
Chapter 10

Analysis of the AutoML Challenge Series
2015–2018

Isabelle Guyon, Lisheng Sun-Hosoya, Marc Boullé, Hugo Jair Escalante,

Sergio Escalera , Zhengying Liu, Damir Jajetic, Bisakha Ray,

Mehreen Saeed, Michèle Sebag, Alexander Statnikov, Wei-Wei Tu,

and Evelyne Viegas

Abstract The ChaLearn AutoML Challenge (The authors are in alphabetical order

of last name, except the first author who did most of the writing and the second

author who produced most of the numerical analyses and plots.) (NIPS 2015

– ICML 2016) consisted of six rounds of a machine learning competition of

progressive difficulty, subject to limited computational resources. It was followed by

I. Guyon (�)

University of Paris-Sud, Orsay, France

INRIA, University of Paris-Saclay, Paris, France

ChaLearn and ClopiNet, Berkeley, CA, USA

e-mail: guyon@chalearn.org

L. Sun-Hosoya · Z. Liu

Laboratoire de Recherche en Informatique, University of Paris-Sud, Orsay, France

University of Paris-Saclay, Paris, France

M. Boullé

Machine Learning Group, Orange Labs, Lannion, France

H. J. Escalante

Computational Sciences Department, INAOE and ChaLearn, Tonantzintla, Mexico

S. Escalera

Computer Vision Center, University of Barcelona, Barcelona, Spain

D. Jajetic

IN2, Zagreb, Croatia

B. Ray

Langone Medical Center, New York University, New York, NY, USA

M. Saeed

Department of Computer Science, National University of Computer and Emerging Sciences,

Islamabad, Pakistan

M. Sebag

Laboratoire de Recherche en Informatique, CNRS, Paris, France

University of Paris-Saclay, Paris, France

© The Author(s) 2019

F. Hutter et al. (eds.), Automated Machine Learning, The Springer Series

on Challenges in Machine Learning, https://doi.org/10.1007/978-3-030-05318-5_10

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05318-5_10&domain=pdf
https://orcid.org/0000-0003-0617-8873
mailto:guyon@chalearn.org
https://doi.org/10.1007/978-3-030-05318-5_10

178 I. Guyon et al.

a one-round AutoML challenge (PAKDD 2018). The AutoML setting differs from

former model selection/hyper-parameter selection challenges, such as the one we

previously organized for NIPS 2006: the participants aim to develop fully automated

and computationally efficient systems, capable of being trained and tested without

human intervention, with code submission. This chapter analyzes the results of these

competitions and provides details about the datasets, which were not revealed to the

participants. The solutions of the winners are systematically benchmarked over all

datasets of all rounds and compared with canonical machine learning algorithms

available in scikit-learn. All materials discussed in this chapter (data and code) have

been made publicly available at http://automl.chalearn.org/.

10.1 Introduction

Until about 10 years ago, machine learning (ML) was a discipline little known

to the public. For ML scientists, it was a “seller’s market”: they were producing

hosts of algorithms in search for applications and were constantly looking for new

interesting datasets. Large internet corporations accumulating massive amounts of

data such as Google, Facebook, Microsoft and Amazon have popularized the use

of ML and data science competitions have engaged a new generation of young

scientists in this wake. Nowadays, government and corporations keep identifying

new applications of ML and with the increased availability of open data, we have

switched to a “buyer’s market”: everyone seems to be in need of a learning machine.

Unfortunately however, learning machines are not yet fully automatic: it is still

difficult to figure out which software applies to which problem, how to horseshoe-fit

data into a software and how to select (hyper-)parameters properly. The ambition

of the ChaLearn AutoML challenge series is to channel the energy of the ML

community to reduce step by step the need for human intervention in applying ML

to a wide variety of practical problems.

Full automation is an unbounded problem since there can always be novel

settings, which have never been encountered before. Our first challenges AutoML1

were limited to:

• Supervised learning problems (classification and regression).

• Feature vector representations.

• Homogeneous datasets (same distribution in the training, validation, and test

set).

A. Statnikov

SoFi San Francisc, California, USA

W.-W. Tu

4Paradigm, Beijing, Republic of China

E. Viegas

Microsoft Research, Redmond, WA, USA

http://automl.chalearn.org/

10 Analysis of the AutoML Challenge Series 2015–2018 179

• Medium size datasets of less than 200 MBytes.

• Limited computer resources with execution times of less than 20 min per

dataset on an 8 core x86_64 machine with 56 GB RAM.

We excluded unsupervised learning, active learning, transfer learning, and causal

discovery problems, which are all very dear to us and have been addressed in past

ChaLearn challenges [31], but which require each a different evaluation setting,

thus making result comparisons very difficult. We did not exclude the treatment of

video, images, text, and more generally time series and the selected datasets actually

contain several instances of such modalities. However, they were first preprocessed

in a feature representation, thus de-emphasizing feature learning. Still, learning from

data pre-processed in feature-based representations already covers a lot of grounds

and a fully automated method resolving this restricted problem would already be a

major advance in the field.

Within this constrained setting, we included a variety of difficulties:

• Different data distributions: the intrinsic/geometrical complexity of the dataset.

• Different tasks: regression, binary classification, multi-class classification,

multi-label classification.

• Different scoring metrics: AUC, BAC, MSE, F1, etc. (see Sect. 10.4.2).

• Class balance: Balanced or unbalanced class proportions.

• Sparsity: Full matrices or sparse matrices.

• Missing values: Presence or absence of missing values.

• Categorical variables: Presence or absence of categorical variables.

• Irrelevant variables: Presence or absence of additional irrelevant variables

(distractors).

• Number Ptr of training examples: Small or large number of training examples.

• Number N of variables/features: Small or large number of variables.

• Ratio Ptr/N of the training data matrix: Ptr ≫ N,Ptr = N or Ptr ≪ N .

In this setting, the participants had to face many modeling/hyper-parameter choices.

Some other, equally important, aspects of automating machine learning were not

addressed in this challenge and are left for future research. Those include data

“ingestion” and formatting, pre-processing and feature/representation learning,

detection and handling of skewed/biased data, inhomogeneous, drifting, multi-

modal, or multi-view data (hinging on transfer learning), matching algorithms to

problems (which may include supervised, unsupervised, or reinforcement learning,

or other settings), acquisition of new data (active learning, query learning, rein-

forcement learning, causal experimentation), management of large volumes of data

including the creation of appropriately-sized and stratified training, validation, and

test sets, selection of algorithms that satisfy arbitrary resource constraints at training

and run time, the ability to generate and reuse workflows, and generating meaningful

reports.

180 I. Guyon et al.

This challenge series started with the NIPS 2006 “model selection game”1 [37],

where the participants were provided with a machine learning toolbox based on

the Matlab toolkit CLOP [1] built on top of the “Spider” package [69]. The toolkit

provided a flexible way of building models by combining preprocessing, feature

selection, classification and post-processing modules, also enabling the building

of ensembles of classifiers. The goal of the game was to build the best hyper-

model: the focus was on model selection, not on the development of new algorithms.

All problems were feature-based binary classification problems. Five datasets were

provided. The participants had to submit the schema of their model. The model

selection game confirmed the effectiveness of cross-validation (the winner invented

a new variant called cross-indexing) and emphasized the need to focus more on

search effectiveness with the deployment of novel search techniques such as particle

swarm optimization.

New in the 2015/2016 AutoML challenge, we introduced the notion of “task”:

each dataset was supplied with a particular scoring metric to be optimized and a

time budget. We initially intended to vary widely the time budget from dataset to

dataset in an arbitrary way. We ended up fixing it to 20 min for practical reasons

(except for Round 0 where the time budget ranged from 100 to 300 s). However,

because the datasets varied in size, this put pressure on the participants to manage

their allotted time. Other elements of novelty included the freedom of submitting

any Linux executable. This was made possible by using automatic execution on the

open-source platform Codalab.2 To help the participants we provided a starting kit

in Python based on the scikit-learn library [55].3 This induced many of them to

write a wrapper around scikit-learn. This has been the strategy of the winning entry

“auto-sklearn” [25–28].4 Following the AutoML challenge, we organized a “beat

auto-sklearn” game on a single dataset (madeline), in which the participants could

provide hyper-parameters “by hand” to try to beat auto-sklearn. But nobody could

beat auto-sklearn! Not even their designers. The participants could submit a json file

which describes a sklearn model and hyper-parameter settings, via a GUI interface.

This interface allows researchers who want to compare their search methods with

auto-sklearn to use the exact same set of hyper-models.

A large number of satellite events including bootcamps, summer schools, and

workshops have been organized in 2015/2016 around the AutoML challenge.5 The

AutoML challenge was part of the official selection of the competition program of

IJCNN 2015 and 2016 and the results were discussed at the AutoML and CiML

workshops at ICML and NIPS in 2015 and 2016. Several publications accompanied

these events: in [33] we describe the details of the design of the AutoML challenge.6

1http://clopinet.com/isabelle/Projects/NIPS2006/
2http://competitions.codalab.org
3http://scikit-learn.org/
4https://automl.github.io/auto-sklearn/stable/
5See http://automl.chalearn.org
6http://codalab.org/AutoML

http://clopinet.com/isabelle/Projects/NIPS2006/
http://competitions.codalab.org
http://scikit-learn.org/
https://automl.github.io/auto-sklearn/stable/
http://automl.chalearn.org
http://codalab.org/AutoML

10 Analysis of the AutoML Challenge Series 2015–2018 181

In [32] and [34] we review milestone and final results presented at the ICML 2015

and 2016 AutoML workshops. The 2015/2016 AutoML challenge had 6 rounds

introducing 5 datasets each. We also organized a follow-up event for the PAKDD

conference 20187 in only 2 phases, with 5 datasets in the development phase and 5

datasets in the final “blind test” round.

Going beyond the former published analyses, this chapter presents systematic

studies of the winning solutions on all the datasets of the challenge and conducts

comparisons with commonly used learning machines implemented in scikit-learn.

It provides unpublished details about the datasets and reflective analyses.

This chapter is in part based on material that has appeared previously [32–34, 36].

This chapter is complemented by a 46-page online appendix that can be accessed

from the book’s webpage: http://automl.org/book.

10.2 Problem Formalization and Overview

10.2.1 Scope of the Problem

This challenge series focuses on supervised learning in ML and, in particular, solv-

ing classification and regression problems, without any further human intervention,

within given constraints. To this end, we released a large number of datasets pre-

formatted in given feature representations (i.e., each example consists of a fixed

number of numerical coefficients; more in Sect. 10.3).

The distinction between input and output variables is not always made in ML

applications. For instance, in recommender systems, the problem is often stated as

making predictions of missing values for every variable rather than predicting the

values of a particular variable [58]. In unsupervised learning [30], the purpose is

to explain data in a simple and compact way, eventually involving inferred latent

variables (e.g., class membership produced by a clustering algorithm).

We consider only the strict supervised learning setting where data present them-

selves as identically and independently distributed input-output pairs. The models

used are limited to fixed-length vectorial representations, excluding problems of

time series prediction. Text, speech, and video processing tasks included in the chal-

lenge have been preprocessed into suitable fixed-length vectorial representations.

The difficulty of the proposed tasks lies in the data complexity (class imbalance,

sparsity, missing values, categorical variables). The testbed is composed of data

from a wide variety of domains. Although there exist ML toolkits that can tackle

all of these problems, it still requires considerable human effort to find, for a

given dataset, task, evaluation metric, the methods and hyper-parameter settings

that maximize performance subject to a computational constraint. The participant

challenge is to create the perfect black box that removes human interaction,

alleviating the shortage of data scientists in the coming decade.

7https://www.4paradigm.com/competition/pakdd2018

http://automl.org/book
https://www.4paradigm.com/competition/pakdd2018

182 I. Guyon et al.

10.2.2 Full Model Selection

We refer to participant solutions as hyper-models to indicate that they are built

from simpler components. For instance, for classification problems, participants

might consider a hyper-model that combines several classification techniques such

as nearest neighbors, linear models, kernel methods, neural networks, and random

forests. More complex hyper-models may also include preprocessing, feature

construction, and feature selection modules.

Generally, a predictive model of the form y = f (x;α) has:

• a set of parameters α = [α0, α1, α2, . . . , αn];

• a learning algorithm (referred to as trainer), which serves to optimize the

parameters using training data;

• a trained model (referred to as predictor) of the form y = f (x) produced by the

trainer;

• a clear objective function J (f), which can be used to assess the model’s

performance on test data.

Consider now the model hypothesis space defined by a vector θ =

[θ1, θ2, . . . , θn] of hyper-parameters. The hyper-parameter vector may include

not only parameters corresponding to switching between alternative models, but

also modeling choices such as preprocessing parameters, type of kernel in a kernel

method, number of units and layers in a neural network, or training algorithm

regularization parameters [59]. Some authors refer to this problem as full model

selection [24, 62], others as the CASH problem (Combined Algorithm Selection

and Hyperparameter optimization) [65]. We will denote hyper-models as

y = f (x; θ) = f (x;α(θ), θ), (10.1)

where the model parameter vector α is an implicit function of the hyper-parameter

vector θ obtained by using a trainer for a fixed value of θ , and training data

composed of input-output pairs {xi, yi}. The participants have to devise algorithms

capable of training the hyper-parameters θ . This may require intelligent sampling

of the hyper-parameter space and splitting the available training data into subsets

for both training and evaluating the predictive power of solutions—one or multiple

times.

As an optimization problem, model selection is a bi-level optimization pro-

gram [7, 18, 19]; there is a lower objective J1 to train the parameters α of the

model, and an upper objective J2 to train the hyper-parameters θ , both optimized

simultaneously (see Fig. 10.1). As a statistics problem, model selection is a problem

of multiple testing in which error bars on performance prediction ǫ degrade with the

number of models/hyper-parameters tried or, more generally, the complexity of the

hyper-model C2(θ). A key aspect of AutoML is to avoid overfitting the upper-level

objective J2 by regularizing it, much in the same way as lower level objectives J1

are regularized.

