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ABSTRACT
MappingtheInternetis a majorchallengefor network researchers.
It is the key to building a successfulmodelingtool ableto gener-
aterealisticgraphsfor usein networking simulations. In this pa-
perwe provide a detailedanalysisof the inter-domaintopologyof
the Internet. The collecteddataand the resultinganalysisbegan
in November1997andcover a periodof two anda half years.We
giveresultsconcerningmajortopologyproperties(nodesandedges
number, averagedegreeanddistance,routingpolicy, etc.)andmain
distributions(degree,distance,etc.). We alsopresentmany results
aboutthetreesof thisnetwork. Theevolutionof thesepropertiesis
reviewedandmajor trendsarehighlighted.We proposesomeem-
pirical lawsthatmatchthiscurrentevolution. Fournew power-laws
concerningthenumberof shortestpathsbetweennodepairsandthe
treesizedistributionareprovidedwith their detailedvalidation.

Categoriesand SubjectDescriptors
C.2.5[Computer-Communication Networks]: Local andWide-
AreaNetworks—Internet

GeneralTerms
Measurement

Keywords
AutonomousSystem,AS network topologyanalysis,power laws

1. INTRODUCTION
For network researchersandengineers,thestudyof theInternetit-
self is fascinating.Internet,unlike thenetworksit is composedof,
hasno authoritydefiningits topologyevolution. That is why no-
bodycangiveustodayafully detailedmapof theInternet.This is a
mainchallengebecausemany network protocoldeveloperswould
appreciatesuchinformation. Hopefully oneaspectof the Internet
topologyis easierto capturethantheothers.It is thetopologymade
by the AutonomousSystemsof the Internet. Thesenetwork enti-
ties areusedat the inter-domainrouting level of the Internet. An
importantrepositoryof inter-domainroutingdatais availableat the
NationalLaboratoryfor Applied Network Research[10]. Several

studiesarebasedonthesedataandweprovideafollow-onanalysis
to existingwork.

Basedon six intancesof BGPdata(from November1997to May
2000)we have calculatedmany averagepropertiesof the AS net-
work from distributions concerningdegree, distance,numberof
shortestpaths,trees,etc. We have found that someof them can
beconciselydescribedby power-laws. We have alsoexaminedthe
evolution of theseaveragepropertiesand we have derived some
empiricallaws.

Our work will provide usefulinformationfor inter-domainrouting
protocoldevelopersandparticularlyfor thoseinvolvedin multicast
inter-domainroutingresearch.Indeedwestudythedegreedistribu-
tion (importantfor inter-domainmulticast),thedistance(i.e. path
length)distribution, the routingpolicy (to checkfor theefficiency
of inter-domainrouting),thenumberof distinctshortestpathdistri-
bution (to measuretheamountof redundancy), thebi-connectivity
(ameasureof reliability vsconnectionfailure)andmany properties
concerningthetrees(interestingfor routingmanagement).

The rest of this paperis organizedas follows. Section3 of this
paperdefinesa few notionsandtermsthatwill beusedin therest
of thepaper. Section4 is devotedto the problemsof the analysis
while section5 is dedicatedto the analysisof the last sampleof
our dataset(i.e. May 2000).In section6 we analyzetheevolution
of the AutonomousSystem(AS) network sincethe inter-domain
observer begancollectinginformationin November1997.Finally,
in section7, we presentfour new power-laws thatwe foundwhile
analyzingthevariousdistributionsshown in section5.

2. RELATED WORK
Thispaperdealswith AS network topology, a topicalreadywidely
studied.Thusits contentis not completelynew andthe topologi-
cal propertiesthatwe studyarepartof a framework setby several
previous studies. One of the earlieststudiesof the AS network
topologywascarriedout by Govindanet al. [3]. They recovered
the tracesof the BGP updatesof onebackboneBGP router from
June1994 to June1995andfrom anotherrouteserver from Au-
gust1995to November1995. They inferedfrom the tracesmany
topologicalresultsaswell asroutestability results.Westudysome
topologicalpropertiesalreadyexaminedin theirwork andwecom-
pareourmeasureswith theirs.Anotherstudyby Faloutsosetal. [1]
usedBGPdatarecoveredfrom a specialBGProuterconnectedto
several peers,from November1997to December1998. They de-
finedthreepower-lawsthathold for thethreeAS network topology
instances(oneevery six months)built by usingthis BGPdata. In
our paperwe usethesamesourceof informationup to May 2000.



Thuswestudysix instancesof theAS network topology. Wedefine
fivene� w power-lawsexactlyin thewayFaloutsosetal. didandthus
ourwork is anextensionof theirwork. At therouter-level, anearly
studywascarriedout by Pansiotet al. [11] by usingsourcerout-
ing. Weuseroughlythesametaxonomyappliedto theAS network
topologyandwe studya problemthat they tackledin their work,
namelyroutingpolicy overhead.Anothersimilar studywhoseaim
wasto discover the Internetroutersmapwasrecentlyundertaken
by Govindanetal. usinganheuristiccalledhop-limitedprobes[4].
They alsonoticedthatsomeof theFaloutsosetal. power-lawshold
for their router-level Internetinstanceof 1999.

3. AS NETWORK PRESENTATION
Beforewepresenttheanalysisof thecollecteddataon thenetwork
of AutonomousSystems,we provide below a few definitionsof
termsthatwe will usethroughoutthepaper.

BGP routing tablesgive potentiallymultiple AS pathsto a setof
IP prefixes [16] andall of theserepresentAS level connectivity.
Hencewe canbuild thegraphof ASsby analyzingtheseAS paths:
two adjacentASs in a pathhave a BGPconnectionthatwe model
by anedge.WecanalsocalculatetheRoutingPolicy Ratio(

�����
)

by usingtheseAS paths.For a givencoupleof nodes,the
�����

is
equalto theadvertisedpathlengthbetweenthetwo dividedby the
shortestpathlengthcomputedin thegraphof ASs.

TheASsareusuallyclassifieddependingon theway they manage
transittraffic [14] (i.e. traffic thatdoesnotoriginateor terminatein
theAS):

� StubAS: hasonly oneconnectionto anotherAS.

