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Abstract. Algebraic attacks on stream ciphers apply (at least theoret-
ically) to all LFSR-based stream ciphers that are clocked in a simple
and/or easily predictable way. One interesting approach to help resist
such attacks is to add a component that de-synchronizes the output
bits of the cipher from the clock of the LFSR. The Bit-search generator,
recently proposed by Gouget and Sibert, is inspired by the so-called Self-
Shrinking Generator which is known for its simplicity (conception and
implementation-wise) linked with some interesting properties. In this pa-
per, we introduce two modified versions of the BSG, called MBSG and
ABSG, and some of their properties are studied. We apply a range of
cryptanalytic techniques in order to compare the security of the BSGs.

1 Introduction

In recent years there has been renewed interest in designing stream cipher
keystream generators (KGs) capable of being implemented in small software
or hardware and operating at very high rates. The Shrinking Generator (SG) [2]
and Self-Shrinking Generator (SSG) [8] are schemes providing a method for ir-
regular decimation of pseudorandom sequences such as those generated by linear
feedback shift registers (LFSRs).

Recently, Gouget and Sibert [6] introduced the Bit-Search Generator (BSG),
that is, like the SG and SSG, a scheme designed to offer attractive characteristics
for both software and hardware implementation when used as a part of a KG.
However, similarly to the SG and the SSG, the BSG can be vulnerable to timing
attacks. The BSG has the advantage over the SG and SSG that it operates at a
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rate of 1/3 instead of 1/4 (i.e. producing n bits of the output sequence requires,
on average, 3n bits of the input sequence).

Given that the BSG is aimed as a building block for constructing a KG, it
is essential to know how simple it is to reconstruct parts of the input sequence
from the output. This arises naturally in the context of stream cipher design,
where matching known plaintext and ciphertext immediately gives keystream
values, i.e. subsequences of the output sequence, and where knowledge of parts
of the input sequence is a prerequisite to determining the secret key used to
generate the sequence. Furthermore, in order to avoid algebraic attacks (see
among other [1, 3]), it is important to know how many relations that relate some
outputs bits to consecutive input bits can be obtained.

The outline of the paper is as follows. In Section 2, we recall the original
description of the BSG and we provide an equivalent specification which oper-
ates on the differential of the original sequence. In Section 3, we consider two
strategies in order to reconstruct the original sequence from the output sequence
of the BSG. We give a basic attack which has complexity O(L32

L
3 ) and requires

O(L2
L
3 ) keystream bits, where L is the length of the underlying LFSR. We then

improve this attack to get a complexity of O(L32
L
4 ). In Section 4, we propose

two modified versions of the BSG designed to increase its security. Analogously
to the work in [6] for the BSG, we study some properties of both the MBSG
and the ABSG. In Section 5, we apply, to both the MBSG and the ABSG, the
strategies of Section 3 and the FBDD attack against LFSR-based generators
introduced by Krause in [7]. The best attack that we give against the ABSG

and the MBSG has complexity O(2
L
2 ) and requires O(L2

L
2 ) bits of keystream.

Finally, we conclude in Section 6.

2 The Bit-Search Generator

One can consider that both the SG and SSG are methods for bit-search-based
decimation. Indeed, both generators use a search for ones along an input bit
sequence in order to determine the output bit. Instead of using a search for
ones, the BSG uses a search for some bit b, where b varies during the process;
the variations depend on the input sequence. During the search process for a bit
b, a cursor moves along the input sequence. The search process ends when the
next occurrence of b is reached. Then, the output bit is zero if the search process
ends after just reading one bit, otherwise the output is one. The next value of
the bit b corresponds to the value of the following bit of the sequence.

We recall the original description of the BSG given in [6] and we provide
an equivalent specification of the BSG which operates on the differential of the
original sequence; the differential sequence d = (d0, d1, . . . ) of a sequence s is
defined by di = si ⊕ si+1, i ≥ 0, where ⊕ denotes bit-wise exclusive-or (or
modulo 2 addition). As usual, the complement of b in {0, 1} is denoted b.

Definition 1 (BSG). Let s = (s0, s1, . . . ) be a pseudorandom bit sequence and
d = (d0, d1, . . . ) be the differential sequence. The output sequence y = (y0, y1, . . . )
of the BSG is constructed as follows:



BSG (original) BSGdiff (differential)
Input: (s0, s1, . . . )
Set: i← 0; j ← 0;
Repeat the following steps:

1. e← si, yj ← si ⊕ si+1;
2. i← i + 1;
3. while (si = e) i← i + 1;
4. i← i + 1;
5. output yj;
6. j ← j + 1;

Input: (d0, d1, . . . )
Set: i← 0; j ← 0;
Repeat the following steps:

1. yj ← di;
2. if (yj = 1) then

(a) i← i + 1;
(b) while (di = 0) i← i + 1;

3. i← i + 2;
4. output yj;
5. j ← j + 1;

Example 1. Let s = 0101001110100100011101 be a bit sequence. Then, the ac-
tion of the BSG on s is described by:

010
︸︷︷︸

1

1001
︸︷︷︸

1

11
︸︷︷︸

0

010
︸︷︷︸

1

010
︸︷︷︸

1

00
︸︷︷︸

0

11
︸︷︷︸

0

101
︸︷︷︸

1

.

The action of the BSG on the input sequence s consists in splitting up the
sequence s into subsequences of the form (b, bi, b) where b ∈ {0, 1} and i ≥ 0.
For every subsequence of the form (b, bi, b), the output bit is 0 if i = 0, and 1
otherwise. The action of the BSG on the input differential sequence d consists
in splitting up the subsequence d into subsequences of the form either (0, b) or
(1, 0i, 1, b) with i ≥ 0; for every such subsequence, the output bit is the first bit
of the subsequence.

