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ABSTRACT

In this paper we study a system consisting of two identical servers, each with
exponentially distributed service times. Jobs arrive according to a Poisson stream.
On· arrival a job joins the shortest queue and in case both queues have equal
lengths, he joins either queue with probability Y2. By using a compensation
method, we show that the stationary queue length distribution can be expressed as
an infinite linear combination of product forms. Explicit relations are found for
these product forms, as well as for the coefficients in the linear combination.
These analytic results offer an elegant and efficient numerical algorithm, with
effective bounds on the error of each partial sum.

Key Words: difference equation, product form, similar queues in parallel, sta­
tionary queue length distribution.



1. Introduction

Consider a system consisting of two identical servers, each with exponentially dis­
tributed service times. Jobs arrive according to a Poisson stream. On arrival a job joins
the shortest queue and in case both queues have equal length, he joins either queue with
probability th. This problem is known as the symmetric shortest queue problem and has
been addressed by many authors. Haight [17] originally introduced the problem. King­
man [21] and Flatto and McKean [11] treated the problem by using a generating function
analysis. They show that the generating function for the equilibrium distribution of the
lengths of the two queues is a meromorphic function. Then, by decomposition of the gen­
erating function into partial fractions, it follows that the equilibrium probabilities can be
expressed as an infinite linear combination of product forms. However, the decomposi­
tion leads to cumbersome formulae for the equilibrium probabilities. Another analytic
approach is found in Cohen and Boxma [7] and Fayolle and Iasnogorodski [9,10,20].
They show that the analysis of the symmetric shortest queue problem can be reduced to
that of a Riemann-Hilbert boundary value problem. These approaches do not lead to an
explicit characterization of the equilibrium probabilities.

The approach presented in this paper is not based on a generating function analysis.
Instead the probabilities are found directly from the equilibrium equations. The solution
method is initialized by inserting a product form, describing the asymptotic behaviour of
the probabilities, and next consists of adding on product forms so as to compensate for
the error of its preceding term on one of the boundaries of the state space. The main
improvement to the analytic results of Kingman [21] and Flatto and McKean [11] is that
our method yields explicit relations for the coefficients in the infinite linear combination
of product forms and thereby an explicit characterization of the equilibrium probabilities.
Moreover, the compensation idea sheds new light on the existence of this type of solu­
tion.

So far, the available analytic results, though mathematically elegant, offered no
practical means for evaluating many of the performance characteristics and therefore
didn't close the matter in this aspect. For this reason, many numerical studies appeared
on the present problem. Most studies, however, deal with the evaluation of approximat­
ing models. For instance, Gertsbakh [14], Grassmann [15], Rao and Posner [23] and
Conolly [8] treated the shortest queue problem by truncating one or more state variables.
Using linear programming, Halfin [18] obtained upper and lower bounds for the queue
length distribution. Foschini and Salz [12] obtained heavy traffic diffusion approxima­
tions for the queue length distribution. Knessl, Matkowsky, Schuss and Tier [22] derived
asymptotic expressions of the queue length distribution. These studies are all restricted
to systems with two parallel queues. Hooghiemstra, Keane and Van de Ree [19]
developed a power series method to calculate the stationary queue length distribution for
fairly general multidimensional exponential queueing systems. Their method is not res­
tricted to systems with two queues, but applies equally well to systems with more queues.
So far as the shortest queue problem is concerned, Blanc [4, 5] reported that the power
series method is numerically satisfactory for the shortest queue system with up to 25
parallel queues. The theoretical foundation of this method is, however, still incomplete.
Finally, a common disadvantage of the numerical methods mentioned is that in general



no error bounds can be given.

As already mentioned, the compensation method yields explicit relations for the
product forms, as well as for their coefficients and hence for the equilibrium probabili­
ties. These analytic results are exploited to construct an efficient numerical algorithm,
with tight bounds on the error of each partial sum. Also, expressions are obtained for the
mean and second moment of the waiting time, which are suitable for numerical evalua­
tion. These algorithms apply to the exact model.

The paper is organized as follows. In Section 2 we present the equilibrium equa­
tions. In the next section, we develop, step by step, the compensation procedure. Section
4 presents the formal definition of the compensation procedure and the main result,
which states that the probabilities can be expressed as an infinite linear combination of
product forms. In the following two sections we complete the proof of the main result. In
Section 7 we derive an explicit form for the normalizing constant. Section 8 extends the
asymptotic expressions for the probabilities, obtained by Kingman [21], Flatto and
McKean [11] and Knessl, Matkowsky, Schuss and Tier [22]. Section 9 presents numeri­
cal results and the final section is devoted to comments and extensions.