� Multi-homedAS: hastwo or moreconnectionsto otherASs
but refusesto carrytransittraffic.

� TransitAS: hastwo or moreconnectionsto otherASs and
carriesbothlocalandtransittraffic.

We keepthesedefinitionsandaddthefollowing ones,considering
theAS network asanundirectedgraph:

� CycleAS: anAS thatbelongsto acycle (i.e. it is onaclosed
pathof disjoint ASs).

� BridgeAS: anAS which is not a cycle AS andis on a path
connecting2 cycleASs.

We thendivide theASsinto two exclusive broadcategories:

� In-meshAS: anAS which is a cycleAS or a bridgeAS.

� In-treeAS: anAS whichis notanin-meshAS (i.e. it belongs
to a tree).

We thendefinethemeshasthesetof in-meshASsandthe forest
asthesetof in-treeASs. All ASsin theforestcanalsobeput into
oneof thenext two exclusive categories:

� BranchAS: anin-treeAS of degreeat least2.
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TREE
TREE

TREE
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Root AS
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Figure 1: Differ ent kinds of AS

� LeafAS: anin-treeAS of degree1 (synonym of a stub).

Thecycle andbridgeAS definitionsareusefulto definethemesh
andareneededby thestudyof thebi-connectivity. Thein-meshAS
definitionis necessaryto classifyASsin themeshor in theforest.
This is usefulprior to the analysisof the trees(numberof roots,
sizeanddepthdistributions,etc.) Finally anAS canalsohave the
following qualification(s):

� RootAS: An in-meshAS which is the root of a tree(i.e. it
is adjacentto two or morein-meshASsandto oneor more
in-treeASs).

� RelayAS: anAS having exactly2 connections.

� BorderAS: anAS locatedon thediameterof thenetwork.

� CenterAS: anAS locatedon the radiusof thenetwork (i.e.
belongingto thecenterof thenetwork).

Note that somequalificationsarecumulative while othersareex-
clusive. Eachin-treeAS is connectedto oneor morein-treeASs
or to a rootAS andit canbelongto only onetree.Eachtreeis con-
nectedto themeshvia its root AS andtherecanbe only oneroot
AS pertree(otherwisewewould have a cycle). A rootAS belongs
to the mesh. A root AS is consideredin-treeonly in a few cases
(e.g.whencountingthesizeof atree).Figure1 shows thedifferent
kindsof ASsin aninter-domainlevel network. As alastremarkwe
shallpoint out thata non-rootAS in themeshcouldbea root AS
with ahiddentree(not seendueto BGPaggregationmechanism).

4. BGP DATA ANALYSIS
In our paperwe usethe samesourceof informationasFaloutsos
et al. [1]. This sourceis a BGProuterthatcollectsroutesfrom the
23 peerscurrentlyactive asof May 2000. The BGP dataof this
routeris storedona server managedby theNetwork Measurement
andAnalysisteamof theNationalLaboratoryfor AppliedNetwork
Research(NLANR). The teamhassetup a Network AnalysisIn-
frastructurethatprovides,amongotherdata,BGP raw routing ta-
ble information[10]. Thesetof datanow extendsfrom November
1997to May 2000in ourstudy.



Date 11/97 5/98 11/98 5/99 11/99 5/00

D. S. 10 15 18 20 21 27
E. S. 10 15 17 19 19 23
PR’s 55957 57597 55867 60013 70511 84295
ASs 3025 3653 4351 5043 6214 7624

PR/AS 18.5 15.8 12.8 11.9 11.3 11.1

Table 1: BGP speakers information

4.1 Origin of the data
This BGProuter, calledroute-views.oregon-ix.net, hasestablished
BGPconnectionswith a numberof BGPpeers.Someof themare
locatedin very big ASs. Its purposeis to be an observer of the
AS pathscurrently advertisedin the AS network. This observer
dumpsits Adj-RIBs-In routing table(thusbeforeany processing)
so we get the BGP routing informationof all the sourcesfor all
the destinationprefixes at the most. We say ”at the most” since
sometimessomeIP prefixesarenotadvertisedby somepeers.This
routerhasbeengiven AS number65534. This numberhasbeen
chosenfrom amongtheblock of AS numbersreserved for private
useandnot advertisedon the global AS network [6]. Therefore
route-views doesnot propagateany information, it only recovers
all the routesgiven by its peers. It hasbeendumpingthe BGP
routingtableseverydaysinceNovember8, 1997.Thedumpof the
day is in a file calledASmap.date.time-stamp.txt. We recovered
thesefiles up to May 20,2000. Their sizesrangefrom roughly40
MBytes to 120MBytes. In the subsequentanalysiswe only keep
datafiles sampledevery six monthsto avoid overfilled chartsand
graphs.

4.2 Relevanceof the data
The first thing we checked is the validity of the datasourceover
a chosenperiod of time. When the BGP router route-views was
started,it had10 connectionswith BGP peers(we alsocall them
sources)but this quickly evolved as new BGP peerswere con-
nectedto it. As of May 2000,route-views has30 declaredneigh-
borslocatedin 27ASs(but only 23emitting,notcountingmultiple
sourcesperAS) ! Theevolutionof thenumberof declared(D.) and
emitting(E.) BGPpeersof route-viewsareshown in table1. If we
look at theBGPpeerslist (not shown) from thebeginningwe can
seethat not only the total numberincreased,but alsosomepeers
canceledtheir connectionsandwerereplacedby others,andsome
peerswereevendisappearingandreappearingthroughtime (prob-
ably dueto connectivity problems).In fact,we have foundonly 8
sourcesthathave beenconnectedto route-viewsever sincethebe-
ginning. We call themthe 8 origin sources.Despitethe increase
in the numberof BGP peers(by a 2.3 factor), the increasein the
numberof ASsandprefixesis mainlydueto thesolegrowth of the
AS network duringthis two andahalf yearperiod.An explanation
for this statementis givenlateron in thissection.