It is simple to verify that both descriptions of the BSG are equivalent given
that the output bit is zero when the search along the sequence s ends immediately
and it is one otherwise. We denote the output sequence of the BSG by BSG(s)
or BSGdiff(d) depending on the sequence we are focusing on.

Remark 1. Recovering elements of the sequence d is likely to be of very similar
signifiance to recovering elements of s. For instance, when s is generated using
an LFSR, then d can also be generated using an identical LFSR [5, 9]. Further-
more, the transformation from s to d simply shifts the position of the starting
point of the sequence. In this case, recovering the entire sequence d from partial
information has precisely the same difficulty as for the sequence s.

Assuming that the input sequence of the BSG is evenly distributed, then
the output rate of the BSG is clearly 1/3 (the number of input bits required to
produce one output bit is 1 + i with probability 1/2i (i ≥ 1)).

Proposition 1. Assume that the output sequence y produced by the BSG is
evenly distributed. Then, for each output bit yj, the expected number of known
input bits is 2 with an average entropy of 1.

Proof. Every zero in y corresponds to a pair of bits (0, b) in the differential
sequence d of the original sequence s, and no information is available about
the bit b. Thus, if an output bit is a zero, then one input bit of d is known.



Every one in y corresponds to a pattern (1, 0i, 1, b) with i ≥ 0 in d and the
following possibilities exist: two bits are known with probability 1/2, three bits
are known with probability 1/4, . . . , that is 1+ i bits are known with probability
1/2i for i ≥ 1. Hence the expected number of known bits is

∑∞
i=1(1 + i)/2i = 3.

The associated entropy is given by
∑∞

i=1 2−i log2(2
−i) =

∑∞
i=1 i2−i = 2. Thus,

assuming that the output sequence is evenly distributed, for each output bit the
expected number of known input bits is 2, with an average entropy of 1. ⊓⊔

3 How to Reconstruct the Input Sequence?

In this section, we consider two approaches, called Strategy 1 and Strategy 2
in order to evaluate how simple it is to reconstruct parts of either the input
sequence s or its differential from the output sequence y.

For the first approach, called Strategy 1, we assume that we have no ad-
ditionnal information on the means used to generate the input sequence. This
approach is based on the random generation of candidates for the input sequence
which are consistent with the information derived from the output sequence. For
the second approach, called Strategy 2, we assume that the feedback polynomial
used to generate the input sequence is known. This second approach consists of
building an attack on the BSG based on the choice of the most probable case
for LFSR sequences as input.

3.1 Strategy 1: Use of Random Generation of Candidates

Consider a bit sequence s, its differential sequence d and the output sequence
y = BSG(s) = BSGdiff(d). In this approach, we focus on the reconstruction of
the differential sequence d that we call the correct input string and we assume
that we have no additional information on the means used to generate the input
sequence.

A sequence c is called a differential-candidate for the output sequence y if the
equality BSGdiff(c) = y is fulfilled. One method to search for the correct input
string is to randomly generate a sequence of differential candidates for the input
bits. The probability of success of such a strategy depends on the Hamming
weight w of the subsequence, i.e. there are w places in the input sequence where
a string of zeros of uncertain length may occur. Recall that every one in the
output sequence arises from a tuple of the form (1, 0i, 1, b), where i ≥ 0 and b is
an undetermined bit. The Hamming weight of a finite sequence y is denoted by
w(y).

Proposition 2. Let d be a (finite) bit sequence and y be a sequence such that
y = BSGdiff(d). Let c be a randomly chosen string with the property that

BSGdiff(c) = y, where the probability distribution used to choose c reflects the

probability that c = d. The probability that, for every k such that yk = 1, the
sequences d and c agree on the length of the tuple from which yk arises, is 3−w(y).



Proof. Each differential-candidate input string should have a tuple (1, 0i, 1) in-
serted for every one occurring in the output sequence; i is chosen independently
at random for each output bit and i = j with probability 2−j−1. In each of the
w(y) locations, a string of i zeros occurs in the correct input sequence with prob-
ability 2−i−1. The probability that the candidate string and the correct string
agree in any one of the w(y) positions is thus

∑∞
i=0(2

−i−1)2 = 1/3. That is, the
probability that the correct input sequence and a candidate c agree on the w(y)
choices of length of the tuples from which the ones of y arises is 3−w(y) ≃ 2−1.585y.

⊓⊔

Thus, finding one output sequence with small Hamming weight yields at-
tacks that are likely to be easier than brute force attacks. This idea is used in
Strategy 2.

3.2 Strategy 2: Choice of the Most Probable Case

The goal of Strategy 2 is the reconstruction of the original input sequence s.
We assume that s is generated by a maximum length LFSR of size L with a
public feedback polynomial and the initial state of the LFSR is the secret key.
We further suppose that the feedback polynomial has been chosen carefully, i.e.
it does not have a low Hamming weight and no low weight multiple exists, in
order to avoid attacks on the differential sequence similar to the distinguishing
attack on the SG given in [4].

Recall that each zero of the output sequence y comes from two consecutive
equal bits in the input sequence s. Thus, each zero in y provides a linear equation
over the unknown LFSR sequence, namely the equality between two consecutive
bits. Similarly, each one of y comes from a pattern (b, bi, b) for some integer i ≥ 1.
Thus, by guessing i, we can construct i+1 linear equations involving consecutive
bits of the unknown LFSR sequence which are valid with probability 2−i.

