3) l
h is O(n log n) for the Gh,l graph.

When starting with an empty cover set, the characteristics
of the nodes that will be accepted by the elitist selection
operator are different from those of the accepted nodes when
the optimization process starts with a full cover set. This will
be true until a cover is obtained. For these reasons the proof
of Lemma 13 requires different definitions for free nodes and
blocked nodes.

Definition 8 (Blocked Node): A node not belonging to the
cover is said to be blocked if all its edges connect it with nodes
belonging to the cover.

Definition 9 (Free Node): If a node is not blocked, then it
is said to be free.

The proof of Lemma 13 follows.
Proof of Lemma 13: The algorithm, starting with an empty

set, adds any free node it randomly chooses to the cover set
until there are no more free nodes. In such a case a cover
has been reached because all the remaining nodes that do not
belong to the current cover set are blocked.

At the beginning of the process all the nodes are free, since
the cover is empty. As the process goes on, when a column
has all the column at its right and all the column at its left in
the cover, then it is completely blocked. The described process
will have a maximum length when all the nodes but one are
accepted before a cover is reached (i.e., the columns are filled
from right to left or from left to right). In such a worst case
event, the nodes of all columns but one will be inserted in
the cover, hence they have to be chosen. This case can be
compared to the worst case of the Onemax problem, when the
process starts with a bit string of all zeros and has to be turned
to a bit string of all 1s. The only difference is that the process
surely terminates when there is only one column left to be
filled at most, hence the expected time is a little lower. So the
upper bound of O(n log n) [32] for the (1+1)-EA on Onemax
is valid for the expected time of the algorithm to reach a cover
in this case (the result follows from the Coupon Collector
Theorem [19]). When, instead, some columns or nodes get
blocked, the cover will be smaller and the O(n log n) upper
bound still holds.

As stated above, in the worst case the cover that is reached
has at most n − 1 nodes. From such a cover, Lemma 12
guarantees an upper bound of O(n log n) on the expected time
for the algorithm to reach a local search cover. The proof
of the lemma follows. Again higher number of bits flipped

per generation may only speed up the process since they may
exchange the free and blocked columns or add or remove more
than one node in a generation. In any case multiple bit flips
will never lead to a larger cover.

For the proofs of Lemmas 12 and 13 to hold, it is not
important that the (1 + 1)-EA is respectively initialized with a
full cover set and an empty cover set. For Lemma 12 to hold,
it is sufficient that the initial solution is a feasible cover. Then
the algorithm will find a solution with at most 	(2/3) l
h nodes
in time O(n log n). On the other hand, the proof of Lemma 13
holds for the (1 + 1)-EA starting with any infeasible solution.
These arguments are important to understand how Lemmas 12
and 13 can be extended to the (1 + 1)-EA initialized with a
uniform distribution. With such an initialization, before the
evolutionary process begins, each node is inserted in the cover
set with probability p = 1/2. The resulting set of nodes may
or may not be a cover. In the former case, Lemma 12 can
be applied to prove Corollary 5. In the latter case, Lemma 13
can, be applied. The corollary follows.

Corollary 5: If the (1 + 1)-EA is initialized with a uniform
distribution, then the expected time to reach a cover of size at
most 	(2/3)l
h is O(n log n) for the Gh,l graph.

The proof of Theorem 6 follows from Lemmas 12, 13, and,
Corollary 5 according to which initialization is considered.
Furthermore, since the proof of Theorem 6 also holds if only
1-bit flips are allowed, the following corollary may also be
stated.

Corollary 6: The RLS algorithm finds a cover of at most
	(2/3) l
h nodes in expected time O(n log n).

Theorem 6 ensures that the approximation ratio of the two
algorithms may be no more than

	 2
3 l
h
l
2 h

≤
2
3 l
l
2

= 4

3
.

Although this approximation ratio is far from optimal, it
is still better than the one guaranteed by the best known
approximation algorithm for vertex cover (i.e., roughly 2 −
(ln ln n)/ ln n [21]). In Section VII, it will be proved that
both the (1 + 1)-EA and the RLS are not better worst case
approximation algorithms for the problem than the best known
problem specific algorithm.

According to the values of the parameters h and l, the
optimization of the Gh,l may be very difficult or easy for the
(1 + 1)-EA. In order to gain a better understanding of what
characteristics of a problem may be more or less challenging
for the algorithm, the following three sections will consider
three different parameter settings with significant importance.

A. When h or l Are Not Constants: h = l

In this section, a parameter setting is considered where
neither parameter h or l is constant. In particular, h and l
will be set such that h = l and n = h ∗ l. Hence, h = l = √

n
and both parameters grow by the same amount as the number
of nodes in the graph grows. In the following, it will be proved
that with this setting the expected runtime of the (1+1)-EA is
exponential in the graph size n. The main result of this section
is stated in the following theorem.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

OLIVETO et al.: ANALYSIS OF THE (1 + 1)-EA FOR FINDING APPROXIMATE SOLUTIONS TO VERTEX COVER PROBLEMS 1021

Theorem 7: The (1 + 1)-EA has an exponential expected
runtime �(n

√
n) on Gh,l if h = l.

Theorem 6 shows that at least a local search cover is found
in time O(n log n). The following three lemmas prove that
with exponentially low probability it is the global optimum
if parameter l is not constant. The proof of Theorem 7 will
follow afterward.

Lemma 14: If the (1+1)-EA is initialized with all the nodes
in the cover, then with probability at least 1−(2/3)�(l) it finds
a local search cover before finding the global optimum.

For the proof of the lemma, the definition of blocked node
(i.e., Definition 6) for a full cover set initialization will be
useful again. Furthermore, the following concept of inversion
of a blocked column will be used.

Definition 10 (Inversion of a Blocked Column): Let an in-
version of a blocked column x be an event where a bit flip of
more than one bit inserts in the cover all the missing nodes
of the columns adjacent to x and removes the same number
of nodes (or more) of the x column from the cover.

The proof of Lemma 14 follows.
Proof of Lemma 14: For the global optimum to be found,

all the nodes belonging to columns i , with odd i , have to be
removed from the cover. First, the probability that this happens
before any even column nodes are removed will be derived.
After, it will be proved that if an even column node is removed,
then the probability of reaching the global optimum before
another local search cover is even lower.

Starting with a full cover set, the probability of choosing
an odd column node by flipping one bit is p0 = �l/2�h/lh ≤
(l/2 + 1)/ l = 1/2 + 1/ l. Flips of higher number of bits will
be treated separately one at a time. In other terms, if, for
example, two bits flip and they are accepted by the selection
operator, then they will be considered as if one flip happened
at a time. Since we are only dealing with the probability that
the global optimum is found and not with the required runtime,
this abstraction can be made.

At each step, if the most “convenient” odd column is chosen,
then four columns are blocked (i.e., for the first step, if a node
of the third column is removed, then if nodes of the second
and the fourth column were to be chosen, the flips would not
be accepted. Hence the first column nodes are destined to be
removed also), so at least �1/4 l� different column nodes have
to be removed before 1-bit flips will guarantee finding the
global optimum.