We canseein table1 theevolution of thenumberof ASsandthe
numberof prefixes(notedPR) seenby route-views. A prefix is a
partially masked IP network address.It is the fundamentalmech-
anismof theclasslessinter-domainrouting(CIDR) which enables
aggregationof IP network addresses.CIDR is fully explainedin [2]
andhasbeendeployedsincelate1992in thePublicInternetto con-
tain thegrowth rateof theroutinginformationby enforcinghierar-
chicalrouting[17]. Thisenforcementneedsanaddressassignment
strategy to avoid thedisseminationof routinginformationin theAS
network (e.g. domainshaving non-contiguousnetwork numbers)
andto reducetheaccumulationof routinginformationin backbone

routers[15]. An InternetRegistry (IR) systemhasbeensetup to
control IP allocationto help CIDR deployment [7]. Notice that
someprefixes can be subsetsor supersetsof others. But if they
are in the routing file, it meansthat they areboth advertisedand
eachof themcountsin the total numberof prefixes. We seethat
the numberof prefixesin November1998is lower thanthe num-
berof prefixesof the two previous AS network instances.Maybe
this is dueto thepolicy of prefix aggregation(i.e. thereplacement
of a groupof prefixesby a commonshorterprefix). Govindanet
al. [3] reports531ASsand21524prefixesin November1994and
909ASsand31470prefixesoneyearlater. This gives,roughly, a
70%and46%increaseperyearfor ASsandprefixesrespectively.
By usingthetable1 we infer anaverageincreaseof 44%and18%
per yearsinceNovember1997. We canclearly seethe effectsof
theAS numberallocationstrategy [6] andtheCIDR strategy in the
dramaticreductionof theregularincreaseof AS numbersandpre-
fixessince1994. In two andhalf years,the numberof ASs was
multiplied by 2.5 while the numberof prefixeswasmultiplied by
only 1.5. This alsoshows theeffect of thestrongpolicy of aggre-
gationin theprefix management.Notice that the averagenumber
of prefixesperAS hasfallen from 18.5to 11.1. This is not neces-
sarilyagoodthingasexplainedin [6]: asmany prefixesaspossible
shouldbeplacedwithin a givenAS, providedall of themconform
to thesameroutingpolicy.

To seethe impactof thevariationin thenumberof sourceson the
resultssinceNovember1997, we analyzedthe datagiven by all
sourcesat eachchosentime instanceon theonehand,andthedata
given by the 8 origin sourceson the otherhand. The deviation is
givenin % for somemaintopologicalpropertiesof theAS network
in figure2. We canseethat thedeviation is usuallyvery low with
a few percentilepoints. For example,in May 2000, the number
of ASs seenby the origin sourcesonly differ by 0.6% from the
numberseenby the 23 sources.This meansthat the increaseof
theBGPpeers(sources)numberhasnot influencedtheAS number
increase.Amongthe45 newly discoveredASs(0.6%),37 areleaf
ASsand8 arenon-rootcycleASs(4 of themhavedegree2, 3 have
degree3 and 1 hasdegree7). The biggestgapcan be observed
for thenumberof connectionsin theAS network (i.e. thenumber
of edges)which is muchunderestimatedwhenwe consideronly
the 8 origin sources(8.5%differencein May 2000). This means
that part of the increasein the numberof connectionsis due to
the BGP peernumberincreaseandnot only to the growth of the
AS network itself. However we will seelater thenumbersrelated
to the growth of the AS network and notice that this problemis
alleviatedby thesoleincreaseof theAS network size.Amongthe
1317 new connectionsfound (8.5%), 61 werebroughtby the 45
new ASsand1256werelinking existing in-meshASs. Amongthe
61 edgesconnectingthe new ASs, 37 wereconnectingan in-tree
AS to anin-meshAS. Thismeansthatall 37leafASsweredirectly
connectedunderrootASs.Theother24edgeswereall connecting
a new AS andan existing in-meshAS. It is clearthat theseedges
wereconnectingthe8 new cycleASs.

To further investigatethe influenceof the numberof sources,we
have measuredthe % of destinationsseenby any � numberof
sourcestaken from amongthe8 origin sourcesin May 2000. (We
did not take the23sourcessetbecausethenumberof combinations
would have exploded.) In theory, every sourceor combinationof
sourcesmustseeall thedestinations.Figure3 shows the% of ASs
seenby any combinationof � sourcesamong8. The maxcurve
is the combinationthat saw the highest% of destinationswhile
the min curve shows the lowest. With 2 or more sources,more



Figure2: Deviation % of origin vsall sources

Figure3: % of destinationsseenby a � -combination of sources

than95%of thedestinationsseenby 8 sourcesaredetectedin the
lowest combinationcase. The poor scoreof the min curve for 1
sourceis probablydue to connectivity problemsfor this specific
source.Furthermorefigure 2 shows that thereis only a 0.6%dif-
ferencebetweenthenumberof destinationsseenby 8 sourcesand
by 23 sources.Theasymptoteis quickly reached,andthenumber
of sourceshasno impacton the numberof ASs existing in real-
ity. This doesn’t meanthatall real ASsareseenbut probablythe
biggestpartof them. In fact,someASscanbehiddendueto BGP
AS pathaggregationmechanism.

We proceededin thesameway asabove for the% of connections
seen.In theory, every sourceshouldalmostalwaysbetherootof a
shortestpathtree.Thismeansthatasourcedoesnotseeall connec-
tionsin thenetwork. It is by cumulatingtheviewsof many sources
that we will be ableto unveil mostof the connectionsin the net-
work. Figure4 shows the% of connectionsseenby any combina-
tion of � sourcesfrom among8. Wecanseethatif wetakeany one
sourceout we will still seeat least95.9%of theconnectionsseen
by all 8 sources.We alsonoticethatwith at least5 sourceswe can
observe at least90% of theconnectionsthatwe would seewith 8
sources.Althoughthemaxcurve seemsasymptotic,this is clearly
not the casefor the min curve. This meansthat if we addmore
than8 sources,the total numberof connectionswill probablyin-
crease.In factthis is thecase,sincewesee8.5%moreconnections
with 23sourcesthanwith 8 sources.Themainproblemwewantto
solve with thesefiguresis: how many sourcesshallwe addto get
ascloseaspossibleto thetruetotalnumberof connectionsexisting
in theAS network (not takinginto accountdynamicproblemssuch
aslink failure). Figure4 shows us thatalthough8 sourcesarenot

Figure4: % of connectionsseenby a � -combination of sources
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Source

Source

Source
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Figure5: Influence of sourceposition

enough,anasymptotecanexist (i.e. bothcurvesarenot linearand
tendto flattena lot whenthenumberof sourcesincreases).