2. Equilibrium Equations

For simplicity of notation the exponential servers have service times with unit mean
and the Poisson arrival process has a rate 2p with 0 < p < 1. The parallel queue system
can be represented by a continuous time Markov process, whose state space consists of
the pairs (m, n), m, n =0, 1, ... where m and n are the lengths of the two queues. The
transition rates in the upper wedge n ~ m are illustrated in figure la, the rates in the lower
wedge n ~ m follow by reflection in the diagonal.

n r

p

1

p
m

1 2p

1p
L..- ---::"---_~ m

Figure 1a: m-n transition rate diagram Figure 1b: m-r transition rate diagram

Let {Pm.n} be the equilibrium distribution of the lengths of the two queues. By symmetry
Pm,n =Pn,m' for all values of m and n. Therefore, we can restrict the analysis to the pro­
babilities Pm.n in the wedge n ~ m. The equilibrium equations state that for all n > m:



Pm,n 2(p + 1) = Pm-1,n 2p + Pm,n+1 + Pm+1,n

Pm,m+1 2 (p + 1) = Pm-1,m+1 2p + Pm,m+2 + Pm+1,m+1 + Pm,m P

PO,n (2p + 1) = PO,n+1 +P l,n

PO,l (2p + 1) = PO,2 + P 1,1 + PO,O P

and, by symmetry, the equations on n =m simplify to

Pm,m (p + 1) =Pm-1,m2p +Pm,m+1

Po,o P=PO,l

ifm > 0, n > m+1

ifm > 0, n =m+1

ifn> 1

ifm > 0

The probabilities Pm,m can be eliminated in the equations on the subdiagonal
n =m+1 by substituting the equations on the diagonaL Then the analysis can be further
restricted to the probabilities Pm,n in the upper wedge n > m. The equations on the diag­
onal are used henceforth as definition for the probabilities Pm,m' For the analysis that fol­
lows, it is preferable to have the coordinate axes along the boundaries of the upper
wedge. Therefore, instead of the coordinates m and n, we will work with the coordinates
m and r =n - m. Then the upper wedge n ~ m in the m-n plane is transformed into the
first quadrant in the m-r plane. In Figure 1b we display the transition rate diagram for the
new coordinates. Further, set for all m ~ 0 and r ~ 0,

qm,r =Pm,m+r'

Restating the equilibrium equations in terms of qm,,, we get that for all m ~ 0 and r ~1,

qm,r 2(p + 1) = qm-1,r+1 2p + qm,r+1 + qm+1,r-1 ifm > 0, r > 1 (1)

qm, 1 2(p + 1) = qm-1,2 2p + qm, 2 + ifm > 0, r = 1 (2)

1 -L
+ (qm, 1 2p + qm+1,l) p + 1 + (qm-1,1 2p + qm, 1) p + 1

qO,r (2p+ l)=qO,r+1 +q1,r-1

1
qO.1(2p+ 1)=qO,2 + (qO,l 2p+q1,d p+ 1 +qO.1

and for all m ~ 0 and r = 0,

qm, 0 (p + 1) = qm-1,1 2p + qm, 1

qo,O P=qO,l

ifr> 1 (3)

(4)

ifm > 0 (5)

(6)

As we already stated, the analysis can be restricted to the set {(m, r), m ~ 0, r ~ 1} and



the equations on the axis r =0 can be used as definition for the probabilities qm, o. We
will show that there exist parameters aj and ~j and coefficients Cj such that for all m ~ 0
and r ~ 1,

00

qm,r =L Cj a'f ~i.
j=O

Throughout the analysis we use the trivial, but vital property that the equations, on which
the analysis is based, are linear, i.e. if two functions satisfy an equation, then any linear
combination also satisfies that equation.

3. The Compensation Procedure
The objective in this section is to study the structure of the equilibrium probabili­

ties. Particularly, we investigate whether the probabilities have some kind of separable
structure. Obviously, the equations (1)-(4) don't allow a separable solution of the form
qm,r =am W. However, numerical experiments indicate that there exist a and ~ such
that, for some K,

qm,r - K am W as m ~ 00 and r ~ 1. (7)

This is illustrated in Figure 2 for the special case p =0.5. In Figure 2a we display the
ratio of qm.r in the m direction, which yields, at least for large m, the parameter a. In Fig­
ure 2b we display the ratio of qm.r in the r direction, yielding the parameter ~. At this
stage of the analysis, the best we can do, is calculating approximations for the probabili­
ties qm.r by solving a fmite capacity shortest queue system exactly, i.e. by means of a
Markov chain analysis. In the example we computed the equilibrium distribution for a
system where each queue has a maximum capacity of 15 jobs, which approximates well
the infinite capacity system in case p = 0.5.

i 6 0.19 0.24 0.25 0.25 0.25 0.25
r 5 0.19 0.24 0.25 0.25 0.25 0.25

4 0.19 0.24 0.25 0.25 0.25 0.25
3 0.19 0.24 0.25 0.25 0.25 0.25
2 0.20 0.24 0.25 0.25 0.25 0.25
1 0.28 0.25 0.25 0.25 0.25 0.25
o

m~

i 6 0.10 0.10 0.10 0.10 0.10 0.10
r 5 0.10 0.10 0.10 0.10 0.10 0.10

4 0.10 0.10 0.10 0.10 0.10 0.10
3 0.10 0.10 0.10 0.10 0.10 0.10
2 0.11 0.10 0.10 0.10 0.10 0.10
1 0.15 0.11 0.10 0.10 0.10 0.10
o

m~

54321o54321o

Figure 2a: qm+l,r Iqm.r for p =0.5 Figure 2b: qm,r+ll qm,r for p =0.5

Clearly, as p = 0.5 we have qm,r - K 0.25m O.l r for some K, which holds even for
moderate m. The question is, what are in general the parameters a and ~? Intuitively, a



stands for the ratio of the probability that there are m+2 and m jobs in the system. So a
reasonable choice seems a =p2, which is supported by the numerical example. The
parameter ~ follows by observing that the form am Whas to satisfy equation (1) in the
interior of the set {(m ,r ), m ~ 0, r ~ I}. Inserting this form into (1) and dividing both
sides by the common term am - 1 W-1 we get a quadratic equation for the unknown ~.
This results in the following lemma.