At the next step the probability of choosing another odd col-
umn node from a different column out of X1 ≥ l −4 columns
is p1 = �X1/2�/X1 ≤ (X1/2 + 1)/X1 = (1/2) + (1/X1). In
general the probability of blocking the even columns at step i
is Pi ≤ (Xi/2) + 1/Xi = (1/2) + (1/Xi), with Xi = l − 4i .
Hence, the probability in each step is slightly higher than
1/2 and always lower than 2/3. The highest probability of
choosing the best node at the last step occurs when there
are three columns left and two good choices. This leads to
a probability of 2/3, meaning that, for every step, 2/3 is an
upper bound for the probability of removing the first node of
each odd column. Hence the probability of finding the global
optimum by luckily removing the “right” nodes is less than
(2/3)1/4 l = (2/3)�(l).

For each of the l/4 steps that are necessary for the optimum
to be found, we have assumed that once the even columns
are blocked then single bit flips will remove the remaining
nodes, rather than a bit flip of more than one bit filling
the odd columns again while removing some nodes from an
even column (i.e., an inversion happens). It is optimistically
assumed that if an even column is blocked, an inversion of
that column will not happen. If it were to happen, then the
probability that the algorithm finds the optimum before a local
search cover would be lower because another inversion would
have to occur. Hence, the (2/3)�(l) bound that the algorithm
finds the global optimum before a local search cover also holds
if inversions are considered. As a consequence, the probability
that a local search cover is found before the global optimum
is at least 1 − (2/3)�(l).

Lemma 15: If the algorithm is initialized with an empty
cover set, then with probability at least 1 − (3/4)�(l), the
(1+1)-EA finds a local search cover before finding the global
optimum.

For the proof of Lemma 15, the definition of blocked nodes
for empty cover set initialization (i.e., Definition 8) will be
useful.

Proof of Lemma 15: All the chosen nodes will be inserted in
the cover except when they are blocked. This happens when
all the nodes in its two adjacent columns are in the cover.
When this happens, the blocked column (i.e., the column in
the middle) will be quickly emptied by using 1-bit flips. There
is also a probability that before many nodes are removed
from the middle column, flips of multiple bits may fill it
again by removing contemporaneously some nodes belonging
to the two adjacent columns. Since the columns are all of
the same size, the probability that this happens is the same
for the columns belonging to the minimum cover (i.e., the
even columns) and for columns belonging to local search
covers. As a consequence, these inversions will not influence
the probabilities that will be calculated in the following.

A sufficient condition (not necessary though) for a local
search cover to be found is that two adjacent columns are in
the cover. In the following we will find the probability that at
least two adjacent columns end up in the cover.

We assume that the first column to be filled is an even
column (i.e., belongs to the minimum cover). If it were to be an
odd column, the probabilities of reaching the minimum cover
before a local search one would be lower. Let this column
be the i th column. Since all the columns have the same size,
the probability that an adjacent column (i.e., column i + 1 or
i − 1) is filled before the next columns (i.e., i + 2 or i − 2)
is 1/2. Let the column that is filled with probability 1/2 be
the column i + 1. This column does not belong to the optimal
cover; hence to reach the local optimum all its nodes have to
be removed before the column i + 3 also gets filled. Column
i + 1 can be removed if the column i + 2 is filled before
column i + 3. If this happens, then there would be three
adjacent columns (i.e., i , i + 1, and i + 2) so the middle
column nodes would be free to be removed by 1-bit flips.
On the other hand, the i + 3 column is filled before the i + 2
column with probability 1/2. It is important to note that this
event is independent of the state of the i + 4 column. The

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

1022 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

probability is 1/2 whether the i + 4 column is full or not. If
this happens, then a local search cover will be reached before
the global optimum. Summing up, with a probability of at
least 1/4 these four columns are covered in the wrong way.
So there is a probability of at most 3/4 that three columns
(i.e., i , i + 1, and i + 2) are covered correctly. If this happens,
then the same reasoning holds for the remaining l −3 columns
because of the independence of the i + 4 column and of the
first i − 1 columns. In total, the probability that the global
optimum is found before a local search cover is less than
(3/4)	l/3
 = (3/4)�(l).

By considering that for large enough h with overwhelming
probability the algorithm is initialized with at most a certain
number of nodes in each column, the corollary of Lemma 15
follows.

Corollary 7: If the algorithm is initialized with a uniform
distribution, then with overwhelmingly high probability, the
(1 + 1)-EA does not find the global optimum before it finds a
local search cover if parameter l is not constant.

Given Lemmas 14 and 15 and Corollary 7, the proof of
Theorem 7 follows.

Proof of Theorem 7: Once the EA has found a cover of
at most size 	(2/3) l
h which is not the global optimum, the
minimum number of bits that need to be flipped in order to
leave the current position is 2h. There are at most l−1 possible
2h-bit flips that would be accepted. Hence, the probability
Pmove of an accepted 2h-bit flip is at most

Pmove ≤ (l − 1)

(
1

n

)2h

≤ ln−2h ≤ n−h .

Such a probability implies nh expected generations for an
accepted move, which leads to a lower bound for the expected
time of �(n

√
n).

Theorem 7 shows that the expected time to find the min-
imum cover of the Gh,l instance class is exponential in the
number of nodes of the graph. Since the expected time is
exponential with high probability, not even a restart strategy
will reduce the runtime of the RLS or of the (1+1)-EA to reach
the global optimum. This result highlights the significance of
Theorem 6, from which it follows that an approximation of at
most 4/3 can be achieved in O(n log n) time for the instance
class. Hence, with a relaxation of the exact optimality, the
runtime may be considerably reduced.

B. Parameter l Is Constant

If parameter l is constant, then there is a constant proba-
bility, although small, that the algorithm reaches the global
optimum directly before reaching any local search covers.
However, if this does not happen, then the algorithm will
need exponential time to escape from any local optima since
parameter h is not constant. The main results of this section
are stated in Theorem 8 (for RLS) and in Theorem 9 [for the
(1 + 1)-EA].

Theorem 8: If parameter l is constant, then the RLS
algorithm finds the minimum cover of the Gh,l graph with
constant probability 2−(l/2) in time O(n log n). The expected
optimization time is infinite.

Proof: For simplicity the proof assumes that the algorithm
is initialized with all the nodes in the cover. For the algorithm
to find the global optimum, it has to remove at least one
node of each odd column before it removes one of each even
column. The probability that the first node to be removed
belongs to an odd column is p1 = �(l/2)�/ l ≥ 1/2. The
probability that the next node belonging to a different column
is another odd one is p2 ≥ �(l/2) − 3�/l − 3 ≥ 1/2. In
general pi ≥ 1/2, and the probability that all the odd columns
are selected before any even one is at least 2−(l/2). The
proof that the runtime is O(n log n) follows from the Coupon
Collector Theorem [19]. If one node is chosen from an even
column before any of its adjacent columns, then it will be
removed from the current cover. If this occurs, since the RLS
algorithm only flips one bit per generation, the minimum cover
will never be found. Hence, the expected optimization time is
infinite.