The fact that it is very difficult to seeall real connectionscanbe
partly explainedby whatwe call theviewing problem. Eachemit-
ting sourceseesa tree of AS and the merging of all thesetrees
enablesus to build thegraphof AS. But asshown in figure5, this
graphcanbeskewed: somezonesareseenastreesbut they could
be heavily meshed. This mostly dependson the location of the
sources.Thefartherthey arefrom eachotherandthemorethey are
scattered,thebettertheview will be.

To concludethis section,we can say that the numberof sources
(i.e. BGPpeers)connectedto theBGPobserver routerhasnearly
no influenceon thenumberof ASsdetectedanda moderateinflu-
enceon thenumberof connectionsdetected(up to 8.5%aswe saw
earlier). This is why, in the remainingpart of this paper, we will
only presentresultsobtainedby processingthe datagiven by all
sourcesat any givendate(e.g. the23 sourcesof May 2000,the19
sourcesof November1999,etc.).

5. AS NETWORK TODAY
In this sectionsomemajor propertiesanddistributionsof the AS
network arepresented.

5.1 Global & averageproperties
Table2 showsthemaincharacteristicsof theAS network asof May
2000. Thenetwork roughlycontainstwo timesmoreedges(undi-



Nb of AS 7624
Nb of connections 15234
Meandistance 3.65
Meaneccentricity 7.02
Diameter 10
Radius 5
Meandegree 4.0
Max degree 1704
Meanmeshdegree 5.15
Meshsize 4825
Centersize 3
Bordersize 8
Nb of trees 591
Meantreesize(w/ root) 5.74
Max treesize 312
Meantreedepth 1.1
Max treedepth 3
Nb of cutpoints 663
Nb of bicomponents 2810

Table 2: AS network propertiesin may 2000

rected)than nodes. The averagepath length (distance)between
any two nodesis between3 and4. 63%of theASsarein themesh
while the remaining37% arein trees(rootsexcluded). RootASs
areonly 12%of themeshASsbut they leadto 37%of theASs.The
tenbiggestASs,with respectto thedegree,areroot ASsandthey
arenearlyall interconnected(i.e. atonehopfrom oneanother).We
notethatsix of themaresourcesandthreeareorigin sources.There
arefew borderandcenterASs.

5.2 Connections
Figure6 shows theAS distribution by degree. It is highly skewed
and complieswith power-law 2 (seesection7). Notice that the
numberof nodesof degree2 is higherthanthenumberof nodesof
degree1.

On one hand this can be a true anomalywhich meansthat the
power-law doesnot apply either to the degree1 nodesor to the
degree2 nodes.Ontheotherhandthiscanbeameasurementprob-
lemwhichmeansthatweunder-estimatethenumberof leafnodes.
Thisunder-estimationcanbetheconsequenceof theuseof AS ag-
gregationor thefactthatthereis noneedfor having leaf ASs.

97.3%of the in-treenodeshave degree1. This implies thata vast
majority of nodesof degree2 arein themesh(97.1%).Only 26%
of theASshave a degreeof 3 or above. It is nearlythesameresult
as the onefound between1994and1995by Govindanet al. [3].
This meansthat an inter-domainmulticastrouting protocolusing
reducedtrees(i.e. atechniqueabstractingrelaynodes)wouldlever-
ageahighefficiency from theinter-domaintopology. It is alsotrue
attherouterlevel wheresomearchitecturesdeploying reducedtrees
have alreadybeenstudied[12, 5].

Figure7 shows the ASs degreedistribution by rank. It complies
with power-law 1 (seesection7). As saidabove, the ten biggest
AS arerootsand38% of all theedgesendup on oneof theseten
nodes.As a lastnotewerecallthat,at therouter-level, Faloutsoset
al. [1] foundthatpower-laws1 and2 heldin 1995[1] andGovindan
et al. foundthatpower-law 2 heldin 1999[4].

Figure6: AS distrib ution by degree

Figure7: AS distrib ution by rank

5.3 DistancesbetweenAS
This sectiongives someresultsconcerningthe inter-domaindis-
tances.The diameteris 10, it is the samevalueasthe onefound
in 1995by Govindanet al. [3]. This enforcesempiricallaw 3 (see
section6). Theeccentricitydistributionseemsto beGaussianwith
a meaneccentricityof 7. Theradiusis 5 andonly threenodesare
in the center. We notice that the eccentricitydistribution of the
routersin 1995[11] hasthesameshape(i.e. Gaussian)astheone
in figure8.

Thedistributionof theASsmeandistanceseemsmoreerratic.Maybe
this is dueto oursampling(i.e. weroundedthevaluesto thetenth).
Nodeshaving a meandistancearound3 aredominant.It is worth
rememberingthat at the router-level, Pansiotet al. [11] found an
averagedistanceof 21.8anda diameterof 31 (anda radiusof 16)
in 1995,while Paxson[13] found16 andabove 30 respectively in
1997.

5.4 Distinct shortestpaths
We begin this sectionwith thedefinitionof distinctshortestpaths:

Definition1. Let � and � betwo distinctverticesof aconnected
graph 	 . Two pathsjoining � and � aredisjoint if they have no
verticesotherthan � and� in common.Thesetwo pathsaredistinct
if they have at leastonevertex not in common.