Lemma 1: The form am Wis a solution of equation (1) if and only if a and ~

satisfy

(8)

By Lemma 1, we obtain two roots ~ =p and ~ =p2 / (2 + p) for fixed a =p2. The
root ~ =p yields the asymptotic solution qm" - K p2m p' for some K, which corresponds
to the equilibrium distribution of two independent M 1M 11 queues, each with workload p.
It is very unlikely that the equilibrium distribution of the shortest queue problem behaves
asym~totically like this distribution. Therefore, the only reasonable choice is
~ =P / (2 + p), which is also supported by the numerical example. Hence, we empiri­
cally find that, for some K,

[
2] ,K 2m ~

qm., - P 2 + P as m ~ 00 and r ~ 1. (9)

Actually, Kingman ([21], Theorem 5) and Ratto and McKean ([11], Section 3) gave a
rigorous proof for this asymptotic result.

Let <Xo = p2 and ~o = p2 / (2 + p). As is illustrated in Figure 2 for the special case
p =0.5, the asymptotic solution aW ~o perfectly describes the behaviour of the equili­
brium probabilities in the interior of the set {(m, r), m ~ 0, r ~ I} as well as at the boun­
dary r =1, but it does not capture the behaviour near the boundary m =O. One easily
verifies that aW ~o indeed satisfies equation (2) on the boundary r = 1 and that it violates
equation (3) on the boundary m =O. Obviously, we can further improve this asymptotic
solution by adding a term to correct for the error on the boundary m =O. For large m this
correction term should be small compared to the term aW ~O in order to avoid that it
spoils the behaviour for large m.

Form the linear combination aW ~o + Co am W. We try to choose Co, a and ~ such
that this linear combination satisfies equation (3) and (1). Inserting it into (3) yields for
all r > 1

(~o +Co W) (2p + 1) =(~O+l + Co W+1) + (no ~O-l + Co a W-1) .

Since this must hold for all r > 1, we have to set ~ =~o. Further we want am ~O to



satisfy equation (1). By virtue of Lemma 1, there are two a's such that am ~o satisfies
equation (1), namely CXo = p2 and al = 2p3 / (2 + p)2. So we have to set a = al' Then for
any Co, the linear combination aW ~o + Co aT ~o satisfies equation (1), because equa­
tion (1) is linear. Finally, dividing the above equation by the common term ~O-l gives
an equation for the unknown Co. Hence we can choose the coefficient Co such that the
linear combination also satisfies equation (3). In general, the result of this procedure can
be stated as

Lemma 2: Let Xl and X2 be the roots of the quadratic equation (8) for fixed ~.

Then the linear combination k I xT W+ k2 xi Wsatisfies the equations (1) and (3) if k I

and k 2 satisfy

(10)

Proof: By virtue of Lemma 1, the forms xT Wand xi Wboth satisfy equation (1).
Since equation (1) is linear, any linear combination also satisfies (1). Inserting the linear
combination k l xT W+ k 2 xi Winto (3) and dividing by the common term W-l yields

which can be rewritten as

~ (2p + 1) - ~2 - X I
k 2 =- 2 k l ·

~ (2p + 1) - ~ - X2

Since x I and x 2 are the roots of the quadratic equation (8),

Substituting that equality into (11) yields (10).

(11)

o

Applying Lemma 2 with Xl =CXo, X2 =al, ~=~o, k l = 1 and k2 =Co, yields
that

al - ~o
Co=- .

CXo - ~o

Then aW ~o + Co aT ~o satisfies the equations (1) and (3). For the special case of
p = 0.5, we display in Figure 3 the same ratios as in Figure 2 for this asymptotic solution.



i 6 0.19 0.24 0.25 0.25 0.25 0.25
r 5 0.19 0.24 0.25 0.25 0.25 0.25

4 0.19 0.24 0.25 0.25 0.25 0.25
3 0.19 0.24 0.25 0.25 0.25 0.25
2 0.19 0.24 0.25 0.25 0.25 0.25
1 0.19 0.24 0.25 0.25 0.25 0.25
o

i 6 0.10 0.10 0.10 0.10 0.10 0.10
r 5 0.10 0.10 0.10 0.10 0.10 0.10

4 0.10 0.10 0.10 0.10 0.10 0.10
3 0.10 0.10 0.10 0.10 0.10 0.10
2 0.10 0.10 0.10 0.10 0.10 0.10
1 0.10 0.10 0.10 0.10 0.10 0.10
o

o 1 2 3 4 5
m~

o 1 2 3 4 5
m~

(aW+coaT)~o+1
Figure 3b: -----­

(aW+coaT)~o

Comparing Figures 2 and 3, we see that this refinement also captures the behaviour of the
equilibrium probabilities near the boundary m =O. Hence, for some K,

qm,r - K (aW ~o + Co aT ~o) as m+r ~ 00 and r ~ 1. (12)