Theorem 9: If parameter l is constant, then the (1 + 1)-EA
finds the minimum cover of the Gh,l graph with constant prob-
ability (1/e)2l/2 in time O(n log n). The expected optimization
time is 2−�(n).

Proof: The proof is similar to that of Theorem 8, and a full
cover set initialization is assumed again. With a probability
of at least 2−(l/2) at least one node of all the odd column
nodes is removed before any even column node. However, for
the (1 + 1)-EA the probability that an inversion of a blocked
column occurs, leading toward a local optimum, has to be
taken into account. For each even column, the probability it is
emptied of a number of cover nodes that have been removed
from an adjacent column is at most Pinv ≤ h/n3 because at
least two precise adjacent columns have to be inserted in the
cover and at least one node of the even column out of h has
to be removed. In total at least three bits have to flip. On the
other hand, the probability an extra node is removed from one
of the two odd columns is at least

Pnoinv ≥ 2(h − 1)
1

en
≥ 2h

2en
= h

en
.

So the probability that an inversion occurs before an extra
adjacent node is removed is at most

h/n3

(h/n3) + (h/en)
≤ 1/n2

(1/e) + (1/n2)
≤ e

e + n2 ≤ e

n2 .

So with probability at least 1 − e/n2 an inversion does not
occur for a given even column before an extra adjacent
node is removed. As these adjacent odd column nodes get
removed, probabilities for an inversion get lower. Hence,
with a probability of at least 1/e, n2/e improvements occur
before an inversion. Since (l/2)h < n2/e, other improvements
are sufficient for the minimum cover to be found, the first
statement of the theorem follows.

Since l is constant and h grows with the graph size n, the
exponential expected runtime follows from Theorem 7 (i.e.,
with probability greater than 1 − (2/3)l/4 a local search cover
is found before the minimum cover (Lemma 14) and then the
expected time to escape is exponential).

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

OLIVETO et al.: ANALYSIS OF THE (1 + 1)-EA FOR FINDING APPROXIMATE SOLUTIONS TO VERTEX COVER PROBLEMS 1023

a)

b) c)

d)

Fig. 5. Description of all the possible accepted steps after the 1+1-EA has
reached an almost perfect cover on the G3,5 graph. A move from position
a) to position b) requires that the leftmost 2h = 6 bits are flipped [the same
applies for an inverse move from b) to a)], while a different combination of
the same number of bits allows a move from b) to c). A longer move from
a) to c) requires the correct 4h = 12 bits to flip.

C. Parameter h Is Constant

If h is constant, then once the algorithm has reached a
local optimum it will be able to find the global optimum in
polynomial time by walking on plateaus of constant fitness.
After reaching the end of each plateau, the algorithm will be
able to reduce its fitness by h by just using 1-bit flips. The
main result of this section is stated in the following theorem.

Theorem 10: The (1 + 1)-EA has a polynomial expected
optimization time O(nk+2) with k = 2h if h is constant.

The proof of the theorem depends on three points.

1) The (1 + 1)-EA takes expected time O(n log n) to reach
a cover of size 	(2/3)l
h (Theorem 6).

2) The (1+1)-EA takes expected time at most O((d)2h+2)
to improve each fitness level where d = l/(2i) and i
is the number of levels left to be improved before the
optimum has been found.

3) The number of fitness levels that need to be improved
is at most 	(2/3) l
 − l/2.

The following lemma is at the heart of the proof. The
following two definitions will be useful for its proof.

Definition 11 (Almost Perfect Cover): The smallest local
search cover that is not the minimum cover is called an almost
perfect cover.

Definition 12: Let all the solutions having the same fitness
value belong to a set defined by the fitness value. If the fitness
value is i , then the set is called fitness level of value i .

The most difficult fitness level to improve is that of an
almost perfect cover with the highest possible hamming dis-
tance from the global optimum. Such a cover for a G3,5 graph
is depicted in Fig. 5(a).

Lemma 16: The expected time for the (1 + 1)-EA, to reach
the optimal cover from an almost perfect cover is O(nk+2)
with k = 2h where h is constant.

Proof: Once the EA has found an almost perfect cover,
the only point in the search space having a higher fitness
value is that representing the solution to the optimization
problem. Thus the selection operator of the algorithm will
only accept, as new individuals, the global optimum or another
cover having the same size as the current one. All the possible
moves having a probability of being accepted for a G3,5 graph

are analyzed in Fig. 5. The move having a highest probability
of occurring on the plateau of almost optimal covers is that
flipping the right 2h bits while keeping the values of the other
n − 2h bits unchanged. This move has a probability of

Psuccessful =
(

1

n

)2h(
1 − 1

n

)n−2h

≥ 1

e

(
1

n

)2h

. (1)

Such a probability implies an upper bound for the expected
number of generations before such a move occurs of en2h =
O(nk) if h is a constant. Hence, in such a case, the expected
time for a move is polynomial in n.

In general, the expected time for a move of length i , drifting
toward or away from the global optimum, is bounded above by
O(nik). Such a move is called successful. A successful move
of length i of getting nearer to the optimum has the same
probability p = 1/2 as one of the same length of moving in
the opposite direction. The scenario is very similar to that of
a (1 + 1)-EA optimizing a short path problem except that the
probability of a successful move in this case is lower. Hence
the rest of the proof, presented in the following, is similar to
that of Jansen and Wegener for the short path function with
constant values (S PCn) [5].

As shown in (1), the probability of a successful move is at
least (1/e)(1/nk). Then by Chernoff bounds it can be derived
that the probability of having less than c′n2 successful steps in
cnk+2 steps is exponentially small (i.e., e−�(n)) with c′ being
any constant greater than zero.

Now it will be proved that in a typical run these c′n2

successful steps are all of length 1 (i.e., all the moves are
obtained by flipping k = 2h bits).

The conditional probability of flipping at least 2k bits given
that the move is successful is

P(2k|succ.) = P2k ∩ Psucc.

Psucc.
= �(1/n2k)

�(1/nk)
= �

(
1

nk

)
.

This probability implies typically nk generations for a move
of length 2 on the plateau space. Hence, in a typical run all
the c′n2 moves will be of length 1.

Let a successful step moving toward the global optimum be
a positive move, while one moving in the opposite direction
be negative. In the worst case, the algorithm will reach the
plateau on the farthest away position from the global optimum,
which is at a distance d = l/2 on the plateau space. Given
a successful move, the probability of it being positive is
equal to that of it being negative (except for the first step
in the considered worst case, i.e., Ppositive ≥ 1/2). Hence
c′l2 Bernoulli trials with a success probability of 1/2 may
be considered.

Since |posi tive| + |negative| = c′l2 and |posi tive| −
|negative| = l/2, we need at least (1/2)c′l2 + (1/4) l positive
steps out of the c′l2 total steps to guarantee a visit to the global
optimum.

The probability of having less than (1/2) c′l2 positive steps
is bounded above by 1/2, and for large enough n and small
enough c′, the probability of exactly i positive steps is bounded

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

1024 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

above by 1/(2l). So

P

(
|pos.| <

1

2
c′l2+1

4
l

)
= 1

2
+

1
2 c′l2+ 1

4 l−1∑
i= 1

2 c′l2

1

2l
≤ 1

2
+ l

4

1

2l
= 5

8
.