The distribution of the Numberof distinct ShortestPaths ( 
�� � )
is usefulfor evaluatingthe amountof redundancy edgesinvolved
in shortestpaths. In a treegraphor in a completegraph,for ex-
ample,any pair of nodeshasoneandonly oneshortestpath,hence
the 
� � distribution is limited to onevalue(i.e. 100%of pairs



Figure8: AS distrib ution by eccentricity

Figure9: AS distrib ution by meandistance

have 1 shortestpath). In thecaseof a broaderdistribution, higher
valuesmeanthat if oneedgeof a shortestpathof a pair of node
is removed, thereis still a probability for anothershortestpathof
the samelengthto exist for this pair. Figure10 shows how many
pairs of nodes(in %) have the samenumberof distinct shortest
paths. We only plot the beginning of the distribution, but exam-
ining all the resultsshow that it exhibits power-law number5 de-
scribedin section7. Figure11 shows the % of pairshaving the
sameshortestpathlength. The given distribution looks Gaussian
with an averageequalto the meandistance(i.e. 3.65). This dis-
tribution is closelyrelatedto themeandistancedistribution,which
meansthat althoughthe latter is erratic,a betterscalemay show
it asbeingGaussian.It is worth noticing that theaveragenumber
of distinct shortestpaths(not necessarilydisjoints)is 5.21(it was
3.59 in November1997). This increaseis a consequenceof the
meshgrowth (seesection6. A studyof theAS shortestpathshas
recentlybeencarriedoutby Tangmunarunkitetal. [18].

5.5 Trees
We presentheretwo distributionsconcerningtreespartially shown
in figures12 and13. The first is the frequency of the treesizes.
As above,weonly show thebeginningof thedistribution,but if we
examineall theresultswe seethatit canbeconciselydescribedby
thepower-laws 6 and7 detailedin section7. Theseconddistribu-
tion concernsthefrequency of the treedepths.Noticethatno tree
hasa realarborescencegiventhedistribution of figure13. 90%of
treesis simply composedof leavesdirectly connectedto their cor-
respondingroot. Lessthan10%of treeshasdepth2 andonly a few
treeshave depth3 which is themaximumdepth.

Figure10: AS pair distrib ution by the number of distinct short-
estpaths

Figure11: AS pair distrib ution by shortestpath length

5.6 Connectivity
TheMay 2000instanceof theAS network has663cutpoints.39%
of themhave a degreecomprisedbetween2 and5, and35%have
a degreebetween6 and15. Thebiggestcutpointis thebiggestAS
(with respectto degree). The AS network meshcontainsonly 10
cutpointswhich meansthat mostcutpointsareinducedby in-tree
ASs(apartfrom leaves).Themeshalsocontains11 bicomponents
(8 of size3, 2 of size4 and1 of size4803).Henceit hasnobridges.
As themeshcontains4825ASs, it is clearthat thebiggestpartof
the meshis biconnected(it is the bicomponentwith 4803 ASs).
This propertyensuresthat we have at leastonebackup(disjoint)
pathfor any givenpathin thebiggestpartof themesh.

5.7 Routing policy
As wehave theAS pathsin theBGProutingfiles,wecanusethem
to comparetheroutingdistanceof agiven(source,destination)pair
to thedistancegivenby thecorrespondingshortestpathcalculated
afterhaving built thegraph.Wedid this for eachof the23sources.

We noticedthat thenumberof destinationASs is not equalto the
numberof ASs. We verifiedthis in eachof thesix instancesof AS
network we studied.Thereis, on averagefor all sources,roughly
0.5 to 1.5% of the ASs that arenever a destinationAS in all the
advertisedAS paths.Welookedfor ASsthatareneveradestination
for all thesourcesandwe did not find any. This meansthatsome
ASsarenot destinationswhenwe considera givensource,but are
destinationswhenwe consideranothersource.The average% of
non-destinationASs for all sourcesmasksthe fact that it is never



Figure12: Treedistrib ution by size

Figure13: Treedistrib ution by depth

thesamegroupof ASsthat is concernedgivenany onesource.To
concludewe cansaythat no AS is never a destinationAS for all
sources.

For a given source,we defineany non-destinationAS as an un-
reachableAS. TheremainingASsconstitutevalid destinationsand
for a givenAS pair, we cancomparethedistancegivenby thebest
AS path(rememberthatwe have pathsfrom all sources:seesec-
tion 4.1) with thedistancegivenby theshortestpath. The former
dividedby thelattergivesa ratio thatwe call RoutingPolicy Ratio
(
�����

).

We calculatedthe ratio for all pairs (source,destination). These
pairsrepresenta sampleof 0.3%of thetotal numberof pairs.The
sourceshaveameandistanceof 2.75whileall ASshaveameandis-
tanceof 3.65.Thissuggeststhatthesourcesarecloserto thecenter
andit meansthatwe areprobablyunderestimatingthe

�����
by a

few % points(thetrue
�����

is unlikely to beinferior to thecalcu-
latedone). Theratio valuesrangefrom 1 (thetrivial minimum) to
4.

The
�����

distribution is calculatedby taking the averageof the
policy routingratiodistributionsof eachof the23emittingsources.
However, weexcluded5 sourceswhichhadmoreunreachabledes-
tinationASsthanreachabledestinationASs. As thesesourceshad
probablyconnectivity problems,taking them into accountwould
have stronglybiasedthe averagedistribution. The distribution is
shown in figure14. Wecannoticetwo importantfacts.First,73.7%
of the routesareequalto the shortestpaths(i.e. thereis no dis-
tanceoverhead).Second,4.8%of thedestinationsareunreachable,
which is high even if this valueis anaverage.If we calculatethe

Figure14: Routing policy ratio distrib ution

meanof all theratiosfor all thereachabledestinationswe obtain:
���������������

1.087

Thismeansthatdueto policy decisions,pathsareonaverage8.7%
longerthantheir correspondingshortestpaths. This ratio is quite
good,andwecansaythatinter-domainroutingis veryefficientand
cooperative. We remindthereaderthatat therouterlevel, Pansiot
etal. founda

�����
of 32%in 1995[11] andTangmunarunkitetal.

foundin 2001[18] thatsome20%of Internetpathsareinflatedby
morethan50%.

6. AS NETWORK EVOLUTION
This sectionshows the evolution of the propertiesof the AS net-
work over a 30monthperiod,from November1997to May 2000.