Flatto and McKean ([11], Section 3) proved this statement, which is stronger than (9).
We added an extra term to compensate for the error on the boundary m =O. On the other
hand, we introduced a new error on the boundary r =1, since the extra term violates
equation (2). Since al < no, the term aT ~o is very small compared to aW ~o even for
moderate m. Therefore its disturbing effect near the boundary r =1 is practically negligi­
ble. However, we can compensate for this second order error on the boundary r =1 in the
same way as we did on the boundary m =0, by adding another correction term.

Form the linear combination aW ~o + coaT ~o + d I am W. The term aW ~o

already satisfies the equations (2) and (I) and we try to choose d I, a and ~ such that the
linear combination coaT ~o + d I am Walso satisfies (2) and (1). Inserting it into (2)
gives for all m > 0

(Co aT ~o +d l am~) 2(p + 1)

=(co aT-I ~5 + d l am- l ~2) 2p + Co aT ~5 + d l am p2

1
+ [(co aT Po + dl am P) 2p + Co aT+ I ~ + d l am+1 P] --1

p+

+ [(co aT-I ~o + d l am- l ~) 2p + Co aT Po + d l am ~] ~1 .
p+

Since this must hold for all m > 0, we have to set a =al' Furthermore we want aT Wto
satisfy equation (1). By virtue of Lemma 1 there are there are two Ws such that aT W
satisfies equation (1), namely ~o =p2 t (2 + p) and PI =p3 t «2 + p) (2 + 2p + p2)). So
we have to set ~ =~l' Then for any d I, the linear combination coaT PO + d I aT ~1

satisfies equation (1). Finally, dividing the above equation by the common term aT-I



yields an equation for the unknown d I. Hence we can choose d I such that the linear
combination also satisfies (2). In general, we have

Lemma 3: Let Y I and Y 2 be the roots of the quadratic equation (8) for fixed a.
Then the linear combination k i am Yl + k 2 am Y2 satisfies the equations (1) and (2) if k i
and k2 satisfy

(a+ P)/Y2 - (p + 1)
k 2 =- k l ·

(a + p) /Y I - (p + 1)
(13)

Proof: By virtue of Lemma 1 both a' Yl and a' Y2 satisfy (1) and by linearity, also
any linear combination. Inserting the linear combination k 1 am Yl + k 2 am Y2 into (2)
and dividing both sides by the common tenn am - 1 yields

By inserting equation (8) this reduces to

k 1 a2 + k 2 a2 = [(k I a Y I + k 2 a Y2) 2p + k I a2 Y I + k 2 a2 Y2] _1_
p+l

+ [(k i YI + k2 Y2) 2p + k i aYI + k 2 aY2] --.E.- .
p+l

Hence

Y 1 (a + 2p)(a + p) / (p + 1) - a2

k 2 =- k l ·
Y2 (a+2p)(a+p)/(p+ 1)-a2

Since Y 1 and Y 2 are the roots of the quadratic equation (8),

Y I Y2 (a + 2p) = a2
.

Using this relation to rewrite Y 1 and Y2 in (14), yields relation (13).

(14)

o

Applying Lemma 3 with Yl = ~o, Y2 = ~l, a= aI, k i = Co and k 2 = d l , yields
that



(al +P)/~l -(P+ 1)

d l =- (al+p)/~o-(p+l) co·

Then the linear combination aW ~O + coaT ~o + d I aT ~1 satisfies both equations (1)
and (2). Now we compensated the error on the boundary r =1, but we introduced a new
one on the boundary m =0, since the compensating term aT ~1 violates equation (3).
But it is clear how to continue this compensating procedure: it consists of adding on
terms so as to compensate altematingly for the error on the boundary m =0, according to
Lemma 2, and for the error on the boundary r =1, according to Lemma 3. The final solu­
tion consists of an infinite series of compensation terms. It is formally defined in the next
section.

4. Formal Definition of the Compensation Procedure and the Main Theorem

The final solution is an infinite linear combination of terms of the form am W.
Below we first define the parameters ai and ~i and next the coefficients of the linear
combinations. For the initial values ao =p2 and ~o =p2 / (2 + p), define the sequence

~~o~ ~~l~ ~~2~
ao al a2 ...

such that for all i = 0, 1, 2, ..., the numbers ai and ai+l are the roots of the quadratic
equation (8) for fixed ~ = ~i and ~i and ~i+l are the roots of the quadratic equation (8)
for fixed a =ai+l' Therefore the numbers ai and ai+l satisfy the relations

ai ai+l = 2p ~r,

ai + ai+l =~i 2(p + 1) - ~r ,
and ~i and ~i+l satisfy

~i J3i+1 = ar+l / (2p + ai+l) ,

~i + ~i+l = ai+l 2(p + 1) / (2p + ai+d .