10 Analysis of the AutoML Challenge Series 2015–2018 183

Input

Output

Hyperparameters

Parameters

(a)

Hyperparameters ()

Parameters ()

argmin Rcv[f(. ; ,)] argmin Rtr[f(. ; ,)]J
2

J
1

(b)

Fig. 10.1 Bi-level optimization. (a) Representation of a learning machine with parameters and

hyper-parameters to be adjusted. (b) De-coupling of parameter and hyper-parameter adjustment in

two levels. The upper level objective J2 optimizes the hyper-parameters θ ; the lower objective J1

optimizes the parameters α

The problem setting also lends itself to using ensemble methods, which let

several “simple” models vote to make the final decision [15, 16, 29]. In this case,

the parameters θ may be interpreted as voting weights. For simplicity we lump all

parameters in a single vector, but more elaborate structures, such as trees or graphs

can be used to define the hyper-parameter space [66].

10.2.3 Optimization of Hyper-parameters

Everyone who has worked with data has had to face some common modeling

choices: scaling, normalization, missing value imputation, variable coding (for

categorical variables), variable discretization, degree of nonlinearity and model

architecture, among others. ML has managed to reduce the number of hyper-

parameters and produce black-boxes to perform tasks such as classification and

regression [21, 40]. Still, any real-world problem requires at least some preparation

of the data before it can be fitted into an “automatic” method, hence requiring some

modeling choices. There has been much progress on end-to-end automated ML for

more complex tasks such as text, image, video, and speech processing with deep-

learning methods [6]. However, even these methods have many modeling choices

and hyper-parameters.

While producing models for a diverse range of applications has been a focus

of the ML community, little effort has been devoted to the optimization of hyper-

parameters. Common practices that include trial and error and grid search may lead

to overfitting models for small datasets or underfitting models for large datasets.

By overfitting we mean producing models that perform well on training data but

perform poorly on unseen data, i.e., models that do not generalize. By underfitting

184 I. Guyon et al.

we mean selecting too simple a model, which does not capture the complexity of

the data, and hence performs poorly both on training and test data. Despite well-

optimized off-the-shelf algorithms for optimizing parameters, end-users are still

responsible for organizing their numerical experiments to identify the best of a

number of models under consideration. Due to lack of time and resources, they

often perform model/hyper-parameter selection with ad hoc techniques. Ioannidis

and Langford [42, 47] examine fundamental, common mistakes such as poor con-

struction of training/test splits, inappropriate model complexity, hyper-parameter

selection using test sets, misuse of computational resources, and misleading test

metrics, which may invalidate an entire study. Participants must avoid these flaws

and devise systems that can be blind-tested.

An additional twist of our problem setting is that code is tested with limited

computational resources. That is, for each task an arbitrary limit on execution time

is fixed and a maximum amount of memory is provided. This places a constraint on

the participant to produce a solution in a given time, and hence to optimize the model

search from a computational point of view. In summary, participants have to jointly

address the problem of over-fitting/under-fitting and the problem of efficient search

for an optimal solution, as stated in [43]. In practice, the computational constraints

have turned out to be far more challenging to challenge participants than the problem

of overfitting. Thus the main contributions have been to devise novel efficient search

techniques with cutting-edge optimization methods.

10.2.4 Strategies of Model Search

Most practitioners use heuristics such as grid search or uniform sampling to sample

θ space, and use k-fold cross-validation as the upper-level objective J2 [20]. In

000

100 010 001

110 101 011

111

(a) Filter

100

000

010 001

110 101 011

111

(b) Wrapper

000

100 010 001

110 101 011

111

(c) Embedded

Fig. 10.2 Approaches to two-level inference. (a) Filter methods select the hyper-parameters

without adjusting the learner parameters. (No arrows indicates no parameter training.) (b)

Wrapper methods select the hyper-parameters using trained learners, treating them as black-

boxes. (c) Embedded methods use knowledge of the learner structure and/or parameters to guide

the hyper-parameter search

10 Analysis of the AutoML Challenge Series 2015–2018 185

this framework, the optimization of θ is not performed sequentially [8]. All the

parameters are sampled along a regular scheme, usually in linear or log scale. This

leads to a number of possibilities that exponentially increases with the dimension

of θ . k-fold cross-validation consists of splitting the dataset into k folds; (k − 1)

folds are used for training and the remaining fold is used for testing; eventually, the

average of the test scores obtained on the k folds is reported. Note that some ML

toolkits currently support cross-validation. There is a lack of principled guidelines

to determine the number of grid points and the value of k (with the exception of

[20]), and there is no guidance for regularizing J2, yet this simple method is a good

baseline approach.

Efforts have been made to optimize continuous hyper-parameters with bilevel

optimization methods, using either the k-fold cross-validation estimator [7, 50]

or the leave-one-out estimator as the upper-level objective J2. The leave-one-out

estimator may be efficiently computed, in closed form, as a by-product of training

only one predictor on all the training examples (e.g., virtual-leave-one-out [38]).

The method was improved by adding a regularization of J2 [17]. Gradient descent

has been used to accelerate the search, by making a local quadratic approximation

of J2 [44]. In some cases, the full J2(θ) can be computed from a few key examples

[39, 54]. Other approaches minimize an approximation or an upper bound of the

leave-one-out error, instead of its exact form [53, 68]. Nevertheless, these methods

are still limited to specific models and continuous hyper-parameters.

An early attempt at full model selection was the pattern search method that uses

k-fold cross-validation for J2. It explores the hyper-parameter space by steps of the

same magnitude, and when no change in any parameter further decreases J2, the

step size is halved and the process repeated until the steps are deemed sufficiently

small [49]. Escalante et al. [24] addressed the full model selection problem using

Particle Swarm Optimization, which optimizes a problem by having a population

of candidate solutions (particles), and moving these particles around the hyper-

parameter space using the particle’s position and velocity. k-fold cross-validation is

also used for J2. This approach retrieved the winning model in ∼76% of the cases.

Overfitting was controlled heuristically with early stopping and the proportion of

training and validation data was not optimized. Although progress has been made

in experimental design to reduce the risk of overfitting [42, 47], in particular by

splitting data in a principled way [61], to our knowledge, no one has addressed the

problem of optimally splitting data.

While regularizing the second level of inference is a recent addition to the

frequentist ML community, it has been an intrinsic part of Bayesian modeling

via the notion of hyper-prior. Some methods of multi-level optimization combine

importance sampling and Monte-Carlo Markov Chains [2]. The field of Bayesian

hyper-parameter optimization has rapidly developed and yielded promising results,

in particular by using Gaussian processes to model generalization performance [60,

63]. But Tree-structured Parzen Estimator (TPE) approaches modeling P(x|y) and

P(y) rather than modeling P(y|x) directly [9, 10] have been found to outperform

GP-based Bayesian optimization for structured optimization problems with many

hyperparameters including discrete ones [23]. The central idea of these methods is

to fit J2(θ) to a smooth function in an attempt to reduce variance and to estimate the

186 I. Guyon et al.

variance in regions of the hyper-parameter space that are under-sampled to guide

the search towards regions of high variance. These methods are inspirational and

some of the ideas can be adopted in the frequentist setting. For instance, the random-

forest-based SMAC algorithm [41], which has helped speed up both local search and

tree search algorithms by orders of magnitude on certain instance distributions, has

also been found to be very effective for the hyper-parameter optimization of machine

learning algorithms, scaling better to high dimensions and discrete input dimensions

than other algorithms [23]. We also notice that Bayesian optimization methods are

often combined with other techniques such as meta-learning and ensemble methods

[25] in order to gain advantage in some challenge settings with a time limit [32].

Some of these methods consider jointly the two-level optimization and take time

cost as a critical guidance for hyper-parameter search [45, 64].

Besides Bayesian optimization, several other families of approaches exist in the

literature and have gained much attention with the recent rise of deep learning.

Ideas borrowed from reinforcement learning have recently been used to construct

optimal neural network architectures [4, 70]. These approaches formulate the hyper-

parameter optimization problem in a reinforcement learning flavor, with for example

states being the actual hyper-parameter setting (e.g., network architecture), actions

being adding or deleting a module (e.g., a CNN layer or a pooling layer), and reward

being the validation accuracy. They can then apply off-the-shelf reinforcement

learning algorithms (e.g., RENFORCE, Q-learning, Monte-Carlo Tree Search) to

solve the problem. Other architecture search methods use evolutionary algorithms

[3, 57]. These approaches consider a set (population) of hyper-parameter settings

(individuals), modify (mutate and reproduce) and eliminate unpromising settings

according to their cross-validation score (fitness). After several generations, the

global quality of the population increases. One important common point of rein-

forcement learning and evolutionary algorithms is that they both deal with the

exploration-exploitation trade-off. Despite the impressive results, these approaches

require a huge amount of computational resources and some (especially evolution-

ary algorithms) are hard to scale. Pham et al. [56] recently proposed weight sharing

among child models to speed up the process considerably [70] while achieving

comparable results.

Note that splitting the problem of parameter fitting into two levels can be

extended to more levels, at the expense of extra complexity—i.e., need for a hier-

archy of data splits to perform multiple or nested cross-validation [22], insufficient

data to train and validate at the different levels, and increase of the computational

load.

Table 10.1 shows a typical example of multi-level parameter optimization in a

frequentist setting. We assume that we are using an ML toolbox with two learning

machines: Kridge (kernel ridge regression) and Neural (a neural network a.k.a.

“deep learning” model). At the top level we use a test procedure to assess the

performance of the final model (this is not an inference level). The top-level

inference algorithm Validation({GridCV(Kridge, MSE), GridCV(Neural, MSE)},

MSE) is decomposed into its elements recursively. Validation uses the data split

D = [DT r ,DV a] to compare the learning machines Kridge and Neural (trained

10 Analysis of the AutoML Challenge Series 2015–2018 187

Table 10.1 Typical example of multi-level inference algorithm. The top-level algorithm Val-

idation({GridCV(Kridge, MSE), GridCV(Neural, MSE)}, MSE) is decomposed into its elements

recursively. Calling the method “train” on it using data DT rV a results in a function f , then tested

with test(f,MSE,DT e). The notation [.]CV indicates that results are averages over multiple data

splits (cross-validation). NA means “not applicable”. A model family F of parameters α and

hyper-parameters θ is represented as f(θ ,α). We derogate to the usual convention of putting

hyper-parameters last, the hyper-parameters are listed in decreasing order of inference level. F ,

thought of as a bottom level algorithm, does not perform any training: train(f(θ ,α)) just returns

the function f (x; θ ,α)

Parameters

Level Algorithm Fixed Varying Optimization performed Data split

NA f All All Performance assessment

(no inference)

DT e

4 Validation None All Final algorithm

selection using

validation data

D = [DT r ,DV a]

3 GridCV Model index i θ , γ,α 10-fold CV on regularly

sampled values of θ

DT r = [Dtr ,Dva]CV

2 Kridge(θ)

Neural(θ)

i, θ γ,α Virtual LOO CV to

select regularization

parameter γ

Dtr = [D
\{d}
tr , d]CV

1 Kridge(θ , γ)

Neural(θ , γ)

i, θ , γ α Matrix inversion of

gradient descent to

compute α

Dtr

0 Kridge(θ , γ,α)

Neural(θ , γ,α)

All None NA NA

using DT r on the validation set DV a , using the mean-square error) (MSE) evaluation

function. The algorithm GridCV, a grid search with 10-fold cross-validation (CV)

MSE evaluation function, then optimizes the hyper-parameters θ . Internally, both

Kridge and Neural use virtual leave-one-out (LOO) cross-validation to adjust γ and

a classical L2 regularized risk functional to adjust α.

Borrowing from the conventional classification of feature selection methods

[11, 38, 46], model search strategies can be categorized into filters, wrappers,

and embedded methods (see Fig. 10.2). Filters are methods for narrowing down

the model space, without training the learner. Such methods include prepro-

cessing, feature construction, kernel design, architecture design, choice of prior

or regularizers, choice of noise model, and filter methods for feature selection.

Although some filters use training data, many incorporate human prior knowledge

of the task or knowledge compiled from previous tasks. Recently, [5] proposed to

apply collaborative filtering methods to model search. Wrapper methods consider

learners as a black-box capable of learning from examples and making predictions

once trained. They operate with a search algorithm in the hyper-parameter space

(grid search or stochastic search) and an evaluation function assessing the trained

learner’s performance (cross-validation error or Bayesian evidence). Embedded

methods are similar to wrappers, but they exploit the knowledge of the machine

188 I. Guyon et al.

learning algorithm to make the search more efficient. For instance, some embedded

methods compute the leave-one-out solution in a closed form, without leaving

anything out, i.e., by performing a single model training on all the training data (e.g.,

[38]). Other embedded methods jointly optimize parameters and hyper-parameters

[44, 50, 51].

In summary, many authors focus only on the efficiency of search, ignoring the

problem of overfitting the second level objective J2, which is often chosen to be

k-fold cross-validation with an arbitrary value for k. Bayesian methods introduce

techniques of overfitting avoidance via the notion of hyper-priors, but at the expense

of making assumptions on how the data were generated and without providing

guarantees of performance. In all the prior approaches to full model selection

we know of, there is no attempt to treat the problem as the optimization of a

regularized functional J2 with respect to both (1) modeling choices and (2) data

split. Much remains to be done to jointly address statistical and computational

issues. The AutoML challenge series offers benchmarks to compare and contrast

methods addressing these problems, free of the inventor/evaluator bias.