6.1 Evolution sincelate 1997
Figures15 and16 show the valuesof the propertiesfor eachin-
stance,comparedwith the valuesof the propertiesof the first in-
stancehaving a baseof 100 (e.g. if a propertyhasvalue 170 in
May 1999, it meansthat it hasincreasedby 70% sinceNovem-
ber1997). We canclearlydistinguishtwo trendsin thecurves. A
groupof propertiesis quickly increasingata regularrate(although
the ratehasnot the samevalue for all properties),while another
groupseemsto stayconstant.

In the evolving group, for instance,the numberof ASs and the
numberof connectionsgrow bothat nearregularratesof 20%and
24%increaserespectively everysix months.In thestablegroup,we
canfind thediameter, theradius,theaveragedistanceandsoon. We
canseethat themeshslowly takesover theforestpartbecausethe
sizeof themesh(i.e. thenumberof nodesin themesh)is increasing
at a fasterratethanthe sizeof the whole graph. This meansthat
thenetwork getsmoreconnected.This resultwasalreadyfoundby
Faloutsoset al. [1] at theendof 1998.

6.2 Biannual averageevolution
If we calculatethe % of deviation of somepropertiesof the AS
network, for eachinstancecomparedwith its previousinstance,we
get the figure 17. We can seethat somecurves can be roughly
averagedby ahorizontalline. Thissuggeststhattheevolutionrates
of thesepropertiesarefairly constant.

Table3 givestheaverageof the% of variationscalculatedfor the
five instances(after the first) of somemajor propertiesof the AS
network. Wecanseethatthenumberof degree2 ASsis increasing
by 26%every six months,nearlytwice asmuchastheincreaseof
the numberof degree1 ASs. We alsoseethat the % of root ASs



Figure15: Propertiesevolution since11/97

Figure16: Propertiesevolution cont’d

versusthemeshASs is decreasingevery six monthsby 9%. This
is becausethesizeof themeshis growing fasterthanthe number
of trees.Amongpropertiesthat regularly increase(i.e. thathave
an averagevariationabove 5%, suchasthe numberof ASs), it is
striking to seethatthestandarddeviation of their averagevariation
is quite low. This meansthat the increaserateis very regular (we
canseethison thecurvesof figure17).

Wededucefrom thepreviousparagraphthatthegrowing properties
areruled by empirical laws thatwe infer from the table3. In the
laws description,the term currently meansthat the law hasbeen
holdingfor 30 months(2.5years)andthat it will probablyhold in
thevery nearfuture(a few years).

LAW 1. Empirical Law 1 (ASs growth) Currently, thenumber
of ASsin theASnetworkincreasesby45%each year.

LAW 2. Empirical Law 2 (Connections growth) Currently, the
numberof BGP connectionsin the ASnetworkincreasesby 53%
each year.

Noticethatthereis only an8%differencebetweenthevariationra-
tio andtheratioof empiricallaw 1. Thismeansthatthemajorityof
theASsareaddedwith oneedge.It enforcesthe incrementalthe-
ory of thepower-laws’ origins[9]. Theadditionaledgesaremostly
usedto increaseconnectionsof degree1 ASsasdiscussedearlier.

Figure 17: Evolution of the biannual % variation of several
measures

Mean Stddeviation

Nb of AS 20.3 2.6
Nb of connections 23.8 3.3
Meandistance -0.4 1.1
Diameter 2.8 12.3
Radius 0.7 11.6
Meandegree 2.9 1.8
Max degree 23.8 3.7
Meanmeshdegree 1.1 2.1
Meshsize 25.6 3.9
Nb of trees 14.8 4.8
Meantreesize(w/ root) -0.7 5.1
Meantreedepth -0.7 1.0
% of rootsvsmesh -8.6 1.6
Nb of in-treeAS 13.7 5.2
Nb of in-meshAS 25.6 3.9
Nb of AS of degree1 14.1 5.4
Nb of AS of degree2 26.0 4.2
Nb of AS of degree3+ 23.7 6.8

Table 3: Biannual variation % sinceNovember 1997

LAW 3. Empirical Law 3 (Distance invariants) Currently, the
average distance, thediameterand the radiusof the inter-domain
graphof theASnetworkstayconstant.

LAW 4. Empirical Law 4 (Trees growth) Currently, the num-
berof treesin theASnetworkincreasesby 32%each year.

LAW 5. Empirical Law 5 (Tree invariants) Currently, theav-
erage treesizeandtheaverage treedepthof theinter-domaintrees
of theASnetworkstayconstant.

Notethattheaveragetreedepthseemsto beslowly decreasingwith
time (-3.6%in 2 years). Of course,theselaws, like all empirical
laws, areapproximateandtheir life-cycle is very short. An upper
boundcanbeeasilygivenon thenumberof ASsfor example.AS
numbersarecodedwith a16bit integerandtheIANA hasreserved
the block 64512-65535.A quick calculationtells us, if the em-
pirical law 1 holds,how many yearsit canlastasfrom November
1997:

� ���������
�����
� �! ��

�"��#%$ &('
�*) $ +-, (1)



Date 11/97 5/98 11/98 5/99 11/99 5/00�����
1.082 1.087 1.070 1.076 1.082 1.087. 
 � 4.53 5.16 5.80 7.98 6.98 4.83

Table 4:
�����

evolution

Thelaw, if valid, tells usthat theAS numberexhaustionwill arise
in approximately8 yearsstartingfrom 1997. So we canroughly
announcethatempiricallaw 1 (andmostprobablytheotherempir-
ical laws) canbeusedat mostuntil circaJanuary2006,if theAS
countkeepsgrowing at thesamepace.Theselaws canbeseenas
reflectingtheteenagegrowth of theAS network.

6.3 Routing policy evolution
Table4 shows the evolution of the

�����
describedin section5.

The
�����

hasbeenquitestablesinceNovember1997,imposinga
smallaverageoverheadof 8%onthedistancesto travel for two and
a half years.

The
. 
 � line in table4 shows the% of nonreachable(NR) des-

tination ASs. For any instance,sourcesthat have seenmorenon
reachableASsthanreachableASshavebeenexcludedfrom thecal-
culation(asthey mostprobablyhadconnectivity problemsat this
time). TheNR ASs% seemsto remainat approximately5% over
time. Thehighestscorewasreachedin May 1999wherenearly8%
of theASswereseenasunreachable.