(15)

(16)

(17)

(18)

Using the relations (15) and (17), it follows, by induction, that for all i the numbers ai

and ~i are positive. The relations (15) and (17) provide a simple recursive scheme to pro­
duce ai and ~i' but we can say more, since ai and ~i can be solved explicitly. Combining
(17) and (18) yields for all i ~ 0, that

.1..-+_1_= 2(p+l)
J3i ~i+l ai+l

(19)

Adding that relation for i-I and i and next eliminating ai and ai+1 by inserting (15) and
(16), yields for all i ~ 1,



_1_ +~ + _1_ = 2..±..!. [ 2(p + 1) _ 1] .
~i-I ~i ~i+1 P ~i

This is an inhomogeneous second order recursion relation for {II Pi} with initial values
11 Po = (2 + p) I p2 and 11 PI = (2 + p) (2 + 2p + p2) I p3, whose solution is routine. Then
the numbers ai follow from (19). Hence, we obtain (cf. Kingman [21], Lemma 3),

Lemma 4: a.o = p2 and for all i =0, 1,2, ...

2(p + 1)lai+1 = 2A +B (1 + A) Ai + C (1 + A-I)A-i ,

11 Pi = A +B Ai + C A-i ,

where

A= (p + 1 - ...jp2 + 1 ) I (p + 1 + ...jp2 + 1) ,

A=(I+p)/2(1+p2),

and B and C follow from the initial values

11 ~o = (2 + p) I p2 ,

1I~1 =(2+p)(2+2p+p2) /p3.

By Lemma 1, all solutions a'f Pi and ar..1 ~i satisfy equation (1) and by linearity,
any linear combination of these solutions also satisfies (1). Now, for all m ~ 0 and r ~ 1,
define the final solution xm,r as

00

xm•r = L di (a'f + Ci a'f+I) ~i
i=O

00

= do a3' PO + L (di Ci Pi + di+1 Pi+d a'f+I'
i=O

(20)

where in the first sum we formed pairs with a common factor ~i and in the second one
with a common factor ai+l. Put do = 1 and successively generate the coefficients Ci and
di+1 such that (a'f + ci ar..l) ~i satisfies equation (3) on the boundary m = 0 and
(di Ci ~i + di+1 Pi+d a'f satisfies equation (2) on the boundary r = 1. By Lemma 2 and
3, this yields for all i =0, 1, ...

ai+l - ~i
c· = - ----:--

l a. _ A. '
l IJI

(21)



(ai+l + p) I ~i+l - (p + 1)
di+l =- (ai+l + p)1 ~i _ (p + 1) Ci di·

= ... = (_1)i+l IT (aj+l +P)/~j+l-(P+1) Cj'

j =0 (aj +1 + p) I ~j - (p + 1)

The numbers xm, °are defined by the equilibrium equations (5) and (6), yielding

Xm,O=(Xm-l,12P+Xm,d/(p+1) for m >0, xO,o=xo,l/p.

(22)

(23)

The following theorem establishes our main result: up to a normalizing constant, the
solution {xm,r} is the equilibrium distribution {qm,r}'

Theorem: For all m ~ 0 and r ~ 0

C- 1
qm r = Xm r', ,

where the normalizing constant C satisfies

c = P(2 + p)
2 (l - p2) (2 - p)

In the following sections we shall prove the theorem. First, we show that the series
(20), which define the numbers xm,r, converge absolutely. Next we prove that {xm,r} is a
positive and convergent solution, that is,

00 00 00

Xm,r > 0 and C = 2 L L xm,r + L xm,o < 00.

m=O r=1 m=O

Once the above is established, we can conclude that {xm r} forms a well defined, nonnull,
and convergent solution, satisfying the equations (1), (2) and (3), and by definition, the
equations (5) and (6). The remaining equation in (0, 1) is also satisfied, for summing over
all other equations yields the desired equation. By a result of Foster ([13], Theorem 1),
this proves that the shortest queue system is ergodic. Since the equilibrium distribution
for an ergodic system is unique, {xm,r} can be normalized to produce the equilibrium dis­
tribution. We finally show that the normalizing constant C satisfies the explicit expres­
sion in the theorem.

5. Asymptotics

To prove the convergence of the series (20) we need information about the
behaviour of ai, ~i' Ci and di. Instead of exploiting the explicit forms in Lemma 4, we



obtain the necessary infonnation, in a relatively easy way, from the behaviour of the
ratios aj / J3j and aj+1 / J3i (recall that J3j is positive for all i). First, define for i =0, 1,2, ...,

Then from (15) and (19),

Uj Vj = 2p, Vj + Uj+1 = 2(p + 1) .

and eliminating Vj, respectively Uj, leads to the iteration schemes

Uj +I = 2(p + 1) - 2p / Uj ,

Vj = 2(p + 1) - 2p / Vj+1 ,

(24)

with initial values U Q = 2 + P and v Q = 2p / (2 + p). These iteration schemes are illus­
trated in Figure 4. The fixed points of the above iteration schemes are the numbers A I

and A 2, that is, the roots of A = 2(p + 1) - 2p / A. So

A I = P + 1 - ...Jp2 + 1 , A 2 = P + 1 + ...Jp2 + 1 .

y y =x

___-....-:~::.--- y =2(p + 1) - 2p / x

VI vQ UQ UI A 2 x

Figure 4: the iteration schemes for Uj and vj

Then, by induction we obtain, as i ~ co,

Uj i A2' Vj,J.. A I • (25)

To analyze the behaviour of ai, J3j, Cj and dj we first express them in tenns of Uj and Vj.