So with a probability of at least 3/8, cnk+2 steps are
sufficient to reach the global optimum, giving three expected
trials for reaching the end of the plateau (i.e., position c) in
Fig. 5.

The lemma proves an upper bound of O(nk+2) to improve
the last fitness level when the length is d = 	l/2
 (i.e.,
the distance in number of column exchanges), which is the
longest path that can be encountered by the algorithm (i.e.,
the last fitness level). Another fitness level away from the
optimum (i.e., two columns of nodes still have to be removed
from the cover before the optimum is reached) the maximum
starting distance on the plateau space is (d/2) since an extra
block of two consequent adjacent columns has to be present
for the fitness to be higher by one. This level requires a
time of O(n/2)k+2. In general, a path of length d/ i requires
time O(n/ i)k+2. Hence the expected time to find the global
optimum starting from the worst fitness level is

	 2
3 l
− l

2∑
i=1

(
n

i

)2h+2

= n2h+2
	 2

3 l
− l
2∑

i=1

(
1

i

)2h+2

≤ n2h+2
	 2

3 l
− l
2∑

i=1

(
1

i

)4

≤ (n2h+2)
π4

90
= O(n2h+2).

This completes the proof of Theorem 10.
Corollary 8: The expected time for the (1 + 1)-EA to

optimize paths (i.e., the Gh,l graph h = 1) is O(n4).
Since for each step that is accepted 2h bits have to flip, the

RLS algorithm is not efficient for the Gh,l instance class also
if parameter h is constant. This highlights the advantage of
having a large search neighborhood like that of the (1+1)-EAs
mutation operator. Only by using problem-specific information
can the performance of the RLS algorithm be improved. The
neighborhood size of the RLS could be modified for it to
work well for the graph, by letting the algorithm flip h bits
with probability 1/2 and 2h bits with probability 1/2. Then
also, the RLS would be able to perform random walks on the
plateau, hence find the minimum cover in polynomial time.

VI. GRAPHS OF VERTEX DEGREE Vd ≤ 2

Although, the (1 + 1)-EA is not a good approximation
algorithm for vertex cover in general, there may be some
subclasses of the problem for which the algorithm is efficient.
An interesting subclass is that having only vertices with degree
Vd ≤ 2. This subclass of the vertex cover problem is in P and
it is easy to design an algorithm that can find the minimum
cover in linear time. This section analyzes the performance of
the (1+1)-EA for this problem. It is shown that the algorithm
is efficient on this subclass but not competitive compared
to the state-of-the-art problem-specific algorithms [22]. First

definitions of walks, paths, and cycles will be given which are
derived from graph theory. These concepts will be useful to
state some corollaries of Lemma 16. Then the main result of
this section will be stated in Theorem 11.

In graph theory, the following definition holds for
walks [33]:

Definition 13 (Walk): A walk W0,k from v0 to vk

in a graph G(V, E) is a finite sequence W =
v0e0,1v1e1,2v2 . . . vk−1ek−1,kvk . The vertex v0 is called the
origin of the walk W0,k , the vertex vk is called the terminus
of W0,k while the vertices v1, . . . , vk−1 are called the internal
vertices of W0,k . The integer k, which is the number of edges
in the walk, is called the length of W0,k .

Note that in a walk there may be repetitions of vertices
and edges. This does not happen in paths that are defined as
follows [33].

Definition 14 (Path): A walk W = v0e0,1v1e1,2 . . . ek−1,kvk

of length k on a graph G(V, E) is called a path of length k
if all the vertices of W are distinct.

The instance considered in Corollary 8 is called a path
because there is only one set of different edges and vertices
of length k.

In the following, an instance class called Cycle will be
considered.

Definition 15 (Cycle): A cycle of length k in a graph
G(V, E) is a path of length k with the addition of an edge
connecting the vertices v0 and vk .
The optimal cover of a cycle with n vertices has size �n/2�;
hence it has an extra node compared to the optimal cover
of a path with an odd number of nodes. As a consequence,
the only difference for the (1 + 1)-EA in the optimization of
cycles compared to paths is that there is one fitness level less
to be improved. In other terms, the (1 + 1)-EA requires less
time to optimize cycles compared to paths since the problem
is a special case of Lemma 16 where h = 1 and the almost
perfect cover has the same fitness value as the minimum cover
(i.e., they are both global optima). Hence, the upper bound of
O(n4) also holds for cycles and the following is a corollary
of Lemma 16.

Corollary 9: The expected time for the (1 + 1)-EA to find
the minimum cover of a cycle with n vertices is O(n4).

Also, in paths with even number of nodes the last fitness
level does not have to be improved. Hence the following
corollary of Lemma 16 holds.

Corollary 10: The expected time for the (1 + 1)-EA to
optimise paths of n vertices, where n is even, is O(n4).

Now we are ready to state the main result of this section.
Theorem 11: The (1 + 1)-EA finds the minimum cover of

any graph with edge degree Vd ≤ 2 in expected time O(n4).
Proof: Any graph G(V, E) with degree Vd ≤ 2 is iso-

morphic to another graph in which each connected component
i with |Vi | vertices is either a path or a cycle of |Vi | vertices,
and |V | = |V1| + |V2| + · · · + |VN | where N is the number
of connected components in G. Hence all the connected
components of a graph with Vd ≤ 2 are paths or cycles.

From Corollaries 8, 9, and 10, the expected time for the
(1 + 1)-EA to optimize a path or a cycle with |Vi | vertices is
O(|Vi |4). Hence, the expected time for the algorithm to find

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

OLIVETO et al.: ANALYSIS OF THE (1 + 1)-EA FOR FINDING APPROXIMATE SOLUTIONS TO VERTEX COVER PROBLEMS 1025

V2 = (1–ε)h

V1 = εh+1

B1 B2 B10

Fig. 6. Description of the Bh,l graph of size n = 100 with l = √
n = 10, b = √

n = 10, h = b − 1 = 9 and ε = 1/3. The graph consists of l = 10 bipartite
subgraphs of size b = 10 each. Each bipartite subgraph has a set of V1 = εh + 1 = 4 nodes and a subset of V2 = (1 − ε)h = 6 nodes. The optimal cover is
the set of light colored nodes.

the optimal solution is at most O(|V1|+|V2|+· · ·+|VN |}]4) =∑N
i=1 O(|Vi |4) = O(|V ∗|4) where V ∗ is a path of length n.

This is true because the sum is maximized when there is only
one component with maximal length.

VII. HARD-TO-APPROXIMATE INSTANCE CLASS

In this section the Bh,l instance class is presented and
analyzed. Bh,l graphs combine both the characteristics encoun-
tered in previous subclasses that create optimization difficulties
for the RLS algorithm and the (1 + 1)-EA. A bipartite graph,
as shown in Section IV, can lead the algorithms to very
bad approximation ratios. However, by using a clever restart
strategy, the difficulties can be overcome by both algorithms.
The Gh,l class of graphs analyzed in Section V showed that if l
columns of h nodes are connected in a “bipartite” manner, then
even multiple runs of the algorithms will not be effective as
long as neither l or h are constant in the problem size. The Bh,l

instance class is constructed by inserting both characteristics in
the graphs. Rather than having l columns of length h (as in the
Gh,l class), l bipartite graphs (B1, . . . , Bl) of size b = h + 1
each are joined together by an edge connecting the smaller
subset. Parameter b = l = √

n; hence h = √
n − 1. The total

number of nodes is n = b ∗ l.
Each bipartite graph has a subset V1 of size εh + 1 and

another V2 of size (1 − ε)h with ε < 1/2. The instance class
and its optimal cover, are depicted in Fig. 6.