10.3 Data

We gathered a first pool of 70 datasets during the summer 2014 with the help

of numerous collaborators and ended up selecting 30 datasets for the 2015/2016

challenge (see Table 10.2 and the online appendix), chosen to illustrate a wide

variety of domains of applications: biology and medicine, ecology, energy and

sustainability management, image, text, audio, speech, video and other sensor data

processing, internet social media management and advertising, market analysis and

financial prediction. We preprocessed data to obtain feature representations (i.e.,

each example consists of a fixed number of numerical coefficients). Text, speech,

and video processing tasks were included in the challenge, but not in their native

variable-length representations.

For the 2018 challenge, three datasets from the first pool (but unused in the first

challenge) were selected and seven new datasets collected by the new organizers

and sponsors were added (see Table 10.3 and the online appendix).

Some datasets were obtained from public sources, but they were reformatted

into new representations to conceal their identity, except for the final round of the

2015/2016 challenge and the final phase of the 2018 challenge, which included

completely new data.

In the 2015/2016 challenge, data difficulty progressively increased from round

to round. Round 0 introduced five (public) datasets from previous challenges

illustrating the various difficulties encountered in subsequent rounds:

Novice Binary classification problems only. No missing data; no categorical

features; moderate number of features (<2,000); balanced classes. Challenge

10 Analysis of the AutoML Challenge Series 2015–2018 189

T
a
b

le
1
0
.2

D
a
ta

se
ts

o
f

th
e

2
0
1
5
/2

0
1
6

A
u

to
M

L
ch

a
ll

en
g
e.

C
n

u
m

b
er

o
f

cl
as

se
s,

C
b
a
l
cl

as
s

b
al

an
ce

,
S
p
a
rs

e
sp

ar
si

ty
,
M

is
s

fr
ac

ti
o

n
o
f

m
is

si
n

g
v
al

u
es

,

C
a
t

ca
te

g
o

ri
ca

l
v
ar

ia
b

le
s,

Ir
r

fr
ac

ti
o

n
o
f

ir
re

le
v
an

t
v
ar

ia
b

le
s,

P
te

,
P

va
,
P

tr
n

u
m

b
er

o
f

ex
am

p
le

s
o
f

th
e

te
st

,
v
al

id
at

io
n

,
an

d
tr

ai
n

in
g

se
ts

,
re

sp
ec

ti
v
el

y,
N

n
u
m

b
er

o
f

fe
at

u
re

s,
P

tr
/N

as
p

ec
t

ra
ti

o
o

f
th

e
d
at

as
et

R
n
d

D
A

T
A

S
E

T
T
a
sk

M
et

ri
c

T
im

e
C

C
b
a
l

S
p
a
rs

e
M

is
s

C
a
t

Ir
r

P
te

P
v
a

P
tr

N
P

tr
/
N

0
1

A
D

U
L
T

m
u
lt
il
a
b
el

F
1

3
0
0

3
1

0
.1

6
0
.0

1
1

1
0
.5

9
7
6
8

4
8
8
4

3
4
,1

9
0

2
4

1
4
2
4
.5

8
0

2
C

A
D

A
T
A

re
g
re

ss
io

n
R

2
2
0
0

0
N

a
N

0
0

0
0
.5

1
0
,6

4
0

5
0
0
0

5
0
0
0

1
6

3
1
2
.5

0
3

D
IG

IT
S

m
u
lt
ic

la
ss

B
A

C
3
0
0

1
0

1
0
.4

2
0

0
0
.5

3
5
,0

0
0

2
0
,0

0
0

1
5
,0

0
0

1
5
6
8

9
.5

7
0

4
D

O
R

O
T

H
E

A
b
in

a
ry

A
U

C
1
0
0

2
0
.4

6
0
.9

9
0

0
0
.5

8
0
0

3
5
0

8
0
0

1
0
0
,0

0
0

0
.0

1
0

5
N

E
W

S
G

R
O

U
P

S
m

u
lt
ic

la
ss

P
A

C
3
0
0

2
0

1
1

0
0

0
3
7
5
5

1
8
7
7

1
3
,1

4
2

6
1
,1

8
8

0
.2

1
1

1
C

H
R

IS
T

IN
E

b
in

a
ry

B
A

C
1
2
0
0

2
1

0
.0

7
1

0
0

0
.5

2
0
8
4

8
3
4

5
4
1
8

1
6
3
6

3
.3

1
1

2
J
A

S
M

IN
E

b
in

a
ry

B
A

C
1
2
0
0

2
1

0
.7

8
0

0
0
.5

1
7
5
6

5
2
6

2
9
8
4

1
4
4

2
0
.7

2
1

3
M

A
D

E
L
IN

E
b
in

a
ry

B
A

C
1
2
0
0

2
1

1
.2

e-
0
6

0
0

0
.9

2
3
2
4
0

1
0
8
0

3
1
4
0

2
5
9

1
2
.1

2
1

4
P

H
IL

IP
P

IN
E

b
in

a
ry

B
A

C
1
2
0
0

2
1

0
.0

0
1
2

0
0

0
.5

4
6
6
4

1
1
6
6

5
8
3
2

3
0
8

1
8
.9

4
1

5
S
Y

L
V

IN
E

b
in

a
ry

B
A

C
1
2
0
0

2
1

0
.0

1
0

0
0
.5

1
0
,2

4
4

5
1
2
4

5
1
2
4

2
0

2
5
6
.2

2
1

A
L
B

E
R
T

b
in

a
ry

F
1

1
2
0
0

2
1

0
.0

4
9

0
.1

4
1

0
.5

5
1
,0

4
8

2
5
,5

2
6

4
2
5
,2

4
0

7
8

5
4
5
1
.7

9
2

2
D

IL
B

E
R
T

m
u
lt
ic

la
ss

P
A

C
1
2
0
0

5
1

0
0

0
0
.1

6
9
7
2
0

4
8
6
0

1
0
,0

0
0

2
0
0
0

5
2

3
F
A

B
E

R
T

m
u
lt
ic

la
ss

P
A

C
1
2
0
0

7
0
.9

6
0
.9

9
0

0
0
.5

2
3
5
4

1
1
7
7

8
2
3
7

8
0
0

1
0
.3

2
4

R
O

B
E

R
T

m
u
lt
ic

la
ss

B
A

C
1
2
0
0

1
0

1
0
.0

1
0

0
0

5
0
0
0

2
0
0
0

1
0
,0

0
0

7
2
0
0

1
.3

9
2

5
V

O
L
K

E
R
T

m
u
lt
ic

la
ss

P
A

C
1
2
0
0

1
0

0
.8

9
0
.3

4
0

0
0

7
0
0
0

3
5
0
0

5
8
,3

1
0

1
8
0

3
2
3
.9

4
3

1
A

L
E

X
IS

m
u
lt
il
a
b
el

A
U

C
1
2
0
0

1
8

0
.9

2
0
.9

8
0

0
0

1
5
,5

6
9

7
7
8
4

5
4
,4

9
1

5
0
0
0

1
0
.9

3
2

D
IO

N
IS

m
u
lt
ic

la
ss

B
A

C
1
2
0
0

3
5
5

1
0
.1

1
0

0
0

1
2
,0

0
0

6
0
0
0

4
1
6
,1

8
8

6
0

6
9
3
6
.4

7
3

3
G

R
IG

O
R

IS
m

u
lt
il
a
b
el

A
U

C
1
2
0
0

9
1

0
.8

7
1

0
0

0
9
9
2
0

6
4
8
6

4
5
,4

0
0

3
0
1
,5

6
1

0
.1

5
3

4
J
A

N
N

IS
m

u
lt
ic

la
ss

B
A

C
1
2
0
0

4
0
.8

7
.3

e-
0
5

0
0

0
.5

9
8
5
1

4
9
2
6

8
3
,7

3
3

5
4

1
5
5
0
.6

1
3

5
W

A
L
L
IS

m
u
lt
ic

la
ss

A
U

C
1
2
0
0

1
1

0
.9

1
1

0
0

0
8
1
9
6

4
0
9
8

1
0
,0

0
0

1
9
3
,7

3
1

0
.0

5
4

1
E

V
IT

A
b
in

a
ry

A
U

C
1
2
0
0

2
0
.2

1
0
.9

1
0

0
0
.4

6
1
4
,0

0
0

8
0
0
0

2
0
,0

0
0

3
0
0
0

6
.6

7
4

2
F
L
O

R
A

re
g
re

ss
io

n
A

B
S

1
2
0
0

0
N

a
N

0
.9

9
0

0
0
.2

5
2
0
0
0

2
0
0
0

1
5
,0

0
0

2
0
0
,0

0
0

0
.0

8
4

3
H

E
L
E

N
A

m
u
lt
ic

la
ss

B
A

C
1
2
0
0

1
0
0

0
.9

6
e-

0
5

0
0

0
1
8
,6

2
8

9
3
1
4

6
5
,1

9
6

2
7

2
4
1
4
.6

7
4

4
T
A

N
IA

m
u
lt
il
a
b
el

P
A

C
1
2
0
0

9
5

0
.7

9
1

0
0

0
4
4
,6

3
5

2
2
,5

1
4

1
5
7
,5

9
9

4
7
,2

3
6

3
.3

4
4

5
Y

O
L
A

N
D

A
re

g
re

ss
io

n
R

2
1
2
0
0

0
N

a
N

1
e-

0
7

0
0

0
.1

3
0
,0

0
0

3
0
,0

0
0

4
0
0
,0

0
0

1
0
0

4
0
0
0

5
1

A
R
T

U
R

O
m

u
lt
ic

la
ss

F
1

1
2
0
0

2
0

1
0
.8

2
0

0
0
.5

2
7
3
3

1
3
6
6

9
5
6
5

4
0
0

2
3
.9

1
5

2
C

A
R

L
O

b
in

a
ry

P
A

C
1
2
0
0

2
0
.0

9
7

0
.0

0
2
7

0
0

0
.5

1
0
,0

0
0

1
0
,0

0
0

5
0
,0

0
0

1
0
7
0

4
6
.7

3
5

3
M

A
R

C
O

m
u
lt
il
a
b
el

A
U

C
1
2
0
0

2
4

0
.7

6
0
.9

9
0

0
0

2
0
,4

8
2

2
0
,4

8
2

1
6
3
,8

6
0

1
5
,2

9
9

1
0
.7

1
5

4
P
A

B
L
O

re
g
re

ss
io

n
A

B
S

1
2
0
0

0
N

a
N

0
.1

1
0

0
0
.5

2
3
,5

6
5

2
3
,5

6
5

1
8
8
,5

2
4

1
2
0

1
5
7
1
.0

3
5

5
W

A
L
D

O
m

u
lt
ic

la
ss

B
A

C
1
2
0
0

4
1

0
.0

2
9

0
1

0
.5

2
4
3
0

2
4
3
0

1
9
,4

3
9

2
7
0

7
2

190 I. Guyon et al.

Table 10.3 Datasets of the 2018 AutoML challenge. All tasks are binary classification problems.

The metric is the AUC for all tasks. The time budget is also the same for all datasets (1200 s). Phase

1 was the development phase and phase 2 the final “blind test” phase

Phase DATASET Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

1 1 ADA 1 0.67 0 0 0 41,471 415 4147 48 86.39
1 2 ARCENE 0.22 0.54 0 0 0 700 100 100 10,000 0.01
1 3 GINA 1 0.03 0.31 0 0 31,532 315 3153 970 3.25
1 4 GUILLERMO 0.33 0.53 0 0 0 5000 5000 20,000 4296 4.65
1 5 RL 0.10 0 0.11 1 0 24,803 0 31,406 22 1427.5
2 1 PM 0.01 0 0.11 1 0 20,000 0 29,964 89 224.71
2 2 RH 0.04 0.41 0 1 0 28,544 0 31,498 76 414.44
2 3 RI 0.02 0.09 0.26 1 0 26,744 0 30,562 113 270.46
2 4 RICCARDO 0.67 0.51 0 0 0 5000 5000 20,000 4296 4.65
2 5 RM 0.001 0 0.11 1 0 26,961 0 28,278 89 317.73

lies in dealing with sparse and full matrices, presence of irrelevant variables, and

various P tr/N .

Intermediate Binary and multi-class classification problems. Challenge lies in

dealing with unbalanced classes, number of classes, missing values, categorical

variables, and up to 7,000 features.

Advanced Binary, multi-class, and multi-label classification problems. Challenge

lies in dealing with up to 300,000 features.

Expert Classification and regression problems. Challenge lies in dealing with the

entire range of data complexity.

Master Classification and regression problems of all difficulties. Challenge lies

in learning from completely new datasets.

The datasets of the 2018 challenge were all binary classification problems.

Validation partitions were not used because of the design of this challenge, even

when they were available for some tasks. The three reused datasets had similar

difficulty as those of rounds 1 and 2 of the 2015/2016 challenge. However, the seven

new data sets introduced difficulties that were not present in the former challenge.

Most notably an extreme class imbalance, presence of categorical features and a

temporal dependency among instances that could be exploited by participants to

develop their methods.8 The datasets from both challenges are downloadable from

http://automl.chalearn.org/data.

10.4 Challenge Protocol

In this section, we describe design choices we made to ensure the thoroughness and

fairness of the evaluation. As previously indicated, we focus on supervised learning

tasks (classification and regression problems), without any human intervention,

8In RL, PM, RH, RI and RM datasets instances were chronologically sorted, this information was

made available to participants and could be used for developing their methods.

http://automl.chalearn.org/data

10 Analysis of the AutoML Challenge Series 2015–2018 191

within given time and computer resource constraints (Sect. 10.4.1), and given a

particular metric (Sect. 10.4.2), which varies from dataset to dataset. During the

challenges, the identity and description of the datasets is concealed (except in the

very first round or phase where sample data is distributed) to avoid the use of domain

knowledge and to push participants to design fully automated ML solutions. In the

2015/2016 AutoML challenge, the datasets were introduced in a series of rounds

(Sect. 10.4.3), alternating periods of code development (Tweakathon phases) and

blind tests of code without human intervention (AutoML phases). Either results or

code could be submitted during development phases, but code had to be submitted

to be part of the AutoML “blind test” ranking. In the 2018 edition of the AutoML

challenge, the protocol was simplified. We had only one round in two phases: a

development phase in which 5 datasets were released for practice purposes, and a

final “blind test” phase with 5 new datasets that were never used before.