6.4 Connectivity
Table5 shows theevolution of thenumberof bi-connectivity ele-
ments(cutpoints,bicomponentsandbridges). They aregiven for
the whole graphand for the meshonly (denotedby a small / ),
althoughthelattervaluesaremoresignificant.

In thewholegraph,all branchASsandrootASsareautomatically
cutpoints.Furthermore,all in-treeedgesareautomaticallybridges.
Notethatfor themesh,therootsareincludedbut all edgesfrom the
rootsto in-treenodesareremoved(i.e. mostrootsarenotcut-points
anymore).

We point out that cutpointsaresensitive ASs that shouldnot fail
in order to maintain connectivity. Although the meshcontains
roughly1.5%of all thecutpointASs,theseASsdonot reallysepa-
ratethemeshinto equalbicomponents.Thebicomponentsizedis-
tribution(notshown) provesthat,for eachinstance,thereis always
onebicomponentnearlyasbig asthe meshanda few othervery
smallbicomponents(i.e. containingaroundhalf a dozenASs).

Notice that two bridgesappearedin the meshof the instanceof
November1999.This is a very sensitive areaandtheconnectivity
will belost if oneof thesetwo AS connectionsfails(notethatmore
thanoneIP-level link canbeunderlyinganAS interconnection).A
deeperinvestigationshowedthat thesetwo bridgeswerelinkedby
oneon-bridgeAS andthat it hadno realeffect on theconnectivity
sincethebiggestbicomponentof themeshhad3834of the3852in-
meshASs.Thismeansthatthesebridgesdid notdividethemeshin
two big bicomponents,but only cut off a smallbicomponentfrom
thebig partof themesh.

7. POWER-LAWS
In this sectionwe presentfour power-laws that we found in our
analysisof the AS network. We follow exactly the samepresen-
tation as the one usedby Faloutsoset al. in [1]. Their paper

Date 11/97 5/98 11/98 5/99 11/99 5/000 �214321 359 441 475 516 582 66357698 /:3 1489 1610 1787 1957 2372 281057;-69<>=@?
1479 1604 1779 1948 2364 27990 �214321�A 6 4 7 7 9 1057698 /:3BA 10 6 8 9 10 1157;-69<>=@? A 0 0 0 0 2 0

Table5: Biconnectedelements

presentsthethreefirst power-laws. We continuetheir enumeration
andthereforenumberourpower-lawsfrom number4 upto number
7. After discussinghow to getapower-law givenacertaindataset,
we detaileachof thefour new power-laws.

7.1 Validation of a power-law
Duringouranalysis,whenwecameacrossadistributionthatcould
begovernedby apower-law, wecalculatedthe �"C%D of thetwo series
of values,andwemadea linearregressionon thisdataby applying
the leastsquares fitting method[19]. We determinedthe quality
of thefit of thedataby calculatingtheproduct-momentcorrelation
coefficient also called Pearson’s correlation[8]. The correlation
coefficient variesfrom -1 to 1 but one usually takes its absolute
value(ACC).To qualify for a line fitting, theACC valueshouldbe
at leastequalto 0.95.We canconsiderthatwe have averygoodfit
if theACC valueis 0.98or higher.

7.2 The pair rank exponent
We study the Numberof distinct ShortestPaths ( 
� � ) of each
pair of vertices.Thenumberof distinctshortestpathsbetweentwo
verticesis thenumberof shortestpathssuchasany of thesepaths
have at leastonevertex not in common(seethedefinition in sec-
tion 5.4). It is not only thecountof disjoint shortestpathsbut the
countof all paths,excluding identicalpaths(i.e. having thesame
list of vertices)of course.

We sort the pairsin decreasingnumberof shortestpaths( 
� � ),
�BE , anddefinethepair rank

; E asbeingtheindex of thepair in the
sequence.We plot the( �BE ,; E ) pairsin log-log scaleup to therank
of thelastuniquepair for agiven 
� � . Themeasuresfor theMay
2000instanceareshown in figure18. Thedatavaluesareplotted
with diamonds.Thesolid line slopeand F -axiscrossingvalueare
given by linear regression(explainedin the previous subsection).
We do not show the plot of eachpower-law for eachinstanceof
theAS network becausetherewouldhave been24plotsto display.
Insteadwe give in tablestheexponentandACC valuesof eachAS
network instancefor eachpower-law.

Thediamondsof figure18 arewell approximatedby thelinearre-
gressionwith anACC of 0.997.We infer thefollowing power-law
andassociateddefinition.

LAW 6. Power-Law 4 (pair rank exponent) Thenumberof dis-
tinct shortestpaths,� E , betweena pair of nodes3 , is proportional
to therankof thepair,

; E , to thepowerof a constant,G :

�BEIH ;KJE (2)

Definition2. Let ussortthepairsof nodesof agraphin decreas-
ing orderof numberof distinct shortestpaths.We definethepair
rank exponent,G , asbeingtheslopeof theplot of thenumberof



Figure18: Number of shortestpaths �@L pair rank (May 2000)

Date 11/97 5/98 11/98 5/99 11/99 5/00

G -0.26 -0.26 -0.27 -0.29 -0.33 -0.23
ACC 0.973 0.962 0.998 0.996 0.991 0.997

Table6: Pair rank exponent

distinct shortestpathsof the pairsversusthe rank of the pairs in
log-log scale.

7.3 The number of shortestpaths exponent
We studythedistributionof the 
� � . We definethefrequency of
a 
� � , MKN , beingthenumberof pairshaving a valueof 
�� � of
� (i.e. thepairshave exactly � shortestpaths).We plot the( MKN ,� )
pairsin log-logscaleupto avalueof � whosetotalnumberof pairs
is inferior to thenumberof self-pairs,beingof courseequalto the
numberof vertices(e.g. 3024in November1997). As above, the
measuresfor theMay 2000instanceareshown in figure19.