The following theorem is the main result of this section. It
proves that RLS and the (1 + 1)-EA cannot do better in terms
of worst case approximation than problem-specific algorithms
for vertex cover.

Theorem 12: Let ε > n−1/2+δ , with 0 < δ < 1/2 a
constant. The expected time for the RLS algorithm to find the
minimum cover of the Bh,l graph is infinite, while the expected
time for the (1 + 1)-EA is exponential in the number of nodes
of the graph. With an overwhelming probability, neither the
RLS algorithm nor the (1 + 1)-EA find an approximation that
is better than 2(1 − ε) − o(1) in polynomial time.

The proof of the theorem will be split in two lemmas,
one regarding the RLS algorithm and the other regarding the
(1 + 1)-EA.

Lemma 17: Let ε > n−1/2+δ , with 0 < δ < 1/2 a constant.
The expected time for the RLS algorithm to find the minimum
cover of the Bh,l graph is infinite. With an overwhelming
probability the RLS algorithm does not find an approximation
that is better than 2(1 − ε) − o(1) in polynomial time.

Proof: Let Bi be optimized if all its V1 nodes will be in the
cover while all the V2 nodes will not. If a Bi is not optimized,
then all its V2 nodes will be in the cover. In addition, also the
V1 nodes connecting Bi to the bipartite subgraphs Bi−1 and
Bi+1 may be in the cover. In particular, there will be l−1 such
V1 nodes in the worst local search cover (i.e., all the bipartite
subgraphs are not optimized). These l −1 nodes will be called
v∗ nodes. Each bipartite subgraph Bi , with 1 ≤ i ≤ l, may end
up being optimized or not optimized at the end of the run. The
global optimum is found if all the Bi subgraphs are optimized.

Let the RLS algorithm be initialized with all the nodes in
the cover.

For a bipartite subgraph Bi to be optimized, it is sufficient
that a V2 node of the subgraph is selected and removed from
the cover. If this event happens, since RLS only removes one
node per iteration, the removal of no V1 nodes will be accepted
because it would uncover some edge.

The probability that in the first iteration a node from V2 is
selected is

P1 = (1 − ε)hl

hl + l
= (1 − ε)h

h + 1
<

(1 − ε)h

h
= 1 − ε.

On the other hand, with probability P̄1 ≥ ε a bipartite
subgraph Bi will end up not being optimized (i.e., the number
of nodes of the subgraph in the final cover will be V2 =
(1 − ε)h or V2 = (1 − ε)h + 1).

Let a generation be relevant if it is decisive toward the
optimization of a subgraph Bi (i.e., a generation where for
the first time at least one bit is removed from a Bi subgraph).
For the RLS algorithm there are exactly l relevant generations,
one for each Bi subgraph.

Since, the v∗ nodes will end up in the final cover anyway
(i.e., they are in both the local and global covers), their selec-
tion is not influential for the optimization of a Bi subgraph.
Apart for the v∗ node, the bipartite subgraphs are independent.
The probability that each is optimized is at most 1 − ε.

Let a relevant step be successful if after it happens the
subgraph Bi will end up being optimized. Furthermore, let a
relevant step be unsuccessful if it leads to the subgraph being
not optimized. The probability that l successful iterations occur
without any unsuccessful ones is less than

Popt ≤ (1 − ε)l ≤ (1 − nδ−1/2)
√

n

=
[
(1 − nδ−1/2)n1/2−δ

]nδ

≤ e−nδ

which is exponentially small. This leads to an expected number
of at least enδ

different runs before the optimum is found. Since

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

1026 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

RLS only flips one bit at a time, once the algorithm reaches
a local optimum, it will be stuck forever. Hence, the expected
optimization time is infinite. This proves the first part of the
lemma. The second part of the proof follows.

Each bipartite subgraph has a probability of at most (1− ε)
of being optimized. With a probability of exactly (1 − ε),
the expected number of optimized bipartite subgraphs would
be at most (1 − ε)l while at least εl would be the ex-
pected ones not to be optimized. Since the Bi subgraphs
are independent, Chernoff bounds may be applied. By using
Chernoff bounds it follows that the probability that the number
of nonoptimized Bi ’s is less than (1 − n−δ/3)εl is over-
whelmingly small. In particular, let X be the random variable
representing the number of nonoptimized bipartite subgraphs.
Then

P

(
X ≤ (1 − n−δ/3)εl

)

≤ exp

(
− εl

2n2δ/3

)

≤ exp

(
− n−1/2+δn1/2

2n2δ/3

)
= e−�(n

1
3 δ

).

So, with overwhelming probability the solution will have at
least (1 − n−δ/3)εl nonoptimized bipartite subgraphs with
(1 − ε)h + 1 nodes each in the cover, but one that will not
have the v∗

i node in the cover (i.e., (1 − ε)h nodes). On the
other hand, the optimized bipartite graphs will be at most
l(1 − ε) + εl/nδ/3 having εh + 1 nodes in the cover each.
This leads to an approximation of

(1 − n−δ/3)εl[(1 − ε)h + 1] + [l(1 − ε)[εh + 1]]

(εh + 1)l

+
εl

nδ/3 [εh + 1] − 1

(εh + 1)l

= (1 − ε) + [1 − n−δ/3]ε[(1 − ε)h + 1]

εh + 1
+ ε

nδ/3

− 1

(εh + 1)l

= (1 − ε) + (1 − ε)
(1 − n−δ/3)εh

εh + 1
+ (1 − n−δ/3)ε

εh + 1

+ ε

nδ/3 − 1

(εh + 1)l

= (1 − ε) + (1 − ε)
(1 − n−δ/3)(εh + 1)

εh + 1

− (1 − ε)
(1 − n−δ/3)

εh + 1
+ (1 − n−δ/3)ε

εh + 1
+ ε

nδ/3

− 1

(εh + 1)l

= (1 − ε) + (1 − n−δ/3)(1 − ε) − (1 − 2ε)(1 − n−δ/3)

εh + 1

+ ε

nδ/3 − 1

(εh + 1)l

= 2(1 − ε) − 1 − 2ε

nδ/3 − (1 − 2ε)(1 − n−δ/3)

εh + 1
− 1

(εh + 1)l
= 2(1 − ε) − o(1).

This proves the theorem for the RLS algorithm starting with
a full cover.

Lemma 18: Let ε > n−1/2+δ , with 0 < δ < 1/2 a constant.
The expected time for (1+1)-EA to find the minimum cover of
the Bh,l instance class is exponential in the number of nodes
of the graph. With an overwhelming probability, the (1 + 1)-
EA does not find an approximation that is better than 2(1 −
ε) − o(1) in polynomial time.