10.4.1 Time Budget and Computational Resources

The Codalab platform provides computational resources shared by all participants.

We used up to 10 compute workers processing in parallel the queue of submissions

made by participants. Each compute worker was equipped with 8 cores x86_64.

Memory was increased from 24 to 56 GB after round 3 of the 2015/2016

AutoML challenge. For the 2018 AutoML challenge computing resources were

reduced, as we wanted to motivate the development of more efficient yet effective

AutoML solutions. We used 6 compute workers processing in parallel the queue of

submissions. Each compute worker was equipped with 2 cores x86_64 and 8 GB of

memory.

To ensure fairness, when a code submission was evaluated, a compute worker

was dedicated to processing that submission only, and its execution time was limited

to a given time budget (which may vary from dataset to dataset). The time budget

was provided to the participants with each dataset in its info file. It was generally set

to 1200 s (20 min) per dataset, for practical reasons, except in the first phase of the

first round. However, the participants did not know this ahead of time and therefore

their code had to be capable to manage a given time budget. The participants who

submitted results instead of code were not constrained by the time budget since

their code was run on their own platform. This was potentially advantageous for

entries counting towards the Final phases (immediately following a Tweakathon).

Participants wishing to also enter the AutoML (blind testing) phases, which required

submitting code, could submit both results and code (simultaneously). When results

were submitted, they were used as entries in the on-going phase. They did not need

to be produced by the submitted code; i.e., if a participant did not want to share

personal code, he/she could submit the sample code provided by the organizers

together with his/her results. The code was automatically forwarded to the AutoML

phases for “blind testing”. In AutoML phases, result submission was not possible.

192 I. Guyon et al.

The participants were encouraged to save and submit intermediate results so we

could draw learning curves. This was not exploited during the challenge. But we

study learning curves in this chapter to evaluate the capabilities of algorithms to

quickly attain good performances.

10.4.2 Scoring Metrics

The scores are computed by comparing submitted predictions to reference target

values. For each sample i, i = 1 : P (where P is the size of the validation set or

of the test set), the target value is a continuous numeric coefficient yi for regression

problems, a binary indicator in {0, 1} for two-class problems, or a vector of binary

indicators [yil] in {0, 1} for multi-class or multi-label classification problems (one

per class l). The participants had to submit prediction values matching as closely

as possible the target values, in the form of a continuous numeric coefficient qi for

regression problems and a vector of numeric coefficients [qil] in the range [0, 1] for

multi-class or multi-label classification problems (one per class l).

The provided starting kit contains an implementation in Python of all scoring

metrics used to evaluate the entries. Each dataset has its own scoring criterion

specified in its info file. All scores are normalized such that the expected value

of the score for a random prediction, based on class prior probabilities, is 0

and the optimal score is 1. Multi-label problems are treated as multiple binary

classification problems and are evaluated using the average of the scores of each

binary classification subproblem.

We first define the notation 〈·〉 for the average over all samples P indexed by i.

That is,

〈yi〉 = (1/P)

P
∑

i=1

(yi). (10.2)

The score metrics are defined as follows:

R2 The coefficient of determination is used for regression problems only. The

metric is based on the mean squared error (MSE) and the variance (VAR), and

computed as

R2 = 1 − MSE/VAR, (10.3)

where MSE = 〈(yi − qi)
2〉 and VAR = 〈(yi − m)2〉, with m = 〈yi〉.

ABS This coefficient is similar to R2 but based on the mean absolute error (MAE)

and the mean absolute deviation (MAD), and computed as

ABS = 1 − MAE/MAD, (10.4)

10 Analysis of the AutoML Challenge Series 2015–2018 193

where MAE = 〈abs(yi − qi)〉 and MAD = 〈abs(yi − m)〉.

BAC Balanced accuracy is the average of class-wise accuracy for classification

problems—and the average of sensitivity (true positive rate) and specificity (true

negative rate) for binary classification:

BAC =

⎧

⎪

⎨

⎪

⎩

1
2
[TP

P
+ TN

N
], for binary

1
C

C
∑

i=1

TPi

Ni
, for multi-class

(10.5)

where P (N) is the number of positive (negative) examples, TP (TN) is the number

of well classified positive (negative) examples, C is the number of classes, TPi is

the number of well classified examples of class i and Ni the number of examples of

class i.

For binary classification problems, the class-wise accuracy is the fraction of

correct class predictions when qi is thresholded at 0.5, for each class. For multi-

label problems, the class-wise accuracy is averaged over all classes. For multi-class

problems, the predictions are binarized by selecting the class with maximum

prediction value arg maxl qil before computing the class-wise accuracy.

We normalize the metric as follows:

|BAC| = (BAC − R)/(1 − R), (10.6)

where R is the expected value of BAC for random predictions (i.e., R = 0.5 for

binary classification and R = (1/C) for C-class problems).

AUC The area under the ROC curve is used for ranking and binary classification

problems. The ROC curve is the curve of sensitivity vs. 1-specificity at various

prediction thresholds. The AUC and BAC values are the same for binary predictions.

The AUC is calculated for each class separately before averaging over all classes.

We normalize the metric as

|AUC| = 2AUC − 1. (10.7)

F1 score The harmonic mean of precision and recall is computed as

F1 = 2 ∗ (precision ∗ recall)/(precision + recall), (10.8)

precision = true positive/(true positive + false positive) (10.9)

recall = true positive/(true positive + false negative) (10.10)

Prediction thresholding and class averaging is handled similarly as in BAC. We

normalize the metric as follows:

194 I. Guyon et al.

|F1| = (F1 − R)/(1 − R), (10.11)

where R is the expected value of F1 for random predictions (see BAC).

PAC Probabilistic accuracy is based on the cross-entropy (or log loss) and com-

puted as

PAC = exp(−CE), (10.12)

CE =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

average
∑

l log(qil), for multi-class

−〈yi log(qi),

+(1 − yi) log(1 − qi)〉, for binary and multi-label

(10.13)

Class averaging is performed after taking the exponential in the multi-label case.

We normalize the metric as follows:

|PAC| = (PAC − R)/(1 − R), (10.14)

where R is the score obtained using qi = 〈yi〉 or qil = 〈yil〉 (i.e., using as predictions

the fraction of positive class examples, as an estimate of the prior probability).

Note that the normalization of R2, ABS, and PAC uses the average target value

qi = 〈yi〉 or qil = 〈yil〉. In contrast, the normalization of BAC, AUC, and F1 uses a

random prediction of one of the classes with uniform probability.

Only R2 and ABS are meaningful for regression; we compute the other metrics

for completeness by replacing the target values with binary values after thresholding

them in the mid-range.

10.4.3 Rounds and Phases in the 2015/2016 Challenge

The 2015/2016 challenge was run in multiple phases grouped in six rounds. Round

0 (Preparation) was a practice round using publicly available datasets. It was

followed by five rounds of progressive difficulty (Novice, Intermediate, Advanced,

Expert, and Master). Except for rounds 0 and 5, all rounds included three phases

that alternated AutoML and Tweakathons contests. These phases are described in

Table 10.4.

Submissions were made in Tweakathon phases only. The results of the latest

submission were shown on the leaderboard and such submission automatically

migrated to the following phase. In this way, the code of participants who abandoned

before the end of the challenge had a chance to be tested in subsequent rounds and

phases. New participants could enter at any time. Prizes were awarded in phases

marked with a * during which there was no submission. To participate in phase

AutoML[n], code had to be submitted in Tweakathon[n-1].

10 Analysis of the AutoML Challenge Series 2015–2018 195

Table 10.4 Phases of round n in the 2015/2016 challenge. For each dataset, one labeled training

set is provided and two unlabeled sets (validation set and test set) are provided for testing

Phase in round

[n] Goal Duration Submissions Data

Leader-board

scores Prizes

* AutoML[n] Blind Short NONE New datasets, Test Yes
test (code not set
of code migrated) downloadable results

Tweakathon[n] Manual Months Code and/ Datasets Validation No
tweaking or results downloadable set results

* Final[n] Results of Short NONE NA Test Yes
Tweakathon (results set
revealed migrated) results

In order to encourage participants to try GPUs and deep learning, a GPU track

sponsored by NVIDIA was included in Round 4.

To participate in the Final[n], code or results had to be submitted in

Tweakathon[n]. If both code and (well-formatted) results were submitted, the

results were used for scoring rather than rerunning the code in Tweakathon[n]

and Final[n]. The code was executed when results were unavailable or not well

formatted. Thus, there was no disadvantage in submitting both results and code. If

a participant submitted both results and code, different methods could be used to

enter the Tweakathon/Final phases and the AutoML phases. Submissions were made

only during Tweakathons, with a maximum of five submissions per day. Immediate

feedback was provided on the leaderboard on validation data. The participants were

ranked on the basis of test performance during the Final and AutoML phases.

We provided baseline software using the ML library scikit-learn [55]. It uses

ensemble methods, which improve over time by adding more base learners. Other

than the number of base learners, the default hyper-parameter settings were used.

The participants were not obliged to use the Python language nor the main Python

script we gave as an example. However, most participants found it convenient to

use the main python script, which managed the sparse format, the any-time learning

settings and the scoring metrics. Many limited themselves to search for the best

model in the scikit-learn library. This shows the importance of providing a good

starting kit, but also the danger of biasing results towards particular solutions.

10.4.4 Phases in the 2018 Challenge

The 2015/2016 AutoML challenge was very long and few teams participated in

all rounds. Further, even though there was no obligation to participate in previous

rounds to enter new rounds, new potential participants felt they would be at a

disadvantage. Hence, we believe it is preferable to organize recurrent yearly events,

each with their own workshop and publication opportunity. This provides a good

balance between competition and collaboration.

196 I. Guyon et al.

In 2018, we organized a single round of AutoML competition in two phases. In

this simplified protocol, the participants could practice on five datasets during the

first (development) phase, by either submitting code or results. Their performances

were revealed immediately, as they became available, on the leaderboard.

The last submission of the development phase was automatically forwarded to

the second phase: the AutoML “blind test” phase. In this second phase, which was

the only one counting towards the prizes, the participants’ code was automatically

evaluated on five new datasets on the Codalab platform. The datasets were not

revealed to the participants. Hence, submissions that did not include code capable of

being trained and tested automatically were not ranked in the final phase and could

not compete towards the prizes.

We provided the same starting kit as in the AutoML 2015/2016 challenge, but

the participants also had access to the code of the winners of the previous challenge.

10.5 Results

This section provides a brief description of the results obtained during both

challenges, explains the methods used by the participants and their elements of

novelty, and provides the analysis of post-challenge experiments conducted to

answer specific questions on the effectiveness of model search techniques.

10.5.1 Scores Obtained in the 2015/2016 Challenge

The 2015/2016 challenge lasted 18 months (December 8, 2014 to May 1, 2016). By

the end of the challenge, practical solutions were obtained and open-sourced, such

as the solution of the winners [25].

Table 10.5 presents the results on the test set in the AutoML phases (blind testing)

and the Final phases (one time testing on the test set revealed at the end of the

Tweakathon phases). Ties were broken by giving preference to the participant who

submitted first. The table only reports the results of the top-ranking participants.

We also show in Fig. 10.3a comparison of the leaderboard performances of all

participants. We plot in Fig. 10.3a the Tweakathon performances on the final test

set vs. those on the validation set, which reveals no significant overfitting to the

validation set, except for a few outliers. In Fig. 10.3b we report the performance in

AutoML result (blind testing) vs. Tweakathon final test results (manual adjustments

possible). We see that many entries were made in phase 1 (binary classification) and

then participation declined as the tasks became harder. Some participants put a lot of

effort in Tweakathons and far exceeded their AutoML performances (e.g. Djajetic

and AAD Freiburg).