Basic attack Let us take the first window of 2L/3 consecutive bits in the
sequence y with a Hamming weight of at most L/3. For a random window of
size 2L/3, this condition is satisfied with probability close to 1/2, so that the first
window can be found in negligible time. If the Hamming weight of the window
is strictly lower than L/3, we expand it in such a way that it contains exactly
L/3 ones (or until its size is L). We now assume that each one in the sequence
y comes from a pattern of length 3, that is a pattern of the form bbb, which is
the most probable case, occuring with probability 2−

L
3 . Then, we can write L

equations involving consecutive bits of the LFSR sequence or, equivalently, the
bits of the current state. We solve this system and we instantly check if we have
found the correct values by testing whether it allows to the correct prediction of
a few additional bits of the sequence y. In order to find the current state with
high probability (close to 1 − 1

e
), we have to repeat this procedure 2

L
3 times.

This attack costs O(L32
L
3 ) and requires O(L2

L
3 ) bits of keystream.



Improvements to the basic attack We tried several alternative strategies
such as finding a large enough keystream window with a low Hamming weight, or
connecting two smaller windows of low weight. For instance, we can determine,
in a first computation phase, 2w windows of size ℓ bits and Hamming weight
w. For each of these windows, we suppose that every one comes from a pattern
(b, b, b), which gives ℓ + w linear equations. These equations are all valid with
probability 2−w. This costs:

O
(

2w+ℓ+1

(
ℓ
w

)

)

.

For each pair of such windows, we know the number n1 of ones and n0 of zeros
in the sequence y between the two windows. Considering all the possible strings
bbib for integer i ≥ 1, the mean value m of i and the variance v are given by:

m =
∞∑

k=1

k

2k
= 2 , v =

∞∑

k=1

(k − 2)2

2k
= 2.

Thus, the distance between those two windows in the original sequence is likely
to belong to the interval [2n0+4n1−

√
2n1, 2n0+4n1+

√
2n1]. The Central Limit

Theorem gives the probability that the real distance between the two windows
is outside this interval:

Pr

(∑n1

i=1 Xi −mn1√
vn1

≥ 1

)

=
2√
2π

∫ ∞

1

e−
x2

2 dx ≃ 0.31.

Therefore, for each pair of windows, the probability of failure provided that
the distance used is not correct is around 1/3. We try all the values of the
distance between the two windows in this interval. If we make a correct guess,
the equations associated to the two windows can be combined to provide 2(ℓ+w)
equations. We choose ℓ and w such that 2(ℓ + w) = L and we just have to solve
the system so as to test whether the obtained solution correctly predicts a few
additional keystream bits.

Since n1 isO
(

2w2ℓ

( ℓ

w)

)

, testing all the pairs of windows costsO
(

22w+1

√

2 2w2ℓ

( ℓ

w)

)

,

and the total complexity of the attack is:

O
(

2w+ℓ+1

(
ℓ
w

) + 22w+1

√

2
2w+ℓ

(
ℓ
w

) L3

)

.

Moreover the number of keystream bits required for the attack is:

O
(

ℓ2w 2ℓ

(
ℓ
w

)

)

.

For practical values of L (L ∈ [128, 4096]), ℓ = 25L
58 and w = 7L

116 , this provides a

complexity close to or slightly smaller than L32
L
4 and a keystream length of 2

L
4 .



4 New BSGs to Improve the Security?

The discussion in section 3 suggests that the security of the BSG relies on the
uncertainty about the length of the input tuple required to output a one. By
contrast, if a zero is output, then there is no uncertainty about the length of the
input string. This suggests that the security might be improved by introducing
ambiguity no matter whether a zero or a one is output by the scheme.

Remark 2. Instead of aiming at an improvement in security, one may want to
enhance the rate with the same level of security. Indeed, a simple modification
to the BSG enables its rate to be increased from 1/3 to 1/2 by changing Step 3
in the BSGdiff Algorithm (Definition 1) from i ← i + 2 to i← i + 1. However,
an adaptation of the basic attack presented in Section 3.2 to this case (for an

LFSR input) leads to an attack which costs O(2
L
3 ) and requires O(L2

L
3 ) bits of

keystream; the security is then slightly lower than for the BSG.

4.1 BSG Variants

We give two possible modifications of the BSG that are called the MBSG and
the ABSG; these two modifications are not equivalent (even if we consider the
differential sequence instead of the original sequence).

Definition 2 (MBSG & ABSG). Let s = (s0, s1, . . . ) be a pseudorandom bit
sequence. The output sequences of the MBSG and of the ABSG are constructed
as follows.

MBSG algorithm ABSG algorithm
Input: (s0, s1, . . . )
Set: i← 0; j ← 0;
Repeat the following steps:

1. yj ← si;
2. i← i + 1;
3. while (si = 0) i← i + 1;
4. i← i + 1;
5. output yj;
6. j ← j + 1;

Input: (s0, s1, . . . )
Set: i← 0; j ← 0;
Repeat the following steps:

1. e← si, yj ← si+1;
2. i← i + 1;
3. while (si = e) i← i + 1;
4. i← i + 1;
5. output yj

6. j ← j + 1

Example 2. Let s = 0101001110100100011101 be the input bit sequence. Then,
the action of the MBSG on s is described by:

01
︸︷︷︸

0

01
︸︷︷︸

0

001
︸︷︷︸

0

11
︸︷︷︸

1

01
︸︷︷︸

0

001
︸︷︷︸

0

0001
︸︷︷︸

0

11
︸︷︷︸

1

01
︸︷︷︸

0

,

and the action of the ABSG on s is described by:

010
︸︷︷︸

1

1001
︸︷︷︸

0

11
︸︷︷︸

1

010
︸︷︷︸

1

010
︸︷︷︸

1

00
︸︷︷︸

0

11
︸︷︷︸

1

101
︸︷︷︸

0

.