Directly from the definition of Uj and Vj it follows that



(26)

and dividing the numerator and denominator in (21) by Pi yields

(27)

To express di +1 / di in terms of Ui and Vi, multiply the numerator and denominator in (22)
by Ui+l and insert the definitions of Ui and Vi, yielding

d i+1 (Ui+l + p) Ui+l - Ui+l (p + 1)
--=- c·

di (Ui+l + p) vi - Ui+l (p + 1) I •

Then inserting Ui+l = Vi Ui+l - 2p, by (17), leads to

d i+1 (Ur+l- Ui+l (P+l»Vi+P(2(p+l)-Ui+l)
--=- Ci·

d i (vr - Vi (p + 1» Ui+l + P (2(p + 1) - Vi)

Finally, inserting 2(p + 1) = Vi + Ui+l' by (24), gives the desired expression

(28)

By the expressions (26), (27) and (28), the asymptotic behaviour of Ui, Pi, ci and di+l/ di

is obtained from the asymptotic behaviour (25) of Ui and Vi. This leads to

Lemma 5: As i --? 00, then

Ui+l d Pi+l I Al--an ---J..
A A 2 'Ui I-"i

Proof: The limiting behaviour of the ratios Ui+l/ ui and Pi+l/ Pi and the
coefficients Ci follows from (25), (26) and (27), and further from (25) and (28), as i --? 00,

Inserting the identities A 1 (A 2 - p) = A 2 p(l - A d and A 2 (A 1 - p) = A 1 p(l - A 2)

yields the desired limit of di +1 / di • 0

Further, by (25), it follows that for all i,



Uj > Uo > 1 > P > Vo > Vj > O.

As a consequence, by the expressions (26), (27) and (28),

Lemma 6: 1 > <Xo > ~o > al > ~1 > ... > 0 and Cj > 0 and dj+ll dj < 0 for all i.

Thus the tenns in expression (20) for xm,r are alternating. The Lemmas 5 and 6 provide
the ingredients, needed to prove that the series (20) converges absolutely,

6. The Convergence of the Series of Product Forms

We can now prove that for all m ~ 0 and r ~ 1 the series (20), which defines xm,r'
converges absolutely. Consider a fixed m ~ 0 and r ~ 1. Then from Lemma 5, as i ~ 00,

both

which is strictly less than unity. Hence, there exist positive constants M and R, with R
strictly less than unity, and both depending on m and r, such that for all i, both tenns
Idi af ~i Iand Idj Cj a~l ~i Iare bounded by M R j. This proves

00 00

Lemma 7: For all m ~ 0 and r ~ 1, both L d j af ~i and L dj Cj af+l ~i
j=O j=O

converge absolutely.

By virtue of this lemma, for all m ~ 0 and r ~1 the numbers xm,r are well defined by the
series (20), and it is allowed to change the order of summation. As noted at the end of
the previous section, the tenns in the series (20) are alternating. So it isn't obvious
whether the series is positive or negative. The following lemma helps in proving that
{xm,r} is a positive solution. It states that the terms in (20) are decreasing in modulus, at
least with rate R = 41 (4 + 2p + p2).

Lemma 8: LetR = 4/(4+ 2p + p2) < 1, then for all m ~ 0, r ~ 1 and i ~ 0,

Proof: We first prove the lemma for m = 0 and r = 1. Consider the ratio of both
tenns. Inserting the expressions (26), (27) and (28), it follows that



Idi+1 (l + Ci+l) ~i+ll

Idi (l + Ci) ~i I
= ------

(p - Vi) (Ui - VJ

Vf
<

(p - Vi) (Ui - Vi)

(Ui+l - p) (Ui+l - vi+d
2

Ui+l

V5:::;; =R < 1,
(p - vo) (uo - vo)

where in the second inequality we used that, by (25), the numbers Vi are positive and
decreasing and the numbers Ui - Vi are positive and increasing. This proves the lemma
for m = 0 and r = 1. Now consider an arbitrary m ~ 0 and r ~ 1. Since the sequences
{ai} and {~i} are decreasing, by Lemma 6, it follows ,that for all i,

Idi+l (a~l + ci+l a7h) ~r+l I < Idi+1 (1 + Ci+l) ~i+l I af+l ~i+l

< Rlddl+ci)~ila~l~r+1 < Rlddar+ciar+l)~il.

Corollary: For all m ~ 0 and r ~ 0, the numbers xm,r are positive.

o

Proof: The terms in (20) are alternating and, by Lemma 8, strictly decreasing in
modulus. Since the first term in (20) is positive, this proves that xm,r is positive for m ~ 0
and r ~ 1, and, immediate from their definition, also for m ~ 0 and r =O. 0

We conclude this section by proving that the series

00

C = 2 L L xm,r + L xm,o
m=O r=l m=O

converges. Inserting the definition of xm, 0, we obtain that

so that convergence follows once the following lemma is established.