There is still room for improvement by manual tweaking and/or additional com-

putational resources, as revealed by the significant differences remaining between

Tweakathon and AutoML (blind testing) results (Table 10.5 and Fig. 10.3b). In

10 Analysis of the AutoML Challenge Series 2015–2018 197

Table 10.5 Results of the 2015/2016 challenge winners. < R > is the average rank over all five

data sets of the round and it was used to rank the participants. < S > is the average score over the

five data sets of the round. UP is the percent increase in performance between the average perfor-

mance of the winners in the AutoML phase and the Final phase of the same round. The GPU track

was run in round 4. Team names are abbreviated as follows: aad aad_freiburg, djaj djajetic, marc

marc.boulle, tadej tadejs, abhi abhishek4, ideal ideal.intel.analytics, mat matthias.vonrohr, lisheng

lise_sun, asml amsl.intel.com, jlr44 backstreet.bayes, post postech.mlg_exbrain, ref reference

AutoML Final

Rnd Ended Winners < R > < S > Ended Winners < R > < S > UP (%)
1. ideal 1.40 0.8159

0 NA NA NA NA 02/14/15 2. abhi 3.60 0.7764 NA
3. aad 4.00 0.7714

1. aad 2.80 0.6401 1. aad 2.20 0.7479
1 02/15/15 2. jrl44 3.80 0.6226 06/14/15 2. ideal 3.20 0.7324 15

3. tadej 4.20 0.6456 3. amsl 4.60 0.7158
1. jrl44 1.80 0.4320 1. ideal 2.00 0.5180

2 06/15/15 2. aad 3.40 0.3529 11/14/15 2. djaj 2.20 0.5142 35
3. mat 4.40 0.3449 3. aad 3.20 0.4977
1. djaj 2.40 0.0901 1. aad 1.80 0.8071

3 11/15/15 2. NA NA NA 02/19/16 2. djaj 2.00 0.7912 481
3. NA NA NA 3. ideal 3.80 0.7547
1. aad 2.20 0.3881 1. aad 1.60 0.5238

4 02/20/16 2. djaj 2.20 0.3841 05/1/16 2. ideal 3.60 0.4998 31
3. marc 2.60 0.3815 3. abhi 5.40 0.4911

G 1. abhi 5.60 0.4913
P NA NA NA NA 05/1/16 2. djaj 6.20 0.4900 NA
U 3. aad 6.20 0.4884

1. aad 1.60 0.5282
5 05/1/16 2. djaj 2.60 0.5379 NA NA NA NA NA

3. post 4.60 0.4150

Fig. 10.3 Performances of all participants in the 2015/2016 challenge. We show the last entry

of all participants in all phases of the 2015/2016 challenge on all datasets from the competition

leaderboards. The symbols are color coded by round, as in Table 10.5. (a) Overfitting in

Tweakathons? We plot the performance on the final test set vs. the performance on the validation

set. The validation performances were visible to the participants on the leaderboard while they

were tuning their models. The final test set performances were only revealed at the end of the

Tweakathon. Except for a few outliers, most participants did not overfit the leaderboard. (b)

Gap between AutoML and Tweakathons? We plot the Tweakathons vs. AutoML performance

to visualize improvements obtained by manual tweaking and additional computational resources

available in Tweakathons. Points above the diagonal indicate such improvements

198 I. Guyon et al.

Round 3, all but one participant failed to turn in working solutions during blind

testing, because of the introduction of sparse datasets. Fortunately, the participants

recovered, and, by the end of the challenge, several submissions were capable of

returning solutions on all the datasets of the challenge. But learning schemas can

still be optimized because, even discarding Round 3, there is a 15–35% performance

gap between AutoML phases (blind testing with computational constraints) and

Tweakathon phases (human intervention and additional compute power). The GPU

track offered (in round 4 only) a platform for trying Deep Learning methods.

This allowed the participants to demonstrate that, given additional compute power,

deep learning methods were competitive with the best solutions of the CPU track.

However, no Deep Learning method was competitive with the limited compute

power and time budget offered in the CPU track.

10.5.2 Scores Obtained in the 2018 Challenge

The 2018 challenge lasted 4 months (November 30, 2017 to March 31, 2018). As

in the previous challenge, top-ranked solutions were obtained and open sourced.

Table 10.6 shows the results of both phases of the 2018 challenge. As a reminder,

this challenge had a feedback phase and a blind test phase, the performances of the

winners in each phase are reported.

Performance in this challenge was slightly lower than that observed in the

previous edition. This was due to the difficulty of the tasks (see below) and the fact

that data sets in the feedback phase included three deceiving datasets (associated to

tasks from previous challenges, but not necessarily similar to the data sets used in

the blind test phase) out of five. We decided to proceed this way to emulate a realistic

AutoML setting. Although harder, several teams succeeded at returning submissions

performing better than chance.

The winner of the challenge was the same team that won the 2015/2016 AutoML

challenge: AAD Freiburg [28]. The 2018 challenge helped to incrementally improve

the solution devised by this team in the previous challenge. Interestingly, the second-

placed team in the challenge proposed a solution that is similar in spirit to that of

the winning team. For this challenge, there was a triple tie in the third place, prizes

Table 10.6 Results of the 2018 challenge winners. Each phase was run on five different datasets.

We show the winners of the AutoML (blind test) phase and for comparison their performances in

the Feedback phase. The full tables can be found at https://competitions.codalab.org/competitions/

17767

2. AutoML phase 1. Feedback phase

Ended Winners < R > < S > Ended Performance < R > < S >

1. aad freiburg 2.80 0.4341 aad freiburg 9.0 0.7422
2. narnars0 3.80 0.4180 narnars0 4.40 0.7324

03/31/18 3. wlWangl 5.40 0.3857 03/12/18 wlWangl 4.40 0.8029
3. thanhdng 5.40 0.3874 thanhdng 14.0 0.6845
3. Malik 5.40 0.3863 Malik 13.8 0.7116

https://competitions.codalab.org/competitions/17767
https://competitions.codalab.org/competitions/17767

10 Analysis of the AutoML Challenge Series 2015–2018 199

Fig. 10.4 Distribution of performance on the datasets of the 2015/2016 challenge (violin

plots). We show for each dataset the performances of participants at the end of AutoML and

Tweakathon phases, as revealed on the leaderboard. The median and quartiles are represented by

horizontal notches. The distribution profile (as fitted with a kernel method) and its mirror image

are represented vertically by the gray shaded area. We show in red the median performance over

all datasets and the corresponding quartiles. (a) AutoML (blind testing). The first 5 datasets were

provided for development purpose only and were not used for blind testing in an AutoML phase.

In round 3, the code of many participants failed because of computational limits. (b) Tweakathon

(manual tweaking). The last five datasets were only used for final blind testing and the data were

never revealed for a Tweakathon. Round 3 was not particularly difficult with additional compute

power and memory

were split among the tied teams. Among the winners, two teams used the starting

kit. Most of the other teams used either the starting kit or the solution open sourced

by the AAD Freiburg team in the 2015/2016 challenge.

10.5.3 Difficulty of Datasets/Tasks

In this section, we assess dataset difficulty, or rather task difficulty since the par-

ticipants had to solve prediction problems for given datasets, performance metrics,

and computational time constraints. The tasks of the challenge presented a variety

of difficulties, but those were not equally represented (Tables 10.2 and 10.3):

• Categorical variables and missing data. Few datasets had categorical variables

in the 2015/2016 challenge (ADULT, ALBERT, and WALDO), and not very

many variables were categorical in those datasets. Likewise, very few datasets

had missing values (ADULT and ALBERT) and those included only a few

missing values. So neither categorical variables nor missing data presented a

real difficulty in this challenge, though ALBERT turned out to be one of the

most difficult datasets because it was also one of the largest ones. This situation

changed drastically for the 2018 challenge where five out of the ten datasets

included categorical variables (RL, PM, RI, RH and RM) and missing values

200 I. Guyon et al.

Fig. 10.5 Difficulty of tasks in the 2015/2016 challenge. We consider two indicators of task

difficulty (dataset, metric, and time budget are factored into the task): intrinsic difficulty (estimated

by the performance of the winners) and modeling difficulty (difference between the performance

of the winner and a baseline method, here Selective Naive Bayes (SNB)). The best tasks should

have a relatively low intrinsic difficulty and a high modeling difficulty to separate participants well

(GINA, PM, RL, RI and RM). These were among the main aspects that caused

the low performance of most methods in the blind test phase.

• Large number of classes. Only one dataset had a large number of classes

(DIONIS with 355 classes). This dataset turned out to be difficult for participants,

particularly because it is also large and has unbalanced classes. However, datasets

with large number of classes are not well represented in this challenge. HELENA,

which has the second largest number of classes (100 classes), did not stand out

as a particularly difficult dataset. However, in general, multi-class problems were

found to be more difficult than binary classification problems.

• Regression. We had only four regression problems: CADATA, FLORA,

YOLANDA, PABLO.

• Sparse data. A significant number of datasets had sparse data (DOROTHEA,

FABERT, ALEXIS, WALLIS, GRIGORIS, EVITA, FLORA, TANIA, ARTURO,

MARCO). Several of them turned out to be difficult, particularly ALEXIS,

WALLIS, and GRIGORIS, which are large datasets in sparse format, which

cause memory problems when they were introduced in round 3 of the 2015/2016

challenge. We later increased the amount of memory on the servers and similar

datasets introduced in later phases caused less difficulty.

• Large datasets. We expected the ratio of the number N of features over the

number Ptr of training examples to be a particular difficulty (because of the risk

10 Analysis of the AutoML Challenge Series 2015–2018 201

Fig. 10.6 Modeling Difficulty vs. intrinsic difficulty. For the AutoML phases of the 2015/2016

challenge, we plot an indicator of modeling difficulty vs. and indicator of intrinsic difficulty

of datasets (leaderboard highest score). (a) Modeling difficulty is estimated by the score of the

best untuned model (over KNN, NaiveBayes, RandomForest and SGD (LINEAR)). (b) Modeling

difficulty is estimated by the score of the Selective Naive Bayes (SNB) model. In all cases,

higher scores are better and negative/NaN scores are replaced by zero. The horizontal and vertical

separation lines represent the medians. The lower right quadrant represents the datasets with low

intrinsic difficulty and high modeling difficulty: those are the best datasets for benchmarking

purposes

Fig. 10.7 Meta-features most predictive of dataset intrinsic difficulty (2015/2016 challenge

data). Meta-feature GINI importances are computed by a random forest regressor, trained to

predict the highest participant leaderboard score using meta-features of datasets. Description of

these meta-features can be found in Table 1 of the supplementary material of [25]. Blue and red

colors respectively correspond to positive and negative correlations (Pearson correlations between

meta features and score medians)

202 I. Guyon et al.

of overfitting), but modern machine learning algorithm are robust against over-

fitting. The main difficulty was rather the PRODUCT N ∗ Ptr . Most participants

attempted to load the entire dataset in memory and convert sparse matrices into

full matrices. This took very long and then caused loss in performances or pro-

gram failures. Large datasets with N ∗Ptr > 20.106 include ALBERT, ALEXIS,

DIONIS, GRIGORIS, WALLIS, EVITA, FLORA, TANIA, MARCO, GINA,

GUILLERMO, PM, RH, RI, RICCARDO, RM. Those overlap significantly with

the datasets with sparse data (in bold). For the 2018 challenge, all data sets in

the final phase exceeded this threshold, and this was the reason of why the code

from several teams failed to finish within the time budget. Only ALBERT and

DIONIS were “truly” large (few features, but over 400,000 training examples).

• Presence of probes: Some datasets had a certain proportion of distractor

features or irrelevant variables (probes). Those were obtained by randomly

permuting the values of real features. Two-third of the datasets contained

probes ADULT, CADATA, DIGITS, DOROTHEA, CHRISTINE, JASMINE,

MADELINE, PHILIPPINE, SYLVINE, ALBERT, DILBERT, FABERT, JAN-

NIS, EVITA, FLORA, YOLANDA, ARTURO, CARLO, PABLO, WALDO.

This allowed us in part to make datasets that were in the public domain less

recognizable.

• Type of metric: We used six metrics, as defined in Sect. 10.4.2. The distribution

of tasks in which they were used was not uniform: BAC (11), AUC (6), F1 (3),

and PAC (6) for classification, and R2 (2) and ABS (2) for regression. This is

because not all metrics lend themselves naturally to all types of applications.

• Time budget: Although in round 0 we experimented with giving different time

budgets for the various datasets, we ended up assigning 1200 s (20 min) to all

datasets in all other rounds. Because the datasets varied in size, this put more

constraints on large datasets.

• Class imbalance: This was not a difficulty found in the 2015/2016 datasets.

However, extreme class imbalance was the main difficulty for the 2018 edition.

Imbalance ratios lower or equal to 1–10 were present in RL, PM, RH, RI, and

RM datasets, in the latter data set class imbalance was as extreme as 1–1000.

This was the reason why the performance of teams was low.

Fig. 10.4 gives a first view of dataset/task difficulty for the 2015/2016 challenge.

It captures, in a schematic way, the distribution of the participants’ performance in

all rounds on test data, in both AutoML and Tweakathon phases. One can see that the

median performance over all datasets improves between AutoML and Tweakathon,

as can be expected. Correspondingly, the average spread in performance (quartile)

decreases. Let us take a closer look at the AutoML phases: The “accident” of

round 3 in which many methods failed in blind testing is visible (introduction of

sparse matrices and larger datasets).9 Round 2 (multi-class classification) appears to

have also introduced a significantly higher degree of difficulty than round 1 (binary

9Examples of sparse datasets were provided in round 0, but they were of smaller size.

10 Analysis of the AutoML Challenge Series 2015–2018 203

classification). In round 4, two regression problems were introduced (FLORA and

YOLANDA), but it does not seem that regression was found significantly harder

than multiclass classification. In round 5 no novelty was introduced. We can observe

that, after round 3, the dataset median scores are scattered around the overall

median. Looking at the corresponding scores in the Tweakathon phases, one can

remark that, once the participants recovered from their surprise, round 3 was not

particularly difficult for them. Rounds 2 and 4 were comparatively more difficult.

For the datasets used in the 2018 challenge, the tasks’ difficulty was clearly

associated with extreme class imbalance, inclusion of categorical variables and high

dimensionality in terms of N ×Ptr . However, for the 2015/2016 challenge data sets

we found that it was generally difficult to guess what makes a task easy or hard,

except for dataset size, which pushed participants to the frontier of the hardware

capabilities and forced them to improve the computational efficiency of their

methods. Binary classification problems (and multi-label problems) are intrinsically

“easier” than multiclass problems, for which “guessing” has a lower probability of

success. This partially explains the higher median performance in rounds 1 and 3,

which are dominated by binary and multi-label classification problems. There is not

a large enough number of datasets illustrating each type of other difficulties to draw

other conclusions.

We ventured however to try to find summary statistics capturing overall takes

difficulty. If one assumes that data are generated from an i.i.d.10 process of the type:

y = F(x, noise)

where y is the target value, x is the input feature vector, F is a function, and noise is

some random noise drawn from an unknown distribution, then the difficulty of the

learning problem can be separated in two aspects:

1. Intrinsic difficulty, linked to the amount of noise or the signal to noise ratio.

Given an infinite amount of data and an unbiased learning machine F̂ capable

of identifying F , the prediction performances cannot exceed a given maximum

value, corresponding to F̂ = F .