The action of the MBSG on the input sequence s consists in splitting up s into
subsequences of the form (b, 0i, 1), with i ≥ 0 and b ∈ {0, 1}. For every pattern
of the form (b, 0i, 1), the output bit is b. The action of the ABSG on s consists in
splitting up s into subsequences of the form (b, bi, b), with i ≥ 0 and b ∈ {0, 1}.
For every subsequence (b, bi, b), the output bit is b for i = 0, and b otherwise.
Both the MBSG and the ABSG clearly have a rate of 1/3, like the BSG. Indeed,
for every i ≥ 1, an output bit is produced by 1 + i input bits with probability
1/2i.

Remark 3. The action of the ABSG on an input sequence is identical to that of
the BSG, but their outputs are computed differently.

Proposition 3. Let s be a pseudorandom bit sequence. Assume that the output
sequence y = MBSG(s) is evenly distributed. Then for every output bit yj, the
expected number of known bits of s is 3 with an average entropy of 2.

Proof. If an output bit is a b, then the input sequence used to generate this
output bit must have the form (b, 0i, 1), where i ≥ 0 and i = j with probability
2−j−1. Thus, if an output bit is a b, then i + 1 bits are known with probability
1/2i for i ≥ 1. As shown in the proof of Proposition 1, the expected number of
known bits is 3 and the associated entropy is 2. ⊓⊔

Proposition 3 also holds for the ABSG.

4.2 Filtering Periodic Input Sequences

We now describe the output of the MBSG and ABSG when applied to periodic
sequences (of period greater than 1) as was done in [6] for the BSG. We will
show that the BSG and the ABSG on the one hand, and the MBSG on the
other hand, behave differently in this regard.

Definition 3. For two sequences s = (si)i≥0 and s′ = (s′i)i≥0, we say that s′ is
(k-)shifted from s if there exists k ≥ 0 such that s′i = si+k for every i ≥ 0.

As usual, s is said to be eventually periodic if there exists a shifted sequence from
s which is periodic. We denote by BSG(s, i) (resp. MBSG(s, i), ABSG(s, i))
the i-shifted sequence from BSG(s) (resp. MBSG(s), ABSG(s)).

The next proposition was proved in [6] for the BSG. It also holds for the
ABSG thanks to the fact that the ABSG acts like the BSG on the input sequence.

Proposition 4. Let s be a sequence of period T . Then, the sequence ABSG(s)
is periodic, and there exists k ∈ {1, 2, 3} such that ABSG(s0, . . . , skT−1) is a
period of ABSG(s).

The framework introduced in [6] uses the associated permutation p to a
periodic sequence s: we define two transpositions t0 = (∅ 0) and t1 = (∅ 1). Then,
we associate with s the permutation tsT−1

◦ · · · ◦ ts0
over the set {∅, 0, 1}. The

integer k in the previous proposition is the order of the permutation associated
with s.



For the MBSG, the picture is slightly different. The MBSG acts on an input
sequence s as follows: read a bit b, go to the next occurrence of one and start
again. We give to the cursor moving along the input sequence two states: ∅ when
there is no current bit looked for, and 1 otherwise. The cursor changes from state
∅ to state 1 after reading a bit. When the cursor is in state 1, it remains in state
1 if the next bit read is 0, and changes to state ∅ if the next bit read is 1.

Proposition 5. Let s be a sequence of period T . Then, the sequence MBSG(s)
is eventually periodic. Moreover, if si−1si is an occurrence of (0, 1) in s, then
the sequence MBSG(s, i+1) is periodic and a period is MBSG(si+1, . . . , si+T ).

Proof. After reading a pattern (0, 1), the cursor is always in state ∅, and thus
the bit si is the last bit read during some search process. Now, as the cursor is
in state ∅ after si, it will also be in this state after si+kT for every k. ⊓⊔

In the sequel, we denote by MBSGP (s) the sequence MBSG(s, i + 1) where
(si−1, si) is the first occurrence of (0, 1) in s. Thus MBSGP (s) is a periodic
shift of MBSG(s).

Output Sequence Sets and Shifts. Given an input sequence s of period T ,
one can filter the shifted sequences (s, i) for 0 ≤ i ≤ T − 1, so as to obtain at
most T distinct output sequences. We call the set of these output sequences the
output sequence set for input s. We will show that these output sequences are
closely related to one another. The following proposition was proved in [6] in the
case of the BSG using only the action of the BSG on the input sequence. Thus,
it also holds for the ABSG.

Proposition 6. Let s = (si)i≥0 be an infinite bit sequence and k be the minimal
index such that sk 6= s0. Then, for every i ≥ 0, the sequence ABSG(s, i) is shifted
from one sequence among ABSG(s, 0), ABSG(s, 1) and ABSG(s, k + 1).

In the case of the MBSG, we have to consider the periodic part MBSGP (s)
so as to obtain a similar proposition:

Proposition 7. Let s = (si)i≥0 be an infinite bit sequence where both 0 and 1
appears infinitely many times. Then, for every i ≥ 0, the sequence MBSGP (s, i)
is shifted from the sequence MBSGP (s).

Proof. Let us consider the cursor in initial state ∅ running along the sequence
s. Let sk−1sk be the first occurrence of 01 in the sequence (s, i). After reading
a pattern (0, 1), the cursor is always in state ∅. Thus, the cursor is in state ∅
after reading sk. Therefore, MBSG(s, k+1) is shifted from both MBSG(s) and
MBSG(s, i). Now, MBSG(s, k + 1) is periodic, which yields the result. ⊓⊔

Maximum Length LFSR Sequences as Input. When the input sequence
s is produced by a maximum length LFSR, the periodicity properties differ
between the MBSG on the one hand, and the BSG and the ABSG on the other
hand.