00 00

Lemma 9: L L xm,r < 00.

m=O r=l

Proof: By equation (20),

00 00 00 00 00

L L xm,r = L L L di (ar + Ci a~l) ~r.
m=O r=l m=O r=l i=O

(29)



and we will show that the latter sum converges absolutely. Interchanging summations
and using that (Xi and ~i are positive and less than unity (cf. Lemma 6), we obtain

!3i

1- ~i .
(30)

By Lemma 5, the ratio of successive terms of the sum at the right hand side of (30) tends
to (1 - AI) I (A 2 - 1) < 1, so that there exist positive constants M and R, with R strictly
less than unity, such that for all i,

Id.1 [ 1 + Ci ]
I 1 - (Xi 1- (Xi +1

Thus the sum (30) converges. o

7. Explicit Form for C

We derive an explicit form for the normalizing constant C, which however, is not
essential to the compensation method itself. Substituting the series (20) for xm•r into
equation (29) leads to a series of product forms for C, analogously to the one for xm•r (cf.
the left hand side of (30». The method to obtain the explicit form, by means of the gen­
erating function, is different from the main arguments in this paper. Therefore we omit
details and only sketch the proof. Define the generating function F (y, z) by

F (y, z) = ~ ~ qm,r y m zr =C-1 ~ f xm•r ym zr .
m=Or=O m=Or=O

Substituting (23) to eliminate xm• 0 and then inserting the series (20), we obtain, by inter­
changing summations,

F(y, z) =C-1 { f di [ 1 + Ci ] ~i z
i=O 1-(XiY 1-(Xi+lY 1-!3i z

1 00 [(2P+(Xi)Y (2P+(Xi+dY]+-- L d· +C·-----
P+ 1 i= 0 I 1 - (Xi Y I 1 - (Xi +1 Y

(31)

A XO.l}
pi + -- ,

P

valid in Iy I < 1/ CXo, Iz I < 11 ~o. It is noted that this partial fraction decomposition of
the generating function cannot be obtained, at least in explicit form, from the analysis of
Kingman [21] and Flatto and McKean [11]. The equilibrium equations (1)-(6) reduce to
the following functional equation for F (y, z),

F(y, z)g(y, z)=F(y, O)h(y, z)+F(O, z)k(y, z),



where

g (Y, z) = Z2 + Y (2p y + 1) - 2(p + 1) y z ,

h (Y, z) = y (2p y + 1) - (p + 1) y z - p Y z2 ,

key, z)=z (z -y).

It follows that, if y and z satisfy Iy I < 11 0.0, Iz I < 11 ~o and g (Y, z) = 0, then F (Y, 0)
and F (0, z) are related according to

F(y, O)h(y, z)+F(O, z)k(y, z)=O. (32)

In the analysis of Kingman [21] and Platto and McKean [11] this relationship between
F (Y, 0) and F (0, z) eventually leads to their determination. We use it to establish

c = P(2+ p)
2 (1 - p2) (2 - p)

First, note that F (0, 1) is the fraction of time server 1 (or 2) is idle. Since 2p is the
offered load, we obtain, by symmetry, F (0, 1) = 1 - p. Starting with F (0, 1) = 1 - p, we
successively apply relationship (32) to the pairs (Y, z) = (1/ 2p, 1) and (1/ 2p, 1/ p), both
satisfying g (Y, z) = 0, which leads to the determination of F (0, 1 / p) = (1 - p) (2 - p).
Next we apply (32) to (Y, z), satisfying g (Y, z) = 0, and let y i 11 p2 (= 11 0.0) and
z 4 11 p. Here note that, by treating y as the parameter, the equation g (Y, z (y» =0,
z (1/ p2) = 1/ P is solved for

z (y) = (p + 1) y - ...Jy ( (p2 + 1) Y - 1) .

Then inserting z = z (y) into relationship (32) and letting y i 1 / p2, we finally obtain the
desired expression for C, by using F (0, 1 / p) = (1 - p) (2 - p) and also, as y i 1 / p2,

hey, z(y»=(2+p)(p-l)(y-1I p2)/2p+o(y-1I p2),

and by (31),

F(y, 0) =(- C P (p + 1) (y -1I p2)r1 + 0(1).

8. Asymptotic Expansion

We now return to the asymptotic equivalence (12), proved in Platto and McKean
[11]. The series (20) extends this result, for it yields a complete asymptotic expansion.



First, since the numbers aj and ~j are decreasing, it follows for all j ~ 1, as m+r --? 00

and r ~ 1, that

Thus successive tenns in (20) are refinements. Since the tenns in (20) are alternating and
decreasing in modulus, the error of each partial sum is bounded by the final tenn of the
partial sum. Hence, we have for all j ~ 1, as m +r --? 00 and r ~ 1,

(33)

The O-fonnula for j =1 improves the asymptotic equivalence (12), for as m +r --? 00 and
r ~ 1,

C-1do (a(f + Co aT) ~b + O(d 1 (aT + C1 a~) ~1) =
C-1dO (a(f + Co aT) ~b (1 + 0 (1» .