Proof: The proof for the (1 + 1)-EA has to take into
account the possibility that flips of higher number of bits may
occur.

Let the algorithm be initialized with all the nodes in
the cover. For each bipartite subgraph, the probability it is
optimized when only single bit flips are considered is less than
(1 − ε) as proved for the RLS algorithm. At the beginning,
higher number of bit flips of a bipartite subgraph Bi will only
be accepted if they all belong to the V1 subgraph or all belong
to the V2 subgraph.

The probability that a single bit flip is the first flip to act
on a subgraph Bi is

PB(1bit) = b

n

(
1 − 1

n

)n−1

≥
√

n

en
= 1

e
√

n
.

On the other hand, the probability that two bit flips or higher
are the first to remove the nodes from a given subgraph Bi is
at most

PB(≥2bit) ≤
(

h + 1

2

)
1

n2 ≤ n

n2 ≤ 1

n
.

If a 2-bit flip that removes one bit from one subgraph Bi

and one bit from a different subgraph (i.e., B j with j �= i)
happens, then it is considered that two separate 1-bit flips have
occurred. This is possible because of the independence of the
bipartite subgraphs.

The bound above also holds for higher number of bits
because in any case at least two bits have to flip. For more
than two bits the probabilities are lower. The probability that
two or more bit flips occur on a subgraph and are accepted
before a one-bit flip is at most

1/n

1/n + 1/(e
√

n)
≤ e

√
n

n + e
√

n
≤ e√

n
.

So with probability at most e√
n

the first nodes to be removed
from a subgraph Bi are more than one. The probability that
3
√

n out of a total of l = √
n subgraphs are subject to this is

(√
n

3
√

n

)(
e√
n

)(n1/3)

≤
√

nn1/3

(n1/3)!

(
e√
n

)n1/3

= en1/3

(n1/3)!
≤ e−�(3√n). (2)

So with overwhelming probability at most 3
√

n subgraphs are
initially subject to more than one bit flip.

Assuming optimistically that the 2-bit flips or higher lead to
a correct optimization of each subgraph Bi , the approximation
factor found by the algorithm is at least(

1 −
3
√

n√
n

)(
2(1 − ε) − o(1)

)
= 2(1 − ε) − o(1).

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

OLIVETO et al.: ANALYSIS OF THE (1 + 1)-EA FOR FINDING APPROXIMATE SOLUTIONS TO VERTEX COVER PROBLEMS 1027

It obviously also follows that the global optimum will not
be found with overwhelming probability before a local search
cover. Once such a cover has been reached, the next accepted
mutation requires at least 2V1 nodes to flip. The expected
time for a 2V1-bit flip is exponential in the problem size. This
proves the exponential expected time for the global optimum
to be reached.

The above arguments only consider the first bits removed
from either the V1 or the V2 subgraphs of each Bi . There is
also a probability that flips of two or more bits may invert the
direction of the process (i.e., an inversion occurs). In particular,
if a V2 node of a Bi is removed before a V1 node of the same
bipartite subgraph, then a 2-bit flip may invert the direction
of the process leading to a better local optimum than the one
proved for the RLS algorithm.

Let an inversion toward the optimum of a Bi subgraph occur
if all the V1 nodes of the Bi missing in the cover are inserted
in the cover and at least one V2 node of the Bi is removed.
An inversion away from the optimum is the opposite (i.e., all
the missing V2 nodes are inserted in the cover and at least one
V1 node is removed from the cover).

The probability of an inversion toward the optimum of a
subgraph is highest when only one V1 node is missing from
the cover. In this case it is sufficient that it is flipped together
with one V2 node. Hence, the probability is

pinv(1) ≤ (1 − ε)h
1

n2 = (1 − ε)

n
√

n
.

On the other hand, the probability another V1 node is removed
is at least 1/(en). So the probability an inversion of a Bi occurs
before another V1 node is removed from the Bi is less than

1/(n
√

n)

1/(n
√

n) + 1/(en)
= e√

n + e
≤ e√

n
.

If the inversion above does not occur before another V1 node
is removed, then the probability that an inversion occurs
afterward is lower, because at least two V1 nodes have to be
flipped together with at least one V2 node.

Let Pinv(i) be the probability of an inversion when i V1
nodes are missing from the cover. Then

Pinv(i) ≤ (1 − ε)h
1

ni+1 = (1 − ε)
1√
nni

≤ 1√
nni

.

Since the probability an extra V1 node is removed is at least
1/(en), the probability an inversion happens before is less than

1/(
√

nni)

1/(
√

nni) + 1/(en)
= e√

nni−1 + e
≤ e√

nni−1
.

This gives an inversion probability for a subgraph of not
more than

εh+1∑
i=1

e√
nni−1

≤ e√
n

εh+1∑
i=1

1

ni−1 ≤ e√
n

εh+1∑
i=0

1

ni
≤ e2

√
n
.

As done previously [i.e., (2)], the probability that not more
than a very small amount (for example 3

√
n) subgraphs are

subject to these inversions can be proved to be exponentially
high.

The above argument shows that with overwhelming prob-
ability also the (1 + 1)-EA does not produce a better
approximation than that calculated for the RLS algorithm.

Theorem 12 follows from Lemmas 17 and 18. The theorem
has only been proved for a full cover set initialization. The
previous analyzes presented in this paper have given an
idea that the initialization is not important for the covering
capabilities of the RLS algorithm and the (1 + 1)-EA, at least
for graphs with regular structures as those considered in this
paper. We believe that similar results can be obtained for the
other initializations considered in this paper.

The approximation ratio proved in the theorem is less than
two, but tends to it. Since the result holds with an overwhelm-
ing probability, a restart strategy will not be effective for pro-
ducing better approximations. The state-of-the-art algorithm
for vertex cover has a worst case approximation ratio that tends
to two. So the theorem proves that even by using multiple runs
the RLS algorithm and (1 + 1)-EA are not better worst case
approximation algorithms for vertex cover compared to the
state-of-the-art problem-specific approximation algorithm.

VIII. CONCLUSION

A computational complexity analysis of the RLS algorithm
and of the (1 + 1)-EA for the vertex cover problem has been
presented. From the analysis of different instance classes,
characteristics of graphs that make the optimization task easy
or hard for the algorithms have been highlighted.

If the degree of each node in a graph is not higher than 2,
then the (1 + 1)-EA can find the minimum cover efficiently.
Such a result is proved in Section VI. The reason for this
efficiency is that if each node of the graph is connected with
at most two other nodes, then the algorithm will be able to
escape from any local optima by flipping at most two bits.
If the number of nodes in the graph is large enough, it is
very likely that the algorithm will have to flip two bits at a
time to find the minimum cover. Since the RLS algorithm
only flips one bit per iteration, it is not efficient on all
graphs with vertex degree at most two and requires infinite
expected optimization time because once it reaches a local
optimum it will be stuck forever. The RLS algorithm may be
made efficient for the problem if the neighborhood size of its
mutation operator is changed. In particular, if the algorithm
is allowed to flip either one bit or two bits in each iteration,
then it will also be efficient for any graph with vertex degree
at most two.