A lower bound on the length of BSG(s0, . . . , skT−1), where k ∈ {1, 2, 3}, is
the order of the permutation associated with s, was proven in [6]. The proof also
holds for the ABSG:

Proposition 8. [6] Suppose s is the output of a maximum length LFSR of degree
L ≥ 3, and let p be the associated permutation. Let k be the minimal strictly posi-
tive integer such that pk(∅) = ∅. The length of the sequences BSG(s0, . . . , skT−1)
and ABSG(s0, . . . , skT−1) are both greater than k · 2L−3 .

This bound does not answer the issue of possible subperiods. A strict lower
bound on the period length of BSG(s) was introduced in [6]. Experimentally, for
both the BSG and the ABSG, no subperiod appears when the input is produced
by a maximal-length LFSR with feedback polynomial of degree 3 ≤ L ≤ 16. As
was done in [6] for the BSG, one can show that the output sequence set of the
ABSG can be easily described from 2 distinct output sequences whose period
lengths, called short period and long period, are respectively, when no subperiod
appears, very close to T/3 and 2T/3, and their sum is then exactly T . The results
for the ABSG are given in Tables 2 of Appendix C. For the MBSG, we have:

Proposition 9. Let s be a sequence produced by a maximum length LFSR of
degree L. Consider a period of the output of the form 0λ11µ10λ21µ2 . . . 0λp1µp.
Then, the sequence MBSGP (s) has a period MBSG(t) of length T such that:

– for L = 0 mod 2, we have T = (2L−1)/3, the number of zeros in this period
is (T − 1)/2, and the number of ones is (T + 1)/2,

– for L = 1 mod 2, we have T = (2L+1)/3, the number of zeros in this period
is (T + 1)/2, and the number of ones is (T − 1)/2.

The proof of Proposition 9 is given in Appendix A.
Like for the BSG and the ABSG, subperiods may appear in a period of

MBSGP (s) of length T . Experimentally, this never happens for L ≤ 16, so that
the values in Proposition 9 are exact. The periodicity results are given in Table 4
in Appendix C.

Linear Complexity of Output Sequences. We do not have theoretical
bounds for the linear complexity, but the statistics for maximum length LF-
SRs of degree L ≤ 16 suggest that the linear complexity is well-behaved. The
results for the linear complexity are given in Appendix C, in Tables 3 and 4
respectively for the ABSG and the MBSG.

For the ABSG, we give the average linear complexity (denoted by LC), and
its minimal and maximal values for short and long output sequences. These
values are to be compared with those in Table 2: indeed, they show that the
linear complexity is always almost equal to the period.

For the MBSG, preliminary experiments on the linear complexity of the
output sequences when filtering maximum length LFSR sequences show that
the linear complexity is very close to the period. Furthermore, when the period
is prime, we observe that the linear complexity is always equal to the period
(for degrees up to 16, for which we tested every possible maximum length LFSR
output). Therefore, further study of the MBSG seems promising.



5 Security of the MBSG and the ABSG

5.1 Strategy 1: random generation of candidates

By applying Strategy 1 of subsection 3 to the MBSG and the ABSG, we get:

Proposition 10. Let s be a (finite) sequence and y be the (finite) sequence such
that y = MBSG(s). Let c be a randomly chosen string with the property that
MBSG(c) = y, where the probability distribution used to choose c reflects the
probability that c = s. The probability that, for every output bit yk, the sequences
d and c agree on the length of the tuple from which yk arises, is 3−ℓ, where ℓ
denotes the length of y.

Proof. Each candidate input string should have a tuple (b, 0i, 1) inserted for
every b occurring in the output sequence, where i is chosen independently at
random for each output bit, such that i = j with probability 2−j−1. The proba-
bility that the candidate string and the correct string agree in any one of the ℓ
positions is

∑∞
i=0(2

−i−1)2 = 1/3. That is, the probability that the correct input
sequence and a candidate c agree on the ℓ choices of length of the tuples from
which the ones of y arises is 3−ℓ ≃ 2−1.585ℓ. ⊓⊔

One can show that Proposition 10 also holds for the ABSG. By assuming the
knowledge of no additional information on the means used to generate the input
sequence, we deduce from Proposition 10 that the Hamming weight of the output
sequence does not play a part in the input sequence reconstruction problem.

5.2 Strategy 2: Choice of the Most Favourable Case

In the case of the MBSG (resp. ABSG) applied to the output sequence of a
maximum length LFSR of size L with a public feedback polynomial, the following
attack can be mounted: it consists of finding a window of L/2 bits coming from
a pair of bits (b, 1) (resp. (b, b) for the ABSG), which occurs with probability

2−
L
2 . This window can give instantly the L bits of the current state of the LFSR.

Thus, we can instantly check if we have found the correct values. In order to
find the current state with high probability, we have to repeat this procedure
2

L
2 times. This “attack ” costs O(2

L
2 ) and requires O(L2

L
2 ) bits of keystream.

This “attack” is slightly better than the generic attack thanks to the reduction
in memory required.

6 FBDD-based Cryptanalysis

Krause [7] introduced a new type of attack against keystream generators, called
the FBDD-attack (FBDD for Free Binary Decision Diagram), which is a crypt-
analysis method for LFSR-based generators. A generator is said to be LFSR-
based if it consists of two components, a linear bitstream generator LG wich
generates for each initial state x ∈ {0, 1}n a linear bitstream LG(x) using one



or more parallel LFSRs, and a compression function C which transforms the
internal bitstream into an output keystream y = C(LG(x)).