Accordingly, the fonnula for j =2 improves the one for j =1, and so on. The following
notation is used in order to represent the whole set (33) by a single fonnula (see e.g. de
Bruijn [6], Section 1.5),

Lemma 10: qm,r:: C-1 ~ di(a'f + Ci ai+I> ~i as m+r --? 00 and r ~ 1 .
i=O

9. Numerical Results

The solution (20) is also suitable for numerical evaluation. First, the tenns in (20)
are easily calculated and they decrease exponentially fast. Secondly, the tenns are alter­
nating and decreasing in modulus. This makes that the error in the partial sum can be
bounded by the modulus of the final tenn in the partial sum. In Table 1 we list the
numbers qO,1, qO,2, q1,1 and ql,2 computed with a relative accuracy of 0.1%. The
numbers in parentheses denote the number of tenns in (20), needed to attain that accu­
racy.

P qOl Q02 Ql 1 Q12
0.3 0.1591 (14) 0.0100 (3) 0.0156 (3) 0.0007 (2)
0.5 0.1580 (10) 0.0233 (3) 0.0441 (4) 0.0047 (2)
0.7 0.1100 (8) 0.0275 (4) 0.0606 (4) 0.0118 (3)
0.9 0.0380 (6) 0.0140 (4) 0.0350 (4) 0.0104 (3)

Table 1: Computation ofQO,1, QO,2, Q1,1 and Ql,2for increasing values of p



Let us investigate the rate of convergence of the terms in the series (20). By Lemma 6, it
follows that for all m ~ 0 and r ~ 1, as i ~ 00,

Id ( m + m ) IV I ---'- ~-2 ~~ [~~] m+r-li+l CXi+l Ci+l CXi+2 I-li+l ~

ldi (cx'f + Ci CX~I) ~i I

For 0 < p < 1, the factor (l - AI) / (A 2 - 1) is decreasing and AI/A 2 is increasing, and

Hence, if m > 0 or r > 1, the convergence of the terms in (20) is very fast for all p, at
least with rate (2 - 2%)/(2 + 2%) =0.1715.... But if m =0 and r =1, then the rate of
convergence is detennined only by (1 - Ad/ (A 2 - 1), so, as Table 1 illustrates, conver­
gence is slow for small p.

Below we derive expressions for the mean Wand second moment W(2) of the wait­
ing time, based on the series for qm,r. First, Wand W(2) are given by

00

W =2 L L m qm,r + L m qm,o ,
m=lr=1 m=1

W(2) =2 :E :E m(m + 1) qm,r + :E m(m + 1) qm,o •
m= 1 r=1 m=1

Substituting (5) to eliminate qm,o and then inserting the series for qm,r' we obtain, by
interchanging summations (cf. (31)),

and a similar expression for W(2). The terms in these series are alternating and decreasing
(cf. Lemma 8), so the error of each partial sum can be bounded by the modulus of the
final term. Accordingly, expressions can be obtained for higher moments of the waiting
time or other quantities of interest. In Table 2 we list values of W and W(2), together
with the coefficient of variation cv (W) of the waiting time, with a relative accuracy of
0.1%. The numbers of terms, needed to attain that accuracy, are shown in parentheses.



p W W(2) cv(W)

0.3 0.1441 (13) 0.3181 (13) 3.7846
0.5 0.4262 (8) 1.1472 (8) 2.3053
0.7 1.1081 (6) 4.3842 (5) 1.6032
0.9 4.4748 (4) 47.208 (3) 1.1652

Table 2: Computation of the mean Wand second moment W(2) of
the waiting time, together with the coefficient of variation
cv (W),for increasing values ofp

10. Conclusions and Extensions
We developed a compensation approach to obtain generalized product fonn expres­

sions for the equilibrium probabilities of the symmetric shortest queue problem. This
approach yields explicit relations for the product fonns as well as their coefficients and
thereby an explicit characterization of the equilibrium probabilities. Based on these
explicit relations, qualitative properties of the product fonns are derived, which in their
turn are exploited to obtain efficient numerical algorithms.

We believe, and this is confinned by several recent results, that the compensation
approach is also useful in other situations. For example, in [3] it is shown that the com­
pensation idea works for the shortest queue problem with non-identical servers. How­
ever, in that case the analysis is essentially more complicated, as it requires the construc­
tion of solutions on the different regions m < n and m > n which are coupled at the diag­
onal. In fact, our interest in the present problem arose out of our work in flexible
manufacturing systems, which behaved somewhat similar as job-type dependent parallel
queueing systems with dynamic routing, see e.g. Schwartz [24], Green [16] and Adan,
Wessels and Zijm [1].

Finally we point out that the compensation approach has some flexibility for
modifications in the model. For instance, the approach also proceeds if the single servers
are replaced by two identical multi-server groups. Then only the compensation on the
vertical boundary becomes more complicated. In [2] we showed that the compensation
approach can be easily extended to a "simple" asymmetric shortest queue problem, where
the symmetric routing probability Y2 is replaced by an arbitrary routing probability. In
that case the regions m < n and m > n are still a mirror image of each other.
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