However, as the vertex degree increases, also the (1 + 1)-EA
is challenged by a harder optimization task. Differently com-
pared to the RLS algorithm, as long as the vertex degree of
the graph is constant (i.e., does not depend on the number of
nodes in the graph), the (1 + 1)-EA can escape from local
optima efficiently because at most a constant number of bits
need to be flipped and this requires polynomial time. This is
not true for the RLS algorithm, which will be stuck forever on
a local optimum because it only flips one bit in each iteration.

The (1 + 1)-EA encounters greater difficulties if the vertex
degree of some nodes depends on the problem size (i.e., it
depends on the number of nodes in the graph). As it can be

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

1028 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

derived from the analysis of the PS (Section III) or of the
bipartite (Section IV) instance classes, the runtime required
by the (1 + 1)-EA to escape from a local optimum may be
exponential in the problem size with high probability (i.e.,
a constant probability or an inversely polynomial probability),
because the time required to contemporaneously flip a number
of bits, which depends on the number of nodes in the graph,
is exponential. This implies that the expected runtime of the
algorithm is also exponential in the problem size. Furthermore,
as seen for the bipartite graph, the local optimum on which the
algorithms may get trapped could have a cover value that is
considerably worse than to that of the minimum cover. It is this
problem that leads to the very bad worst case approximation
ratios of the algorithms.

As long as the number of these “traps” (i.e., vertex sub-
classes with a high vertex degree) is constant in the prob-
lem size, as for the previously considered instance classes,
both algorithms may overcome the problem by using restart
strategies. In other words, the algorithm has a high enough
probability of ending either on the global optimum or on a
local optimum. If the local optimum is found first, then expo-
nential time is required to escape from the “trap.” However,
since the probability of reaching the global optimum is high
(i.e., constant or polynomial), then, if the algorithm is run a
sufficient number of times, it will find the global optimum
efficiently in at least one of these runs. Interestingly, if there
is a high enough probability that the global optimum is found
before reaching a “trap” by just flipping one bit at a time, then
also the RLS algorithm will be efficient if a restart strategy is
used. In fact, as proved in Sections III and IV, this is the case
for the PS and the bipartite instance classes.

Matters change if the number of such “traps” depends on
the size of the problem. If there are too many “traps,” a restart
strategy may also be inefficient because an exponential number
of restarts may be necessary to guarantee that at least in one
run the algorithms do not get trapped in a local optimum. In
other words, the RLS algorithm and the (1 + 1)-EA will not
find the minimum cover of the graph efficiently even if they
are run many times, because the probability that all the traps
are avoided is very low. The only way around the problem is
to accept suboptimal solutions which can be found quickly.

As shown in Sections V and VII, if there are many of
such traps, then with a high probability the algorithms avoid
quite a few of them and reasonable approximations may
be found. Rather than searching exclusively for the global
optimum, solutions that differ from the optimum of at most a
certain factor (i.e., the approximation ratio) are also accepted.
Concerning the Gh,l instance class of Section V, an approxi-
mation of 4/3 can be guaranteed by both the RLS algorithm
and the (1 + 1)-EA in O(n log n) time. Hence, accepting
suboptimal solutions may reduce the runtime from exponential
to subquadratic.

Nevertheless, in Section VII it is proved that neither algo-
rithm can guarantee a better approximation ratio than that of
the best problem specific algorithm for vertex cover.

The algorithms considered in this paper only use population
size 1. The analysis of these algorithms has greatly contributed
to the understanding of what kinds of landscapes of the vertex

cover problem are easy and which are hard for single individ-
uals evolving through a mutation-based process. However, the
EAs used in practice make use of a population of individuals
and of other perturbation operators, such as crossover, rather
than counting only on mutation. Hopefully, the presented
analysis will be helpful in starting to understand on which kind
of vertex cover landscapes a population or a different operator
may be useful. As a natural extension to the work presented
in this paper, we plan to analyze population and crossover-
based algorithms for vertex cover to understand whether these
algorithms may overcome the problems of the (1+1)-EA and
what kind of other problems they may encounter.

REFERENCES

[1] P. S. Oliveto, J. He, and X. Yao, “Evolutionary algorithms and the vertex
cover problem,” in Proc. Congr. Evol. Comput. (CEC ’07), Singapore,
Sep. 2007, pp. 1870–1877.

[2] R. Sarker, M. Mohammadian, and X. Yao, Evolutionary Optimization.
Norwell, MA: Kluwer, 2002.

[3] G. Rudolph, “Finite Markov chain results in evolutionary computation:
A tour d’horizon,” Fundamenta Informaticae, vol. 35, no. 1–4, pp. 67–
89, 1998.

[4] S. Droste, T. Jansen, and I. Wegener, “On the optimization of unimodal
functions with the (1+1) evolutionary algorithm,” in Proc. 5th Int. Conf.
Parallel Problem Solving from Nature, London, U.K.: Springer-Verlag,
1998, pp. 13–22.

[5] T. Jansen and I. Wegener, “Evolutionary algorithms: How to cope with
plateaus of constant fitness and when to reject strings of the same
fitness,” IEEE Trans. Evol. Comput., vol. 5, no. 6, pp. 589–599, Dec.
2001.

[6] I. Wegener, “Methods for the analysis of evolutionary algorithms on
pseudo-boolean functions,” in Proc. Evol. Optimization, Dordrecht, The
Netherlands: Kluwer, 2001, pp. 349–369.

[7] J. He and X. Yao, “Toward an analytic framework for analysing the
computation time of evolutionary algorithms,” Artif. Intell., vol. 145,
no. 1–2, pp. 59–97, 2003.

[8] S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1 + 1)
evolutionary algorithm,” Theor. Comput. Sci., vol. 276, no. 1–2, pp. 51–
81, 2002.

[9] I. Wegener and C. Witt, “On the analysis of a simple evolutionary algo-
rithm on quadratic pseudo-boolean functions.” J. Discrete Algorithms,
vol. 3, no. 1, pp. 61–78, 2005.

[10] O. Giel and I. Wegener, “Evolutionary algorithms and the maximum
matching problem,” in Proc. 20th Annu. Symp. Theoretical Aspects
Comput. Sci. (STACS ’03), London, U.K.: Springer-Verlag, pp. 415–426.

[11] J. He and X. Yao, “Time complexity analysis of an evolutionary
algorithm for finding nearly maximum cardinality matching,” J. Comput.
Sci. Technol., vol. 19, no. 4, pp. 450–458, 2004.

[12] F. Neumann and I. Wegener, “Randomized local search, evolutionary
algorithms, and the minimum spanning tree problem,” Theoretical
Comput. Sci., vol. 378, no. 1, pp. 32–40, 2007.

[13] C. Witt, “Worst-case and average-case approximations by simple ran-
domized search heuristics,” in Proc. 22nd Annu. Symp. Theor. Aspects
Comput. Sci. (STACS ’05), LNCS vol. 3404, pp. 44–56.

[14] J. He and X. Yao, “Drift analysis and average time complexity of
evolutionary algorithms,” Artificial Intell., vol. 127, no. 1, pp. 57–85,
2001.