2. Modeling difficulty, linked to the bias and variance of estimators F̂ , in

connection with the limited amount of training data and limited computational

resources, and the possibly large number or parameters and hyper-parameters to

estimate.

Evaluating the intrinsic difficulty is impossible unless we know F . Our best

approximation of F is the winners’ solution. We use therefore the winners’

performance as an estimator of the best achievable performance. This estimator

may have both bias and variance: it is possibly biased because the winners may be

under-fitting training data; it may have variance because of the limited amount of

10Independently and Identically Distributed samples.

204 I. Guyon et al.

test data. Under-fitting is difficult to test. Its symptoms may be that the variance or

the entropy of the predictions is less than those of the target values.

Evaluating the modeling difficulty is also impossible unless we know F and

the model class. In the absence of knowledge on the model class, data scientists

often use generic predictive models, agnostic with respect to the data generating

process. Such models range from very basic models that are highly biased towards

“simplicity” and smoothness of predictions (e.g., regularized linear models) to

highly versatile unbiased models that can learn any function given enough data

(e.g., ensembles of decision trees). To indirectly assess modeling difficulty, we

resorted to use the difference in performance between the method of the challenge

winner and that of (a) the best of four “untuned” basic models (taken from classical

techniques provided in the scikit-learn library [55] with default hyper-parameters)

or (b) Selective Naive Bayes (SNB) [12, 13], a highly regularized model (biased

towards simplicity), providing a very robust and simple baseline.

Figs. 10.5 and 10.6 give representations of our estimates of intrinsic and

modeling difficulties for the 2015/2016 challenge datasets. It can be seen that

the datasets of round 0 were among the easiest (except perhaps NEWSGROUP).

Those were relatively small (and well-known) datasets. Surprisingly, the datasets

of round 3 were also rather easy, despite the fact that most participants failed on

them when they were introduced (largely because of memory limitations: scikit-

learn algorithms were not optimized for sparse datasets and it was not possible to fit

in memory the data matrix converted to a dense matrix). Two datasets have a small

intrinsic difficulty but a large modeling difficulty: MADELINE and DILBERT.

MADELINE is an artificial dataset that is very non-linear (clusters or 2 classes

positioned on the vertices of a hyper-cube in a 5 dimensional space) and therefore

very difficult for Naïve Bayes. DILBERT is an image recognition dataset with

images of objects rotated in all sorts of positions, also very difficult for Naïve Bayes.

The datasets of the last 2 phases seem to have a large intrinsic difficulty compared

to the modeling difficulty. But this can be deceiving because the datasets are new to

the machine learning community and the performances of the winners may still be

far from the best attainable performance.

We attempted to predict the intrinsic difficulty (as measured by the winners’

performance) from the set of meta features used by AAD Freiburg for meta-

learning [25], which are part of OpenML [67], using a Random Forest classifier

and ranked the meta features in order of importance (most selected by RF). The list

of meta features is provided in the online appendix. The three meta-features that

predict dataset difficulty best (Fig. 10.7) are:

• LandmarkDecisionTree: performance of a decision tree classifier.

• Landmark1NN: performance of a nearest neighbor classifier.

• SkewnessMin: min over skewness of all features. Skewness measures the

symmetry of a distribution. A positive skewness value means that there is more

weight in the left tail of the distribution.

10 Analysis of the AutoML Challenge Series 2015–2018 205

10.5.4 Hyper-parameter Optimization

Many participants used the scikit-learn (sklearn) package, including the winning

group AAD Freiburg, which produced the auto-sklearn software. We used the

auto-sklearn API to conduct post-challenge systematic studies of the effectiveness

of hyper-parameter optimization. We compared the performances obtained with

default hyper-parameter settings in scikit-learn and with hyper-parameters opti-

mized with auto-sklearn,11 both within the time budgets as imposed during the

challenge, for four “representative” basic methods: k-nearest neighbors (KNN),

naive Bayes (NB), Random Forest (RF), and a linear model trained with stochastic

gradient descent (SGD-linear12). The results are shown in Fig. 10.8. We see that

hyper-parameter optimization usually improves performance, but not always. The

advantage of hyper-parameter tuning comes mostly from its flexibility of switching

the optimization metric to the one imposed by the task and from finding hyper-

parameters that work well given the current dataset and metric. However, in some

cases it was not possible to perform hyper-parameter optimization within the time

budget due to the data set size (score ≤ 0). Thus, there remains future work on how

Fig. 10.8 Hyper-parameter tuning (2015/2016 challenge data). We compare the performances

obtained with default hyper-parameters and those with hyper-parameters optimized with auto-

sklearn, within the same time budgets as given during the challenge. The performances of

predictors which failed to return results in the allotted time are replaced by zero. Note that returning

a prediction of chance level also resulted in a score of zero

11We use sklearn 0.16.1 and auto-sklearn 0.4.0 to mimic the challenge environment.
12We set the loss of SGD to be ‘log’ in scikit-learn for these experiments.

206 I. Guyon et al.

to perform thorough hyper-parameter tuning given rigid time constraints and huge

datasets (Fig. 10.8).

We also compared the performances obtained with different scoring metrics

(Fig. 10.9). Basic methods do not give a choice of metrics to be optimized, but auto-

sklearn post-fitted the metrics of the challenge tasks. Consequently, when “common

metrics” (BAC and R2) are used, the method of the challenge winners, which is not

optimized for BAC/R2, does not usually outperform basic methods. Conversely,

when the metrics of the challenge are used, there is often a clear gap between the

basic methods and the winners, but not always (RF-auto usually shows a comparable

performance, sometimes even outperforms the winners).

10.5.5 Meta-learning

One question is whether meta-learning [14] is possible, that is learning to predict

whether a given classifier will perform well on future datasets (without actually

training it), based on its past performances on other datasets. We investigated

whether it is possible to predict which basic method will perform best based on the

meta-learning features of auto-sklearn (see the online appendix). We removed the

“Landmark” features from the set of meta features because those are performances

of basic predictors (albeit rather poor ones with many missing values), which would

lead to a form of “data leakage”.

We used four basic predictors:

Fig. 10.9 Comparison of metrics (2015/2016 challenge). (a) We used the metrics of the

challenge. (b) We used the normalized balanced accuracy for all classification problems and the R2

metric for regression problems. By comparing the two figures, we can see that the winner remains

top-ranking in most cases, regardless of the metric. There is no basic method that dominates all

others. Although RF-auto (Random Forest with optimized HP) is very strong, it is sometimes

outperformed by other methods. Plain linear model SGD-def sometimes wins when common

metrics are used, but the winners perform better with the metrics of the challenge. Overall, the

technique of the winners proved to be effective

10 Analysis of the AutoML Challenge Series 2015–2018 207

Fig. 10.10 Linear discriminant analysis. (a) Dataset scatter plot in principal axes. We have

trained a LDA using X = meta features, except landmarks; y = which model won of four basic

models (NB, SGD-linear, KNN, RF). The performance of the basic models is measured using

the common metrics. The models were trained with default hyper-parameters. In the space of

the two first LDA components, each point represents one dataset. The colors denote the winning

basic models. The opacity reflects the scores of the corresponding winning model (more opaque is

better). (b) Meta feature importances computed as scaling factors of each LDA component

208 I. Guyon et al.

• NB: Naive Bayes

• SGD-linear: Linear model (trained with stochastic gradient descent)

• KNN: K-nearest neighbors

• RF: Random Forest

We used the implementation of the scikit-learn library with default hyper-parameter

settings. In Fig. 10.10, we show the two first Linear Discriminant Analysis (LDA)

components, when training an LDA classifier on the meta-features to predict which

basic classifier will perform best. The methods separate into three distinct clusters,

one of them grouping the non-linear methods that are poorly separated (KNN and

RF) and the two others being NB and linear-SGD.

The features that are most predictive all have to do with “ClassProbability”

and “PercentageOfMissingValues”, indicating that the class imbalance and/or large

number of classes (in a multi-class problem) and the percentage of missing values

might be important, but there is a high chance of overfitting as indicated by an

unstable ranking of the best features under resampling of the training data.

10.5.6 Methods Used in the Challenges

A brief description of methods used in both challenges is provided in the online

appendix, together with the results of a survey on methods that we conducted after

the challenges. In light of the overview of Sect. 10.2 and the results presented in

the previous section, we may wonder whether a dominant methodology for solving

the AutoML problem has emerged and whether particular technical solutions were

widely adopted. In this section we call “model space” the set of all models under

consideration. We call “basic models” (also called elsewhere “simple models”,

“individual models”, “base learners”) the member of a library of models from which

our hyper-models of model ensembles are built.

Ensembling: dealing with over-fitting and any-time learning Ensembling is the

big AutoML challenge series winner since it is used by over 80% of the participants

and by all the top-ranking ones. While a few years ago the hottest issue in model

selection and hyper-parameter optimization was over-fitting, in present days the

problem seems to have been largely avoided by using ensembling techniques. In

the 2015/2016 challenge, we varied the ratio of number of training examples over

number of variables (P tr/N) by several orders of magnitude. Five datasets had

a ratio P tr/N lower than one (dorothea, newsgroup, grigoris, wallis, and flora),

which is a case lending itself particularly to over-fitting. Although P tr/N is the

most predictive variable of the median performance of the participants, there is no

indication that the datasets with P tr/N < 1 were particularly difficult for the partic-

ipants (Fig. 10.5). Ensembles of predictors have the additional benefit of addressing

in a simple way the “any-time learning” problem by growing progressively a bigger

ensemble of predictors, improving performance over time. All trained predictors are

usually incorporated in the ensemble. For instance, if cross-validation is used, the

10 Analysis of the AutoML Challenge Series 2015–2018 209

predictors of all folds are directly incorporated in the ensemble, which saves the

computational time of retraining a single model on the best HP selected and may

yield more robust solutions (though slightly more biased due to the smaller sample

size). The approaches differ in the way they weigh the contributions of the various

predictors. Some methods use the same weight for all predictors (this is the case

of bagging methods such as Random Forest and of Bayesian methods that sample

predictors according to their posterior probability in model space). Some methods

assess the weights of the predictors as part of learning (this is the case of boosting

methods, for instance). One simple and effective method to create ensembles of

heterogeneous models was proposed by [16]. It was used successfully in several

past challenges, e.g., [52] and is the method implemented by the aad_f reibug

team, one of the strongest participants in both challenges [25]. The method consists

in cycling several times over all trained model and incorporating in the ensemble

at each cycle the model which most improves the performance of the ensemble.

Models vote with weight 1, but they can be incorporated multiple times, which

de facto results in weighting them. This method permits to recompute very fast the

weights of the models if cross-validated predictions are saved. Moreover, the method

allows optimizing the ensemble for any metric by post-fitting the predictions of the

ensemble to the desired metric (an aspect which was important in this challenge).

Model evaluation: cross-validation or simple validation Evaluating the pre-

dictive accuracy of models is a critical and necessary building block of any

model selection of ensembling method. Model selection criteria computed from

the predictive accuracy of basic models evaluated from training data, by training

a single time on all the training data (possibly at the expense of minor additional

calculations), such as performance bounds, were not used at all, as was already the

case in previous challenges we organized [35]. Cross-validation was widely used,

particularly K-fold cross-validation. However, basic models were often “cheaply”

evaluated on just one fold to allow quickly discarding non-promising areas of model

space. This is a technique used more and more frequently to help speed up search.

Another speed-up strategy is to train on a subset of the training examples and

monitor the learning curve. The “freeze-thaw” strategy [64] halts training of models

that do not look promising on the basis of the learning curve, but may restart training

them at a later point. This was used, e.g., by [48] in the 2015/2016 challenge.

Model space: Homogeneous vs. heterogeneous An unsettled question is whether

one should search a large or small model space. The challenge did not allow us

to give a definite answer to this question. Most participants opted for searching a

relatively large model space, including a wide variety of models found in the scikit-

learn library. Yet, one of the strongest entrants (the Intel team) submitted results

simply obtained with a boosted decision tree (i.e., consisting of a homogeneous set

of weak learners/basic models). Clearly, it suffices to use just one machine learning

approach that is a universal approximator to be able to learn anything, given enough

training data. So why include several? It is a question of rate of convergence: how

fast we climb the learning curve. Including stronger basic models is one way to

climb the learning curve faster. Our post-challenge experiments (Fig. 10.9) reveal

210 I. Guyon et al.

that the scikit-learn version of Random Forest (an ensemble of homogeneous basic

models—decision trees) does not usually perform as well as the winners’ version,

hinting that there is a lot of know-how in the Intel solution, which is also based on

ensembles of decision tree, that is not captured by a basic ensemble of decision trees

such as RF. We hope that more principled research will be conducted on this topic

in the future.

Search strategies: Filter, wrapper, and embedded methods With the availability

of powerful machine learning toolkits like scikit-learn (on which the starting kit

was based), the temptation is great to implement all-wrapper methods to solve

the CASH (or “full model selection”) problem. Indeed, most participants went that

route. Although a number of ways of optimizing hyper-parameters with embedded

methods for several basic classifiers have been published [35], they each require

changing the implementation of the basic methods, which is time-consuming and

error-prone compared to using already debugged and well-optimized library version

of the methods. Hence practitioners are reluctant to invest development time in

the implementation of embedded methods. A notable exception is the software of

marc.boulle, which offers a self-contained hyper-parameter free solution based on

Naive Bayes, which includes re-coding of variables (grouping or discretization) and

variable selection. See the online appendix.