The cryptanalysis method relies on two assumptions called the FBDD As-
sumption and the Pseudorandomness Assumption (see [7] for details). The cost
of the cryptanalysis depends on two parameters of the compression function C.
The first parameter is the maximal number of output bits which C produces
on internal bitstreams of length m; let γ be the best case compression ratio of
C. Krause cryptanalysis applies when the following property is fulfilled: for all
m > 1, the probability that C(z) is a prefix of y for a randomly chosen and
uniformly distributed z ∈ {0, 1}m is the same for all keystreams y. Observe that
both the ABSG and the MBSG have this property but the BSG does not have
(nevertheless the Krause attack is expected still to work, and later we will try
to estimate its complexity). Let us denote this probability pC(m). The second
parameter, called α, depends on the probability pC(m). Indeed, the probability
pC(m) is supposed to behave as pC(m) = 2−αm, with α a constant such that
0 < α ≤ 1. This result comes from the following partition rule: each internal
bitstream z can be divided into consecutive elementary blocks z = z0 z1 ...zs−1

such that C(z) = y0y1...ys−1 with yj = C(zj) and the average length of the
elementary blocks is a small constant. Then, we have α ≈ − 1

m
log(pC(m)) for

large m.

Theorem 1. [7] Let E be an LFSR-based keystream generator of key-length L
with linear bitstream generator LG and a compression function C of information
rate α and best case compression ratio γ. Let C fulfill the FBDD and the pseudo-
randomness assumption. Then, there is an LO(1)2(1−α)(1+α)L-time bounded al-
gorithm which computes the secret initial state x from the first ⌈γα−1L⌉.
Remark 4. The parameter α used to compute the complexity of the FBDD at-
tack is not the information rate of the compression function, see appendix B.1
for details.

For both the ABSG and the MBSG, one can check that the FBDD Assump-
tion and the Pseudorandomness Assumption are fulfilled and the value of γ is
clearly 1/2. Our results on the FBDD attack are summarised in Table 1. In
Appendix B we explain how these results are obtained.

Remark 5. We can see in the table that αMBSG = αABSG. We deduce that the
(time and space) complexity of the FBDD attack applied to both the ABSG and
the MBSG is LO(1)20.53L.

Remark 6. When the Krause attack is applied to BSG, the complexity depends
(in a somewhat complex way) on the number of zeros in the current output
sequence. Roughly speaking, with many zeros placed at the beginning of it, the
attack will work better and one should apply the attack at such well chosen places
in the output sequence. In Appendix B we show that the complexity ranges from
LO(1)20.33L to LO(1)20.62L. The best case cannot be obtained in practice, this
would require O(2

2
3
L) of keystream, and moreover 20.33L would still be worse

than 20.25L obtained with the best attack of Section 3.2.



Table 1. Application of Krause FBDD attack to *BSG and SSG

SSG BSG ABSG MBSG

output rate 0.25 0.333 0.333 0.333

Krause rate γ 0.5 0.5 0.5 0.5

information rate 0.25 ? 0.333 0.333

α 0.208 0.238 ≤ α ≤ 0.5 0.306 0.306

Krause time LO(1)20.66L LO(1)20.33L < ... < LO(1)20.62L LO(1)20.53L LO(1)20.53L

Attack memory LO(1)20.66L LO(1)20.33L < ... < LO(1)20.62L LO(1)20.53L LO(1)20.53L

7 Conclusion

In this paper, we studied two bit-search based techniques derived from the bit-
search generator. The three related compression techniques (BSG, MBSG and
ABSG) studied in this paper have rate 1/3, and have good periodicity properties.
Experiments suggest that they produce sequences with high linear complexity
when given maximum length LFSR sequences as input. However, according to
the cryptanalysis techniques that we have considered, the BSG seems less secure
than both the MBSG and ABSG. Indeed, the main attack that we propose on
the BSG has a complexity close to or slightly smaller than O(L2

L
4 ) and requires

O(2
L
4 ) bits of keystream and the main attack that we propose on both the MBSG

and the ABSG costs O(2
L
2 ) and requires O(L2

L
2 ) bits of keystream. It seems

that the MBSG and the ABSG are attractive components that can be used for
the de-synchronization of LFSR outputs in keystream generation.
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A Proof of Proposition 9

We first prove the following lemma:

Lemma 1. Let s be a periodic sequence with a period of the form:

0λ11µ10λ21µ2 . . . 0λp1µp ,

with λi > 0 and µi > 0 for every i, and µp = 1. Then, we have:

1. the finite sequence MBSG(t) is a period of MBSGP (s),

2. the length of MBSG(t) is equal to p +

p
∑

i=1

⌊
µi − 1

2

⌋

,

3. the number of zeros in MBSG(t) is equal to #
{
i, µi = 1 mod 2

}
,

4. the number of ones in MBSG(t) is equal to

p
∑

i=1

⌊µi

2

⌋

.

