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Analysis of the Back-Propagation 
Algorithm with Momentum 

V. V. Phansalkar and P. S. Sastrq 

Absfracr- In this letter, the hack-propagation algorithm with the 
momentum term is analyzed. It is shown that all local minima of the sum 
of least squares error are stable. Other equilibrium points are unstable. 

I. INTRODUCTION 
Back-propagation (BP) [ I ]  is one of the most widely used algo- 

rithms for training feedforward neural networks. However, it is seen 
from simulations that it takes a long time to converge. Consequently, 
many variants of BP have been suggested 131. One of the most 
well-known variants is the back-propagation with momentum terms 
(BPM). BP can be shown to be a straightforward gradient descent 
on the least squares error, and it has been shown recently [21 that 
BP converges to a local minimum of the error. While it  is observed 
that the BPM algorithm shows a much higher rate of convergence 
than the BP algorithm, at present there does not exist any analysis 
of the BPM algorithm. 

In this letter, we analyze the behavior of the BPM algorithm and 
show that all local minima of the least squares error are the only 
locally asymptotically stable points of the algorithm. 

Let 0,  denote the output of the ith unit upon presentation of pattern 
z. The j t h  unit is connected to the ith unit by a synaptic strength of 
i t , ,  and the output of the ith unit is 

where f8 is the activation function of the ith unit. The usual choices 
for f t  are the logistic or tanh functions. The desired output of unit i 
(if it is an output unit), upon presentation of pattem z is t , ( z ) .  The 
objective function for the optimization problem of leaming weights is 

E ( U )  = F ( u .  2) 
2 

where 

F(U. z) = [ o , ( z .  U )  - t , ( z ) ] ’  ( 3 )  

is the error on 2 with weights U. The BP algorithm does a gradient 
descent on F ( u .  z) when the pattem presented is 2: 

/ / , , ( I ,  + 1) = O , , ( l l )  - ~ k ( i i F / b i t ) , ) ( ( Z [ l / ) .  U ( l t ) ) .  (4) 

Similarly, the BPM algorithm can be written as 

u , , ( n  + 1) = l l < , ( i t )  - (t ( + t l .  u ( u ) )  

+ t l ( l t ) , ( t ? )  - f I , , O t  - 1 ) )  ( 5 )  

where n and I /  are positive constants. The goal of the algorithm is 
to minimize E ( u ) .  It will be assumed that n is small and that all the 
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pattems are presented frequently so that ( 5 )  is essentially equivalent 
to the algorithm 

/ l j , ( / t  + 1) = U ( , ( / ) )  - ~ l ( h E / i i l / < , ) ( l / ( t i ) )  

+ i l ( l l # / ( t t )  - t O / ( t t  - 1 ) ) .  (6) 

This is justified if is small enough. Equation (6) is exactly 
equivalent to ( 5 )  if the number of pattems are finite and the updating 
is done only after each cycle of presentation of the pattems. 

11. ANALYSIS 

Algorithm (6) is converted to a state variable form to facilitate 
analysis. Define P I  and 1’2 as 

V [ ( T I )  = u(t1): v.[ t t )  = U ( / / )  - U ( l ?  - 1). (7) 

Then (6) can then be rewritten as 
- 

V I  ( / I  + 1 )  = 111 [ I J )  - oTE(vl ( 1 1 ) )  + i p (  i t )  (8a) 

V ~ ( / 1 + 1 )  = - n ~ E [ v l ( t t ) ) + i / ~ . ) ( ” ) .  (8b) 

Theorem I :  (SI. 8 2 )  is equilibrium point of (8) iff GE(s1 ) = 0 
and se = 0. 

Proof.. It can be verified by direct substitution that if GE(s1 ) = 
0 and s? = 0. then ( 8 1 .  S P )  is an equilibrium point of (8). 

For the converse, let v ~ ( i ?  + 1 )  = v l [ i i )  and v2(ii  + 1)  = vq( t t )  

when v I ( t i  ) = SI and v2 ( / i  ) = s2, Using this in (8a). we see that 

- 

- 

- 

- 
(9) 

By (8b). this implies S P  = 0 and using this fact in (9), we obtain 
0 

The above theorem shows that the only equilibrium points of (9) 
are those where Y E  is zero. This is similar to a gradient following 
algorithm. Next, local stability/instability properties of (9) around an 
equilibrium point s = (SI. 5 2 )  are examined. This is done using 
small signal analysis. To linearize (8) around s, the perturbed signals 
are defined as 

-n-TE(sl ) + ‘ ]S-  = 0. 

- 
T‘E( .sl  ) = 0. This completes the proof. 

- 

= V I - S I :  c z = v 2 - . s ~ = ’ u z  ( a s s 2 = 0 ) .  (10) 

Then, using linear approximations (where -T2 E is Hessian of E ) ,  

f I ( l ?  + 1) =VI(/, + 1)  - . S I  
- 

= € 1  ( t t )  - ~IGE(.SI + 6 ,  ( t t ) )  + / / 6 2 (  t t )  

z c , ( i i )  - ~I-T’E(.Y~ ) c I ( t i )  + I I C ~ ( I I )  ( I l a )  

€ 2 ( / ?  + l )  z - n Y - 2 E [ s l ) € l ( l l ) + ’ / € . L ( ” ) .  ( I l b )  

Thus, the small signal (or linearized) model around s is 

where -4 = T2E( .s l  ). In more compact form, (12a) can be written as 

f ( l t  + 1 )  = nf(Jt). ( 12b) 

The following assumptions are made about the behavior of E (  . ) .  
These assumptions imply that E ( . )  is well behaved with respect to 
its Hessian at all points where its gradient is zero. These properties 
are generic and cases where they fail would be rare. 