Multi-level optimization Another interesting issue is whether multiple levels of

hyper-parameters should be considered for reasons of computational effectiveness

or overfitting avoidance. In the Bayesian setting, for instance, it is quite feasible

to consider a hierarchy of parameters/hyper-parameters and several levels of

priors/hyper-priors. However, it seems that for practical computational reasons,

in the AutoML challenges, the participants use a shallow organization of hyper-

parameter space and avoid nested cross-validation loops.

Time management: Exploration vs. exploitation tradeoff With a tight time

budget, efficient search strategies must be put into place to monitor the explo-

ration/exploitation tradeoff. To compare strategies, we show in the online appendix

learning curves for two top ranking participants who adopted very different

methods: Abhishek and aad_freiburg. The former uses heuristic methods based on

prior human experience while the latter initializes search with models predicted

to be best suited by meta-learning, then performs Bayesian optimization of hyper-

parameters. Abhishek seems to often start with a better solution but explores less

effectively. In contrast, aad_freiburg starts lower but often ends up with a better

solution. Some elements of randomness in the search are useful to arrive at better

solutions.

Preprocessing and feature selection The datasets had intrinsic difficulties that

could be in part addressed by preprocessing or special modifications of algorithms:

sparsity, missing values, categorical variables, and irrelevant variables. Yet it

appears that among the top-ranking participants, preprocessing has not been a

focus of attention. They relied on the simple heuristics provided in the starting kit:

replacing missing values by the median and adding a missingness indicator variable,

10 Analysis of the AutoML Challenge Series 2015–2018 211

one-hot-encoding of categorical variables. Simple normalizations were used. The

irrelevant variables were ignored by 2/3 of the participants and no use of feature

selection was made by top-ranking participants. The methods used that involve

ensembling seem to be intrinsically robust against irrelevant variables. More details

from the fact sheets are found in the online appendix.

Unsupervised learning Despite the recent regain of interest in unsupervised

learning spurred by the Deep Learning community, in the AutoML challenge series,

unsupervised learning is not widely used, except for the use of classical space

dimensionality reduction techniques such as ICA and PCA. See the online appendix

for more details.

Transfer learning and meta learning To our knowledge, only aad_freiburg relied

on meta-learning to initialize their hyper-parameter search. To that end, they used

datasets of OpenML.13 The number of datasets released and the diversity of tasks

did not allow the participants to perform effective transfer learning or meta learning.

Deep learning The type of computations resources available in AutoML phases

ruled out the use of Deep Learning, except in the GPU track. However, even in

that track, the Deep Learning methods did not come out ahead. One exception is

aad_freiburg, who used Deep Learning in Tweakathon rounds three and four and

found it to be helpful for the datasets Alexis, Tania and Yolanda.

Task and metric optimization There were four types of tasks (regression, binary

classification, multi-class classification, and multi-label classification) and six

scoring metrics (R2, ABS, BAC, AUC, F1, and PAC). Moreover, class balance and

number of classes varied a lot for classification problems. Moderate effort has been

put into designing methods optimizing specific metrics. Rather, generic methods

were used and the outputs post-fitted to the target metrics by cross-validation or

through the ensembling method.

Engineering One of the big lessons of the AutoML challenge series is that most

methods fail to return results in all cases, not a “good” result, but “any” reasonable

result. Reasons for failure include “out of time” and “out of memory” or various

other failures (e.g., numerical instabilities). We are still very far from having “basic

models” that run on all datasets. One of the strengths of auto-sklearn is to ignore

those models that fail and generally find at least one that returns a result.

Parallelism The computers made available had several cores, so in principle, the

participants could make use of parallelism. One common strategy was just to

rely on numerical libraries that internally use such parallelism automatically. The

aad_freiburg team used the different cores to launch in parallel model search for

different datasets (since each round included five datasets). These different uses of

computational resources are visible in the learning curves (see the online appendix).

13https://www.openml.org/

https://www.openml.org/

212 I. Guyon et al.

10.6 Discussion

We briefly summarize the main questions we asked ourselves and the main

findings:

1. Was the provided time budget sufficient to complete the tasks of the

challenge? We drew learning curves as a function of time for the winning

solution of aad_f reiburg (auto-sklearn, see the online appendix). This revealed

that for most datasets, performances still improved well beyond the time limit

imposed by the organizers. Although for about half the datasets the improvement

is modest (no more that 20% of the score obtained at the end of the imposed

time limit), for some datasets the improvement was very large (more than 2× the

original score). The improvements are usually gradual, but sudden performance

improvements occur. For instance, for Wallis, the score doubled suddenly at 3×

the time limit imposed in the challenge. As also noted by the authors of the auto-

sklearn package [25], it has a slow start but in the long run gets performances

close to the best method.

2. Are there tasks that were significantly more difficult than others for the

participants? Yes, there was a very wide range of difficulties for the tasks

as revealed by the dispersion of the participants in terms of average (median)

and variability (third quartile) of their scores. Madeline, a synthetic dataset

featuring a very non-linear task, was very difficult for many participants. Other

difficulties that caused failures to return a solution included large memory

requirements (particularly for methods that attempted to convert sparse matrices

to full matrices), and short time budgets for datasets with large number of training

examples and/or features or with many classes or labels.

3. Are there meta-features of datasets and methods providing useful insight to

recommend certain methods for certain types of datasets? The aad_freiburg

team used a subset of 53 meta-features (a superset of the simple statistics

provided with the challenge datasets) to measure similarity between datasets.

This allowed them to conduct hyper-parameter search more effectively by

initializing the search with settings identical to those selected for similar datasets

previously processed (a form of meta-learning). Our own analysis revealed

that it is very difficult to predict the predictors’ performances from the meta-

features, but it is possible to predict relatively accurately which “basic method”

will perform best. With LDA, we could visualize how datasets recoup in two

dimensions and show a clean separation between datasets “preferring” Naive

Bayes, linear SGD, or KNN, or RF. This deserves further investigation.

4. Does hyper-parameter optimization really improve performance over using

default values? The comparison we conducted reveals that optimizing hyper-

parameters rather than choosing default values for a set of four basic predictive

models (K-nearest neighbors, Random Forests, linear SGD, and Naive Bayes) is

generally beneficial. In the majority of cases (but not always), hyper-parameter

optimization (hyper-opt) results in better performances than default values.

10 Analysis of the AutoML Challenge Series 2015–2018 213

Hyper-opt sometimes fails because of time or memory limitations, which gives

room for improvement.

5. How do winner’s solutions compare with basic scikit-learn models? They

compare favorably. For example, the results of basic models whose parameters

have been optimized do not yield generally as good results as running auto-

sklearn. However, a basic model with default HP sometimes outperforms this

same model tuned by auto-sklearn.

10.7 Conclusion

We have analyzed the results of several rounds of AutoML challenges.

Our design of the first AutoML challenge (2015/2016) was satisfactory in many

respects. In particular, we attracted a large number of participants (over 600),

attained results that are statistically significant, and advanced the state of the art

to automate machine learning. Publicly available libraries have emerged as a result

of this endeavor, including auto-sklearn.

In particular, we designed a benchmark with a large number of diverse datasets,

with large enough test sets to separate top-ranking participants. It is difficult

to anticipate the size of the test sets needed, because the error bars depend on

the performances attained by the participants, so we are pleased that we made

reasonable guesses. Our simple rule-of-thumb “N = 50/E” where N is the number of

test samples and E the error rate of the smallest class seems to be widely applicable.

We made sure that the datasets were neither too easy nor too hard. This is important

to be able to separate participants. To quantify this, we introduced the notion of

“intrinsic difficulty” and “modeling difficulty”. Intrinsic difficulty can be quantified

by the performance of the best method (as a surrogate for the best attainable

performance, i.e., the Bayes rate for classification problems). Modeling difficulty

can be quantified by the spread in performance between methods. Our best problems

have relatively low “intrinsic difficulty” and high “modeling difficulty”. However,

the diversity of the 30 datasets of our first 2015/2016 challenge is both a feature and

a curse: it allows us to test the robustness of software across a variety of situations,

but it makes meta-learning very difficult, if not impossible. Consequently, external

meta-learning data must be used if meta-learning is to be explored. This was the

strategy adopted by the AAD Freiburg team, which used the OpenML data for meta

training. Likewise, we attached different metrics to each dataset. This contributed

to making the tasks more realistic and more difficult, but also made meta-learning

harder. In the second 2018 challenge, we diminished the variety of datasets and used

a single metric.

With respect to task design, we learned that the devil is in the details. The

challenge participants solve exactly the task proposed to the point that their solution

may not be adaptable to seemingly similar scenarios. In the case of the AutoML

challenge, we pondered whether the metric of the challenge should be the area under

the learning curve or one point on the learning curve (the performance obtained after

214 I. Guyon et al.

a fixed maximum computational time elapsed). We ended up favoring the second

solution for practical reasons. Examining after the challenge the learning curves

of some participants, it is quite clear that the two problems are radically different,

particularly with respect to strategies mitigating “exploration” and “exploitation”.

This prompted us to think about the differences between “fixed time” learning (the

participants know in advance the time limit and are judged only on the solution

delivered at the end of that time) and “any time learning” (the participants can

be stopped at any time and asked to return a solution). Both scenarios are useful:

the first one is practical when models must be delivered continuously at a rapid

pace, e.g. for marketing applications; the second one is practical in environments

when computational resources are unreliable and interruption may be expected (e.g.

people working remotely via an unreliable connection). This will influence the

design of future challenges.

The two versions of AutoML challenge we have run differ in the difficulty of

transfer learning. In the 2015/2016 challenge, round 0 introduced a sample of all

types of data and difficulties (types of targets, sparse data or not, missing data or

not, categorical variables of not, more examples than features or not). Then each

round ramped up difficulty. The datasets of round 0 were relatively easy. Then at

each round, the code of the participants was blind-tested on data that were one

notch harder than in the previous round. Hence transfer was quite hard. In the 2018

challenge, we had 2 phases, each with 5 datasets of similar difficulty and the datasets

of the first phase were each matched with one corresponding dataset on a similar

task. As a result, transfer was made simpler.

Concerning the starting kit and baseline methods, we provided code that ended

up being the basis of the solution of the majority of participants (with notable

exceptions from industry such as Intel and Orange who used their own “in

house” packages). Thus, we can question whether the software provided biased the

approaches taken. Indeed, all participants used some form of ensemble learning,

similarly to the strategy used in the starting kit. However, it can be argued that this

is a “natural” strategy for this problem. But, in general, the question of providing

enough starting material to the participants without biasing the challenge in a

particular direction remains a delicate issue.

From the point of view of challenge protocol design, we learned that it is

difficult to keep teams focused for an extended period of time and go through

many challenge phases. We attained a large number of participants (over 600) over

the whole course of the AutoML challenge, which lasted over a year (2015/2016)

and was punctuated by several events (such as hackathons). However, it may be

preferable to organize yearly events punctuated by workshops. This is a natural way

of balancing competition and cooperation since workshops are a place of exchange.

Participants are naturally rewarded by the recognition they gain via the system of

scientific publications. As a confirmation of this conjecture, the second instance

of the AutoML challenge (2017/2018) lasting only 4 months attracted nearly 300

participants.

One important novelty of our challenge design was code submission. Having

the code of the participants executed on the same platform under rigorously similar

conditions is a great step towards fairness and reproducibility, as well as ensuring the

10 Analysis of the AutoML Challenge Series 2015–2018 215

viability of solution from the computational point of view. We required the winners

to release their code under an open source licence to win their prizes. This was

good enough an incentive to obtain several software publications as the “product”

of the challenges we organized. In our second challenge (AutoML 2018), we used

Docker. Distributing Docker images makes it possible for anyone downloading

the code of the participants to easily reproduce the results without stumbling over

installation problems due to inconsistencies in computer environments and libraries.

Still the hardware may be different and we find that, in post-challenge evaluations,

changing computers may yield significant differences in results. Hopefully, with the

proliferation of affordable cloud computing, this will become less of an issue.

The AutoML challenge series is only beginning. Several new avenues are under

study. For instance, we are preparing the NIPS 2018 Life Long Machine Learning

challenge in which participants will be exposed to data whose distribution slowly

drifts over time. We are also looking at a challenge of automated machine learning

where we will focus on transfer from similar domains.

Acknowledgements Microsoft supported the organization of this challenge and donated the

prizes and cloud computing time on Azure. This project received additional support from the

Laboratoire d’Informatique Fondamentale (LIF, UMR CNRS 7279) of the University of Aix

Marseille, France, via the LabeX Archimede program, the Laboratoire de Recheche en Informa-

tique of Paris Sud University, and INRIA-Saclay as part of the TIMCO project, as well as the

support from the Paris-Saclay Center for Data Science (CDS). Additional computer resources were

provided generously by J. Buhmann, ETH Zürich. This work has been partially supported by the

Spanish project TIN2016-74946-P (MINECO/FEDER, UE) and CERCA Programme/Generalitat

de Catalunya. The datasets released were selected among 72 datasets that were donated (or

formatted using data publicly available) by the co-authors and by: Y. Aphinyanaphongs, O.

Chapelle, Z. Iftikhar Malhi, V. Lemaire, C.-J. Lin, M. Madani, G. Stolovitzky, H.-J. Thiesen, and

I. Tsamardinos. Many people provided feedback to early designs of the protocol and/or tested

the challenge platform, including: K. Bennett, C. Capponi, G. Cawley, R. Caruana, G. Dror, T.