Proof. As the period ends with the pattern 01, we know that a cursor with
initial state ∅ before reading the period is in state ∅ after reading this period.
Therefore, a period of MBSGP (s) is MBSG(0λ11µ1 . . . 0λp1µp).
Next, the output of a bit corresponds to reading a pattern of the form (b, 0k, 1),
with b ∈ {0, 1} and k ≥ 0. In the periodic part of the output, these patterns
necessarily contain a maximal sequence of 0’s, so 0k is some 0λi if b = 1, other-
wise (b, 0k) is some 0λi . Therefore, one output bit corresponds to each maximal
sequence 0λi . There are p such sequences in the period. The other output bits
come from patterns that do not contain 0, that is, from patterns (1, 1). Now,
in every maximal sequence 1µi , the first 1 is the end of a pattern containing a
maximal sequence of zeros. Therefore, there remains only ⌊µi−1

2 ⌋ complete pairs
of ones in the sequence 1µi in order to output bits from pairs of ones. Thus,
∑p

i=1⌊µi−1
2 ⌋ output bits correspond to pairs of ones in the period. This com-

pletes the second result.
We now turn to the number of zeros. A zero is output if and only if the cor-
responding pattern in the input is of the form (0λi , 1). Now, this pattern can
correspond to an output bit if, and only if, the cursor is in state ∅ before the
maximal sequence 0λi . This is the case if, and only if, the length of the maximal
sequence 1µi−1 is odd. This gives the next result.
The number of ones comes directly from the two previous results. ⊓⊔



The proof of Proposition 9 is then a straightforward computation given the
well-known distribution of maximal sequences in a period of the input, that
appears for example in [5].

B The FBDD Attack Applied to the BSG, the ABSG

and the MBSG

B.1 Comments on Krause Article

In [7], Krause denotes by pC(m) the probability that a randomly chosen and
uniformly distributed z ∈ {0, 1}m is compatible with a given keystream y, i.e.,
that C(z) is a prefix of y. He considers only sequence generators such that this
probability is the same for every y. Then, he defines α = − 1

m
log(pC(m)) and he

claims that α is the information rate per bit revealed by the keystream y about
the first m bits of the corresponding internal bitstream z, i.e.

α =
1

m
(H(Z(m))−H(Z(m)|Y )) =

1

m
(m− log(pc(m)2m)),

where Z(m) denotes a random z ∈ {0, 1}m and Y a random keystream. This
would hold if H(Z(m)|Y ) = − log(pc(m)2m) which is not always true, because,
given an output keystream, not all compatible inputs are equally probable.

To clarify, the complexity of the Krause attack does indeed depend on α as
defined, but this α is not in general equal to the information rate. We obtain a
counterexample if we compare αABSG and the information rate of its compres-
sion function.

Computation of the information rate: we computed the information rate
θ for the ABSG and the MBSG. Let m be the length of the internal bitstream,
and let z denote a random, uniformly distributed element from {0, 1}m. The
number of z such that C(z) has length i ≥ 0 is the number of patterns of the form

b1 bk1

1 b1 b2 bk2

2 b2 . . . bi bki

i bi bi+1b
ki+1

i+1 with kj ≥ 0 and
∑i

j=1 ki = m− 2i.

We have the following possible values for w = bi+1b
ki+1

i+1 :
– if w is the empty word or one bit (which can then be both 0 or 1), the pattern

occurs with probability 2m−i,
– if w has length at least 2, then we have w = bbk with k > 0, and only one

case is possible for compatibility with the next output bit. The whole pattern
occurs with probability 2m−i−1.

Let N(m) be the number of sequences b1 bk1

1 b1 b2 bk2

2 b2 . . . bi bki

i bi

of length m that are a prefix for a given y. We know that N(m) is the number
of ways of distributing m − 2i bits among i places. The number of ways of
distributing p bits among q places is a known combinatorial problem and can be
written as

(
p+q−1

p

)
. Therefore N(m) =

(
m−i−1
m−2i

)
.

Then we have:

Hm(Z|Y ) =
∑m−2

k=2

∑⌊ k
2
⌋

i=1

(
k−i−1
k−2i

)
m−i−1
2m−i−1 + 2

∑⌊m−1

2
⌋

i=1

(
m−i−2
m−2i−1

)
m−i
2m−i

+
∑⌊m

2
⌋

i=1

(
m−i−1
m−2i

)
m−i
2m−i + m−1

2m−1



Now we compute θABSG with the formula above: we obtain limm→∞(θABSG) =
1
3 , and for m ≥ 128, we already have θABSG ≈ 0.33.

Remark 7. We can also, in a very similar way, compute θ for MBSG:

Hm(Z|Y ) =
∑M−1

m=2

∑⌊m
2
⌋

i=1

(
m−i−1
m−2i

)
M−i−1
2M−i−1 +

∑⌊M
2
⌋

i=1

(
M−i−1
M−2i

)
M−i
2M−i + M−1

2M−1

We also obtain limm→∞(θMBSG) = 1
3 , and θMBSG ≈ 0.33 for m ≥ 128. At last,

a similar computation for the SSG yields limm→∞(θSSG) = 1
4 .

B.2 The FBDD Attack Applied to the ABSG and the MBSG

Recall that the cost of the FBDD cryptanalysis depends on two parameters
called α and γ. For both the ABSG and the MBSG, the best compression ratio
γ is achieved when each keystream bit comes from a pattern of length 2 and we
have γABSG = γMBSG = 1

2 . We compute in this subsection the value of αABSG

(resp. αMBSG), that is, the number of possible sequences of internal bitstream
z of length m such that ABSG(z) (resp. MBSG(z)) is a prefix for a given y
when z is a random and uniformly distributed element from {0, 1}m; for both
the ABSG and the MBSG this number does not depends on the keystream y.

Let us consider the action of the ABSG on an input sequence z. A sequence
z that produces m keystream bits, where m ≥ 0, has two possible forms:

– b1 bk1

1 b1 b2 bk2

2 b2 . . . bi bki

i bi, where kj ≥ 0

– b1 bk1

1 b1 b2 bk2

2 b2 . . . bi bki

i bi bi+1b
ki+1

i+1 , where kj ≥ 0 and the last part

bi+1b
ki+1

i+1 , that we call the last word, does not produce any bit.