The plots of figure 19 fit the linear regressionline with accuracy
andwe infer thefollowing power-law andassociateddefinition.

LAW 7. Power-Law 5 (number of shortest paths exponent) The
frequency, M N , of a numberof distinctshortestpathsbetweena pair
of nodes,� , is proportionalto thenumberof distinctshortestpaths
to thepowerof a constant,O :

MPNQHR�2S (3)

Definition3. We definethenumberof shortestpathsexponent,
O , asbeingtheslopeof theplot of thefrequency of thenumberof
distinct shortestpathsversusthenumberof distinctshortestpaths
in log-log scale.

Notice that this power-law is strongly linked to the previous one
(the pair rank exponent). Eachof themrepresentsa facetof the
relationshipbetweena pair and its 
�� � . The sameremarkap-
plies for power-laws 1 and2 foundby Faloutsoset al. Both come
from therelationshipbetweena nodeandits outdegree.A power-
law accuratelyrepresentsoneof the tails of a distribution, but the
othertail is usuallymuchlessaccuratelydefined.Hencetheuseof

Figure 19: Frequencyof pairs �@L number of distinct shortest
paths

Date 11/97 5/98 11/98 5/99 11/99 5/00

O -1.95 -2.01 -1.97 -1.98 -1.96 -1.97
ACC 0.986 0.988 0.987 0.988 0.991 0.986

Table 7: Number of shortestpathsexponent

anotherpower-law, definedratherdifferently in orderto modelthe
behavior of theothertail.

Thepower laws 4 and5 derivedfrom thenumberof distinctshort-
estpathdistributionaretied to theamountof redundancy edgesin-
volvedin shortestpaths.Wehavebeenableto generategraphshav-
ing redundancy edges(i.e. not trees)andcomplyingwith power-
laws1 and2 (from thedegreedistribution) thatdonotcomplywith
power-laws4 and5. Thismeansthatlaws4 and5 donotstemfrom
laws 1 and2 andthusareinterestingindicatorsfor characterizing
anAS network map.

7.4 The tr eerank exponent
We studythesizeof eachtree,definedby thesumof thevertices
composingthe tree and including the root. We sort the treesin
decreasingtree size, LUT , and definethe tree rank

; T as being the
index of the treein thesequence.We plot the( L T ,; T ) pairsin log-
log scaleup to therankof thelastuniquetreefor a giventreesize.
The measuresfor the May 2000 instanceareshown in figure 20.
The solid line slopeand F -axis crossingvaluearegiven by linear
regression.

Theplotsof figure20 matchthe linearregressionline and,conse-
quently, we infer thefollowing power-law anddefinition.

LAW 8. Power-Law 6 (tree rank exponent) Thesize, L T , of a
tree 1 , is proportional to therankof the tree,

; T , to thepowerof a
constant,V :

L T H ;-WT (4)

Definition4. Let ussortthetreesof a graphin decreasingorder
of size. We definethe treerank exponent, V , asbeing the slope
of the plot of the sizesof the treesversusthe rank of the treesin
log-log scale.



Figure20: Treesize �@L tr eerank

Date 11/97 5/98 11/98 5/99 11/99 5/00

V -0.77 -0.75 -0.73 -0.72 -0.74 -0.75
ACC 0.983 0.983 0.985 0.989 0.990 0.990

Table8: Treerank exponent

Thesameremarkasabove canbemade.Thispower-law is closely
relatedto thenext one(thetreesizeexponent).Eachof themrep-
resenta facetof therelationshipbetweena treeandits size.

7.5 The tr eesizeexponent
We study the distribution of the sizeof the trees. We definethe
frequency of a treesize, MKX , beingthenumberof treeshaving a tree
sizeof L . Weplot the( M X , L ) pairsin log-logscaleupto avalueof L
ownedby only onetree. Themeasuresfor theMay 2000instance
areshown in figure21.

Theplotsof figure21 fit theline quitewell but thefirst two ACCs
arenotgood.They arearound0.94which is somewhatbelow what
shouldbe acceptable.The reasonscan be multiple: the lack of
information due to a reducednumberof sourcesat the time (10
in Nov. 1997and15 in May 1998),the graphsnot yet beingbig
enoughfor this law, etc. The ACC valuesafter May 1998areall
above 0.95andwe feelconfidentthata power-law governsthetree
size.

LAW 9. Power-Law 7 (tree size exponent) Thefrequency, MKX ,
of a treesize, L , (includingtheroot), is proportionalto thetreesize
to thepowerof a constant,Y :

MKXZH*L\[ (5)

Definition5. We definethe treesizeexponent,Y , asbeingthe
slopeof the plot of the frequency of the treesizesversusthe tree
sizesin log-log scale.

8. CONCLUSIONS
Althoughweseemto modeltheAS level topologyandits evolution
with precision,we can not ensurethat averagevalues,empirical
lawsandpower-laws,will holdwith thesameparametersor evenat
all in themiddleto long-termfuture.A technologicalbreakthrough
couldprobablychangetheshapeof Internetin adramaticway. The

Figure21: Frequencyof tr ees�@L tr eesize

Date 11/97 5/98 11/98 5/99 11/99 5/00

Y -2.01 -2.35 -1.98 -2.46 -2.38 -2.25
ACC 0.940 0.934 0.951 0.975 0.963 0.992

Table 9: Treesizeexponent

adventof switched-circuitprotocolssuchasATM couldcompletely
maskthe physical topology to the network layer. Suchchanges
couldstronglyaffect theAS level topologyof Internet.To resume,
thegoalsof our studyweretwo-fold:

� to give thenetwork researchera detailedview of thecurrent
AS network topologyaswell asa view of its on-goingevo-
lution.

� to providea lot of informationsuchasadditionalpower-laws
to modeltheAS network asaccuratelyaspossible.

Weproposednew empiricallawsthathaveseemedto bevalid since
November1997. We alsoaddeda stoneto thepioneeringwork of
Faloutsosetal. by discoveringfour new power-lawscharacterizing
quantitiesof the AS network not yet studied,as far aswe know.
Thesepower-laws have beenvalidatedover a thirty monthperiod.
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