K. Ho, B. Kégl, H. Larochelle, V. Lemaire, C.-J. Lin, V. Ponce López, N. Macia, S. Mercer, F.

Popescu, D. Silver, S. Treguer, and I. Tsamardinos. The software developers who contributed to the

implementation of the Codalab platform and the sample code include E. Camichael, I. Chaabane,

I. Judson, C. Poulain, P. Liang, A. Pesah, L. Romaszko, X. Baro Solé, E. Watson, F. Zhingri,

M. Zyskowski. Some initial analyses of the challenge results were performed by I. Chaabane,

J. Lloyd, N. Macia, and A. Thakur were incorporated in this paper. Katharina Eggensperger,

Syed Mohsin Ali and Matthias Feurer helped with the organization of the Beat AutoSKLearn

challenge. Matthias Feurer also contributed to the simulations of running auto-sklearn on 2015–

2016 challenge datasets.

Bibliography

1. Alamdari, A.R.S.A., Guyon, I.: Quick start guide for CLOP. Tech. rep., Graz University of

Technology and Clopinet (May 2006)

2. Andrieu, C., Freitas, N.D., Doucet, A.: Sequential MCMC for Bayesian model selection. In:

IEEE Signal Processing Workshop on Higher-Order Statistics. pp. 130–134 (1999)

3. Assunção, F., Lourenço, N., Machado, P., Ribeiro, B.: Denser: Deep evolutionary network

structured representation. arXiv preprint arXiv:1801.01563 (2018)

216 I. Guyon et al.

4. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using

reinforcement learning. arXiv preprint arXiv:1611.02167 (2016)

5. Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperparameter tuning. In: 30th

International Conference on Machine Learning. vol. 28, pp. 199–207. JMLR Workshop and

Conference Proceedings (May 2013)

6. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives.

IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8), 1798–1828 (2013)

7. Bennett, K.P., Kunapuli, G., Jing Hu, J.S.P.: Bilevel optimization and machine learning. In:

Computational Intelligence: Research Frontiers, Lecture Notes in Computer Science, vol.

5050, pp. 25–47. Springer (2008)

8. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal of Machine

Learning Research 13(Feb), 281–305 (2012)

9. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: Hyperparameter opti-

mization in hundreds of dimensions for vision architectures. In: 30th International Conference

on Machine Learning. vol. 28, pp. 115–123 (2013)

10. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimiza-

tion. In: Advances in Neural Information Processing Systems. pp. 2546–2554 (2011)

11. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning.

Artificial Intelligence 97(1–2), 273–324 (December 1997)

12. Boullé, M.: Compression-based averaging of selective naive bayes classifiers. Journal of

Machine Learning Research 8, 1659–1685 (2007), http://dl.acm.org/citation.cfm?id=1314554

13. Boullé, M.: A parameter-free classification method for large scale learning. Journal of Machine

Learning Research 10, 1367–1385 (2009), https://doi.org/10.1145/1577069.1755829

14. Brazdil, P., Carrier, C.G., Soares, C., Vilalta, R.: Metalearning: Applications to data mining.

Springer Science & Business Media (2008)

15. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

16. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from libraries of

models. In: 21st International Conference on Machine Learning. pp. 18–. ACM (2004)

17. Cawley, G.C., Talbot, N.L.C.: Preventing over-fitting during model selection via Bayesian

regularisation of the hyper-parameters. Journal of Machine Learning Research 8, 841–861

(April 2007)

18. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel programming. Annals of

Operations Research 153, 235–256 (2007)

19. Dempe, S.: Foundations of bilevel programming. Kluwer Academic Publishers (2002)

20. Dietterich, T.G.: Approximate statistical test for comparing supervised classification learning

algorithms. Neural Computation 10(7), 1895–1923 (1998)

21. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, 2nd edn. (2001)

22. Efron, B.: Estimating the error rate of a prediction rule: Improvement on cross-validation.

Journal of the American Statistical Association 78(382), 316–331 (1983)

23. Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., Leyton-Brown, K.:

Towards an empirical foundation for assessing bayesian optimization of hyperparameters. In:

NIPS workshop on Bayesian Optimization in Theory and Practice (2013)

24. Escalante, H.J., Montes, M., Sucar, L.E.: Particle swarm model selection. Journal of Machine

Learning Research 10, 405–440 (2009)

25. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and

robust automated machine learning. In: Proceedings of the Neural Information Processing

Systems, pp. 2962–2970 (2015), https://github.com/automl/auto-sklearn

26. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Methods for

improving bayesian optimization for automl. In: Proceedings of the International Conference

on Machine Learning 2015, Workshop on Automatic Machine Learning (2015)

27. Feurer, M., Springenberg, J., Hutter, F.: Initializing bayesian hyperparameter optimization via

meta-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp. 1128–

1135 (2015)

http://dl.acm.org/citation.cfm?id=1314554
https://doi.org/10.1145/1577069.1755829
https://github.com/automl/auto-sklearn

10 Analysis of the AutoML Challenge Series 2015–2018 217

28. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Practical automated

machine learning for the automl challenge 2018. In: International Workshop on Automatic

Machine Learning at ICML (2018), https://sites.google.com/site/automl2018icml/

29. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. The Annals of

Statistics 29(5), 1189–1232 (2001)

30. Ghahramani, Z.: Unsupervised learning. In: Advanced Lectures on Machine Learning. Lecture

Notes in Computer Science, vol. 3176, pp. 72–112. Springer Berlin Heidelberg (2004)

31. Guyon, I.: Challenges in Machine Learning book series. Microtome (2011–2016), http://www.

mtome.com/Publications/CiML/ciml.html

32. Guyon, I., Bennett, K., Cawley, G., Escalante, H.J., Escalera, S., Ho, T.K., Macià, N., Ray,

B., Saeed, M., Statnikov, A., Viegas, E.: AutoML challenge 2015: Design and first results.

In: Proc. of AutoML 2015@ICML (2015), https://drive.google.com/file/d/0BzRGLkqgrI-

qWkpzcGw4bFpBMUk/view

33. Guyon, I., Bennett, K., Cawley, G., Escalante, H.J., Escalera, S., Ho, T.K., Macià, N., Ray,

B., Saeed, M., Statnikov, A., Viegas, E.: Design of the 2015 ChaLearn AutoML challenge. In:

International Joint Conference on Neural Networks (2015), http://www.causality.inf.ethz.ch/

AutoML/automl_ijcnn15.pdf

34. Guyon, I., Chaabane, I., Escalante, H.J., Escalera, S., Jajetic, D., Lloyd, J.R.,

Macía, N., Ray, B., Romaszko, L., Sebag, M., Statnikov, A., Treguer, S., Vie-

gas, E.: A brief review of the ChaLearn AutoML challenge. In: Proc. of AutoML

2016@ICML (2016), https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&srcid=

Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDoyYThjZjhhNzRjMzI3MTg4

35. Guyon, I., Alamdari, A.R.S.A., Dror, G., Buhmann, J.: Performance prediction challenge. In:

the International Joint Conference on Neural Networks. pp. 1649–1656 (2006)

36. Guyon, I., Bennett, K., Cawley, G., Escalante, H.J., Escalera, S., Ho, T.K., Ray, B., Saeed, M.,

Statnikov, A., Viegas, E.: Automl challenge 2015: Design and first results (2015)

37. Guyon, I., Cawley, G., Dror, G.: Hands-On Pattern Recognition: Challenges in Machine

Learning, Volume 1. Microtome Publishing, USA (2011)

38. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.): Feature extraction, foundations and

applications. Studies in Fuzziness and Soft Computing, Physica-Verlag, Springer (2006)

39. Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The entire regularization path for the support

vector machine. Journal of Machine Learning Research 5, 1391–1415 (2004)

40. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: Data mining,

inference, and prediction. Springer, 2nd edn. (2001)

41. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general

algorithm configuration. In: Proceedings of the conference on Learning and Intelligent

OptimizatioN (LION 5) (2011)

42. Ioannidis, J.P.A.: Why most published research findings are false. PLoS Medicine 2(8), e124

(August 2005)

43. Jordan, M.I.: On statistics, computation and scalability. Bernoulli 19(4), 1378–1390 (Septem-

ber 2013)

44. Keerthi, S.S., Sindhwani, V., Chapelle, O.: An efficient method for gradient-based adaptation

of hyperparameters in SVM models. In: Advances in Neural Information Processing Systems

(2007)

45. Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast bayesian hyperparameter

optimization on large datasets. In: Electronic Journal of Statistics. vol. 11 (2017)

46. Kohavi, R., John, G.H.: Wrappers for feature selection. Artificial Intelligence 97(1–2), 273–

324 (December 1997)

47. Langford, J.: Clever methods of overfitting (2005), blog post at http://hunch.net/?p=22

https://sites.google.com/site/automl2018icml/
http://www.mtome.com/Publications/CiML/ciml.html
http://www.mtome.com/Publications/CiML/ciml.html
https://drive.google.com/file/d/0BzRGLkqgrI-qWkpzcGw4bFpBMUk/view
https://drive.google.com/file/d/0BzRGLkqgrI-qWkpzcGw4bFpBMUk/view
http://www.causality.inf.ethz.ch/AutoML/automl_ijcnn15.pdf
http://www.causality.inf.ethz.ch/AutoML/automl_ijcnn15.pdf
https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&srcid=Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDoyYThjZjhhNzRjMzI3MTg4
https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&srcid=Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDoyYThjZjhhNzRjMzI3MTg4
http://hunch.net/?p=22

218 I. Guyon et al.

48. Lloyd, J.: Freeze Thaw Ensemble Construction. https://github.com/jamesrobertlloyd/automl-

phase-2 (2016)

49. Momma, M., Bennett, K.P.: A pattern search method for model selection of support vector

regression. In: In Proceedings of the SIAM International Conference on Data Mining. SIAM

(2002)

50. Moore, G., Bergeron, C., Bennett, K.P.: Model selection for primal SVM. Machine Learning

85(1–2), 175–208 (October 2011)

51. Moore, G.M., Bergeron, C., Bennett, K.P.: Nonsmooth bilevel programming for hyperparam-

eter selection. In: IEEE International Conference on Data Mining Workshops. pp. 374–381

(2009)

52. Niculescu-Mizil, A., Perlich, C., Swirszcz, G., Sindhwani, V., Liu, Y., Melville, P., Wang,

D., Xiao, J., Hu, J., Singh, M., et al.: Winning the kdd cup orange challenge with ensemble

selection. In: Proceedings of the 2009 International Conference on KDD-Cup 2009-Volume 7.

pp. 23–34. JMLR. org (2009)

53. Opper, M., Winther, O.: Gaussian processes and SVM: Mean field results and leave-one-out,

pp. 43–65. MIT (10 2000), massachusetts Institute of Technology Press (MIT Press) Available

on Google Books

54. Park, M.Y., Hastie, T.: L1-regularization path algorithm for generalized linear models. Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 69(4), 659–677 (2007)

55. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,

M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research 12, 2825–2830 (2011)

56. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via

parameter sharing. arXiv preprint arXiv:1802.03268 (2018)

57. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Le, Q., Kurakin, A.: Large-scale

evolution of image classifiers. arXiv preprint arXiv:1703.01041 (2017)

58. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook.

Springer (2011)

59. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond. MIT Press (2001)

60. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning

algorithms. In: Advances in Neural Information Processing Systems 25, pp. 2951–2959 (2012)

61. Statnikov, A., Wang, L., Aliferis, C.F.: A comprehensive comparison of random forests and

support vector machines for microarray-based cancer classification. BMC Bioinformatics 9(1)

(2008)

62. Sun, Q., Pfahringer, B., Mayo, M.: Full model selection in the space of data mining operators.

In: Genetic and Evolutionary Computation Conference. pp. 1503–1504 (2012)

63. Swersky, K., Snoek, J., Adams, R.P.: Multi-task Bayesian optimization. In: Advances in Neural

Information Processing Systems 26. pp. 2004–2012 (2013)

64. Swersky, K., Snoek, J., Adams, R.P.: Freeze-thaw bayesian optimization. arXiv preprint

arXiv:1406.3896 (2014)

65. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: Automated selection and

hyper-parameter optimization of classification algorithms. CoRR abs/1208.3719 (2012)

66. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: Combined selection and

hyperparameter optimization of classification algorithms. In: 19th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining. pp. 847–855. ACM (2013)

67. Vanschoren, J., Van Rijn, J.N., Bischl, B., Torgo, L.: Openml: networked science in machine

learning. ACM SIGKDD Explorations Newsletter 15(2), 49–60 (2014)

https://github.com/jamesrobertlloyd/automl-phase-2
https://github.com/jamesrobertlloyd/automl-phase-2

10 Analysis of the AutoML Challenge Series 2015–2018 219

68. Vapnik, V., Chapelle, O.: Bounds on error expectation for support vector machines. Neural

computation 12(9), 2013–2036 (2000)

69. Weston, J., Elisseeff, A., BakIr, G., Sinz, F.: Spider (2007), http://mloss.org/software/view/29/

70. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint

arXiv:1611.01578 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons licence, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons licence and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://mloss.org/software/view/29/
http://creativecommons.org/licenses/by/4.0/

	10 Analysis of the AutoML Challenge Series 2015–2018
	10.1 Introduction
	10.2 Problem Formalization and Overview
	10.2.1 Scope of the Problem
	10.2.2 Full Model Selection
	10.2.3 Optimization of Hyper-parameters
	10.2.4 Strategies of Model Search

	10.3 Data
	10.4 Challenge Protocol
	10.4.1 Time Budget and Computational Resources
	10.4.2 Scoring Metrics
	10.4.3 Rounds and Phases in the 2015/2016 Challenge
	10.4.4 Phases in the 2018 Challenge

	10.5 Results
	10.5.1 Scores Obtained in the 2015/2016 Challenge
	10.5.2 Scores Obtained in the 2018 Challenge
	10.5.3 Difficulty of Datasets/Tasks
	10.5.4 Hyper-parameter Optimization
	10.5.5 Meta-learning
	10.5.6 Methods Used in the Challenges

	10.6 Discussion
	10.7 Conclusion
	Bibliography