AI)  G 2 E  is positive definite at all local minima of E .  
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A2) G’E has at least one strictly negative eigenvalue at all points 
z where G E ( z )  = 0 but z is not a local minimum of E .  

The study of stability or instability is done by looking at the 
eigenvalues of D .  It is well known IS ]  that if the magnitude of the 
maximum eigenvalue of D is strictly less than unity, then ( s l .  s2 ) 
is locally asymptotically stable equilibrium point of (8). Conversely, 
even if one of the eigenvalues of D has a magnitude strictly greater 
than unity, then (SI. s2) is an unstable equilibrium point of (8). 

The following lemma characterizes the eigenvalues of D in terms 
of the eigenvalues of -4 = G’E(s1 ). It should be noted that D has 
twice the number of eigenvalues of .4. Essentially. each eigenvalue 
of -4 “splits” to give two eigenvalues of D. All eigenvalues of .-I are 
real as .4 is symmetric, if we assume that E ( . )  is sufficiently well 
behaved so that the second partial derivatives exist and the order of 
differentiation is immaterial. 

Lemma I :  If r )  is an eigenvalue of -4, then the two corresponding 
eigenvalues of D are solutions of the quadratic equation 

- 

(-I2 - (-I( 1 - n/c + ’I) + f /  = 0. (13) 

Prooj: It can be easily shown that D is invertible for any -4. as 
long as rI # 0. Let 6) be any eigenvalue of D .  It is nonzero as D is 
invertible. Let z = (z. y )  be a (nonzero) eigenvector corresponding 
to 8. Then using D z  = Oz.  we obtain 

z - n.42 + ’)y = (->z 
-tr.42 + fly = (-)y. 

Substituting (14b) in (14a) and solving for y (as (3 # 0) 

y = (((-1 - l ) /C)}z .  

-42 = { ( e  - f / ) ( O  - l ) / ( -n( - ) )}r .  

(15) 

Further substituting (15) in (14b), we get 

(16) 

As (8 - T I ) ( @  - l)/(-n(3) is a scalar, z is an eigenvector of -4. 
Let it correspond to the eigenvalue jc. Lc is real as .4 is symmetric. 
Then, substituting -42 = pz in (16) and equating the scalars (as z 
is nonzero, else it is easily seen from (14) that y will also be zero 
and therefore z ) ,  

j l  = (Cl - r / ) ( ( - >  - l ) / ( - n ( 3 )  (17) 

which reduces to 

el2 - (-)( 1 - o/c + ’/ 1 + f )  = 0 (18) 

which completes the proof. 0 
Jury’s criterion [4] is used to check whether a polynomial has 

roots within or without the unit circle. In our case, this reduces to 
(considering (18) for different eigenvalues {c of -4). 

In general, the BPM algorithm is used with both 1 1  and r /  positive. 
With this restriction, (19) further simplifies to 

// > 0  
2 + 2c/ - < I / ‘  > 0 

0 < ’1 < 1. 

is negative, then s is unstable. In particular. all local maxima of E‘( . )  
are unstable. Condition (20b) may be violated if / c  is large. But in 
most cases all the minima which are of interest lie within a bounded 
set. Thus G 2 E  is bounded and therefore if n is sufficiently small, all 
the local minima are stable. Of course, if G’E is bounded, there need 
not be any restriction on considering minima within a bounded set. 

Next, we consider a scalar case where f ( u )  = - c r r 2 / 2 ( c  > 0 ) .  
Thus f ’ (  r c )  = -CU. The BP and BPM algorithms can be written as 

It can be seen that the BP algorithm corresponds to a linear first-order 
discrete time system with a pole at T = (1  - n r ) .  Assume that (1 is 
small enough so that T > U. The BPM algorithm has two poles at 

BPM speeds up convergence in this case if 1011 and 10’1 are less 
than T. It can easily be seen that choosing a negative value for c/ will 
make 181 I greater than T .  Thus, a positive value for c/ is necessary 
to accelerate convergence, which justifies using only a positive value 
of f / .  

111. CONCLUSIONS 

It is shown in this letter that the stable points of the BPM algorithm 
are the local minima of the least squares error. Other equilibrium 
points are unstable. It is also shown by a simple example that if the 
momentum term is negative. the speed of convergence goes down. 
This analysis does not prove that BPM will converge to one of the 
local minima. But it can be easily shown that for small values of ( t  

(and < 1) BP and BPM have essentially the same behavior over a 
finite time interval. Thus, if BP converges to a local minima U ,  BPM 
will be within a small enough neighborhood of U if small enough 
( I  is used. One can then use the fact that local minima are locally 
asymptotically stable to prove that BPM converges to u .  

Similar techniques can be used to analyze algorithms with higher 
order memory. That is, where the “momentum term” depends not 
only on u ( r c  - 1 ) but also on U ( r i  - 2 ). . . . . U ( 1 1  - S) for some S. 
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Thus it is sufficiant that all the eigenvalues of -4 be positive for us to 
conclude that .\ is locally asymptotically stable. By our assumption. 
all local minima satisfy this condition. Thus all the local minima of 
E ( . )  are locally asymptotically stable. If even one eigenvalue of -4 