[15] J. He and X. Yao, “A study of drift analysis for estimating computation
time of evolutionary algorithms,” Natural Computing: Int. J., vol. 3,
no. 1, pp. 21–35, 2004.

[16] P. S. Oliveto, J. He, and X. Yao, “Time complexity of evolutionary
algorithms for combinatorial optimization: a decade of results,” Int. J.
Automation Computing, vol. 4, no. 3, pp. 281–293, 2007.

[17] S. Khuri and T. Bäck, “An evolutionary heuristic for the minimum vertex
cover problem,” in Proc. KI-94 Workshop Genetic Algorithms Within
Framework Evol. Comput., Saarbrücken, Germany, 1994, pp. 86–90.

[18] G. H. Sasaki and B. Hajek, “The time complexity of maximum matching
by simulated annealing,” J. ACM, vol. 35, no. 2, pp. 387–403, 1988.

[19] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge,
U.K.: Cambridge Univ. Press, 1995.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

OLIVETO et al.: ANALYSIS OF THE (1 + 1)-EA FOR FINDING APPROXIMATE SOLUTIONS TO VERTEX COVER PROBLEMS 1029

[20] T. Storch, “Finding large cliques in sparse semi-random graphs by
simple randomised search heuristics,” Theoretical Comput. Sci., vol. 386,
no. 1–2, pp. 114–131, 2007.

[21] E. Halperin, “Improved approximation algorithms for the vertex cover
problem in graphs and hypergraphs,” in Proc. Symp. Discrete Algo-
rithms, 2000, pp. 329–337.

[22] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness (Series of Books in the Mathematical
Sciences). New York: W. H. Freeman, 1979, ch. 4, sec. 1, p. 84.

[23] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. New York: Dover, 1998, ch. 15, sec. 6,
pp. 360–363.

[24] J. He, X. Yao, and J. Li, “A comparative study of three evolutionary
algorithms incorporating different amounts of domain knowledge for
node covering problems,” IEEE Trans. Syst., Man, Cybern., Part C,
vol. 35, no. 2, pp. 266–271, 2005.

[25] T. H. Cormen, R. L. Rivest, and C. E. Leiserson, Introduction to
Algorithms. 2nd ed. New York: McGraw-Hill, 2001, ch. 3, sec. 1, pp.
41–50.

[26] I. K. Evans, “Evolutionary algorithms for vertex cover,” in Proc.
Evol. Programming VII, Berlin, Germany: Springer-Verlag, 1998,
pp. 377–386.

[27] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt, “Ap-
proximating covering problems by randomized search heuristics using
multiobjective models,” in Proc. Genetic Evol. Comput. Conf. (GECCO
’07), London, U.K., Jul. 2007, pp. 797–804.

[28] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt, “On
improving approximate solutions by evolutionary algorithms,” in Proc.
Congr. Evol. Comput. (CEC ’07), Singapore, Sep. 2007, pp. 2614–2621.

[29] B. Hajek, “Hitting-time and occupation-time bounds implied by drift
analysis with applications,” Advances Appl. Probability, vol. 14, no. 3,
pp. 502–525, 1982.

[30] P. S. Oliveto and C. Witt, “Simplified drift analysis for proving lower
bounds in evolutionary computation,” in Proc. 10th Int. Conf. Parallel
Problem Solving Nature, 2008, pp. 82–91.

[31] N. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory. New York:
Oxford Univ. Press, 1976.

[32] S. Droste, T. Jansen, and I. Wegener, “A rigorous complexity analysis of
the (1 + 1) evolutionary algorithm for separable functions with boolean
inputs.” Evol. Comput., vol. 6, no. 2, pp. 185–196, 1998.

[33] J. Clark and D. A. Holton, A First Look at Graph Theory. Singapore:
World Scientific, 1991.

Pietro S. Oliveto (S’07) received the Laurea degree
in computer science from the University of Catania,
Catania, Italy, in 2005 and the Ph.D. degree in com-
puter science from the University of Birmingham,
Birmingham, U.K., in 2009, with a dissertation on
the computational complexity analysis of evolution-
ary algorithms.

Currently, he is an EPSRC funded research fellow
at the School of Computer Science, University of
Birmingham. His main research interest is the time
complexity analysis of randomized algorithms for

combinatorial optimization problems. He is currently considering evolutionary,
ant colony and artificial immune system algorithms.

Jun He (M’06) received the Ph.D. degree in
computer science from Wuhan University, Wuhan,
China, in 1995.

He was a research fellow in the School of
Computer Science, University of Birmingham,
Birmingham, U.K., between 2001 and 2007. Cur-
rently, he is with the Department of Computer Sci-
ence, Aberystwyth University, Aberystwyth, Wales,
U.K. His research interests include evolutionary
computation, data mining and network security.

Xin Yao (M’91–SM’96–F’03) obtained the B.Sc.
degree from the University of Science and Tech-
nology of China (USTC), Hefei, China, in 1982,
the M.Sc. degree from the North China Institute of
Computing Technology, Beijing, China, in 1985, and
the Ph.D. degree from USTC in Hefei, China, in
1990.

He was an Associate Lecturer and Lecturer be-
tween 1985 and 1990 at USTC. He was a Postdoc-
toral Fellow in the Computer Sciences Laboratory
at the Australian National University in Canberra

in 1990, and continued his work on simulated annealing and evolutionary
algorithms. He joined the Knowledge-Based Systems Group at Common-
wealth Scientific and Industrial Research Organization, Division of Building,
Construction, and Engineering in Melbourne in 1991, working primarily on
an industrial project on automatic inspection of sewage pipes. He returned to
Canberra in 1992 to take up a lectureship with the Australian Defense Force
Academy, in the School of Computer Science, University of New South Wales,
where he was later promoted to Senior Lecturer and Associate Professor. He
moved to the University of Birmingham, England, as a Professor (Chair)
of Computer Science in 1999. Currently, he is the Director of the Center
of Excellence for Research in Computational Intelligence and Applications,
School of Computer Science, University of Birmingham, Birmingham, U.K.
He is also a Distinguished Visiting Professor of the University of Science
and Technology of China, Hefei, and a Visiting Professor at three other
universities. He has more than 200 refereed research publications. He serves
as Associate Editor or Editorial Board Member of several journals, and is
the Editor of the book series “Advances in Natural Computation (World
Scientific).” He has been invited to give more than 45 invited keynote and
plenary speeches at conferences and workshops worldwide. His major research
interests include evolutionary computation, neural network ensembles, and
their applications.

Prof. Yao is a Distinguished Lecturer of IEEE Computational Intelligence
Society. He was the Editor-in-Chief from 2003 to 2008 of the IEEE
TRANSACTIONS ON EVOLUTIONARY COMPUTATION. He won the 2001
IEEE Donald G. Fink Prize Paper Award for his work on evolutionary artificial
neural networks. His doctoral work on simulated annealing and evolutionary
algorithms earned him the President’s Award for Outstanding Thesis by the
Chinese Academy of Sciences.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 27, 2009 at 13:37 from IEEE Xplore. Restrictions apply.