Let y be an arbitrary keystream. Let Bm be the number of possible bitstream
sequences z of the form b1 bk1

1 b1 b2 bk2

2 b2 . . . bi bki

i bi of length m which
are a prefix of y. This number does not depend on y. We know that B0 =
1, B1 = 0, B2 = 1, B3 = 1, B4 = 2 . . . . For every m > 0, we have Bm =
Bm−2+Bm−3+ · · ·+B0. Indeed, if we fix the length of the first pattern b1 bk1

1 b1,
the number of possibilities is then Bm−k1−2.

Let Am the number of all possible bitstream sequences z such that ABSG(z)
is a prefix of y. We have:

Am = Bm + 2Bm−1 +

m−2∑

j=0

Bj ,

where Bm is the number of possible z of the first form, 2Bm−1 is the number of
possible z of the second form with ki+1 = 0 (when the last word contains only
one bit, there are two possibilities for this bit), and the Bis for i ≤ m − 2 are
the number of possible z with ki+1 = m− i− 1. Therefore we have:

Am −Am−1 = Bm + Bm−1 −Bm−2

=

m−2∑

i=0

Bi +

m−3∑

i=0

Bi −
m−4∑

i=0

Bi = Bm−2 + 2Bm−3 +

m−4∑

i=0

Bi

= Am−2



Thus A0 = 0, A1 = 2 and for every m > 1, Am = Am−1 + Am−2. Solving this
recursion gives:

Am =
2√
5

(

(
1 +
√

5

2
)m − (

1−
√

5

2
)m

)

≈ 2√
5
(
1 +
√

5

2
)m

Finally when m is large enough, we compute αABSG = log(
√

5− 1) ≈ 0.306.
In the same way, one can show that αMBSG = αABSG. We deduce that the

(time and space) complexity of the FBDD attack applied to both the ABSG and
the MBSG is LO(1)20.53L. All our results for the FBDD attack are summarised
in Table 1.

B.3 The FBDD Attack Applied to the BSG

We have seen in part 6 that, for the BSG, the probability that C(z) is a prefix
of y for a randomly chosen and uniformly distributed z ∈ {0, 1}m is not the
same for all keystreams y. Thus, it is not clear whether the FBDD attack is still
relevant. In this part, we suppose it is, and we show that still the attack would
not be as effective as other attacks presented in this paper. We have at least to
take into account the fact that the probability we called pC(m) does depend on
y.

From an attacker’s point of view, the best case is when the keystream y is
uniquely composed of 0s. In this case, the value of α can be easily computed
and we have α = − 1

m
log(2

m
2 ) = 1

2 .
The worst case occurs when the keystream is uniquely composed of 1s.

Let Bm denote the number of bitstream sequences of length m such that the
keystream is 111....1. We have: B0 = 0, B1 = 2, B2 = 2, B3 = 4. Moreover,

for m ≥ 3, if the bitstream sequence starts by b b
i
b, then the number of possi-

bilities is 2 × Bm−2−i. Otherwise, the bitstream sequence starts by a sequence

of the form b b
m−1

and there are two possible values for the bit b. Then, we
have Bm = 2 + 2(B0 + ... + Bm−3). Let Am = B0 + ... + Bm, then we get
the relation: Am = Am−1 + 2Am−3 + 2. By computing the limit of the series
1− 1

m
log(Am −Am−1) with Magma, we obtain α ≈ 0.238.

Thus, in the general case, α belongs to the interval [0.238, 0.5]. If the attack
can be extended, its complexity will range from LO(1)20.33L to LO(1)20.62L. Then
the attacker should start at the most interesting place in the output sequence,
but in practice he has no hope to achieve the best-case complexity.

To obtain the best case, the attacker needs to find an all-zero subsequence
with length 2

3L, and this can hardly be achieved without disposing of O(2
2
3
L)

bits of keystream. Moreover an FBDD attack in 20.33L will still be worse than
20.25L we obtain in Section 3.2.

C Statistical Results

Period and linear complexity statistics for m-LFSRs filtered by the BSG are
given in [6].



Table 2. Period statistics for m-LFSRs filtered by the ABSG

L Average short Minimal short Maximal short Average long Minimal long Maximal long

period length period length period length period length period length period length

8 84.63 82 88 170.38 167 173
9 169 159 183 342 328 352
10 341.1 328 358 681.9 665 695
11 682.91 657 714 1364.09 1333 1390
12 1364.08 1330 1399 2730.92 2696 2765
13 2731.34 2658 2796 5459.66 5395 5533
14 5460.08 5344 5587 10922.92 10796 11039
15 10923.04 10776 11082 21843.96 21685 21991
16 21846.16 21619 22075 43688.84 43460 43916

Table 3. Linear complexity statistics for m-LFSRs filtered by the ABSG

L Average short Minimal short Maximal short Average long Minimal long Maximal long

lin. compl. lin. compl. lin. compl. lin. compl. lin. compl. lin. compl.

8 84 81 88 169.38 166 173
9 167.71 158 182 340.79 326 352
10 340.2 327 358 680.83 661 695
11 680.95 654 710 1363.24 1332 1390
12 1363.33 1330 1399 2729.96 2696 2761
13 2729.80 2656 2793 5458.75 5391 5532
14 5459.17 5342 5587 10921.96 10796 11038
15 10921.47 10774 11076 21843.05 21684 21991
16 21845.28 21618 22075 43687.95 43460 43912

Table 4. Period and linear complexity statistics for m-LFSRs filtered by the MBSG

L Period Average LC Minimal LC Maximal LC

8 85 84, 25 77 85
9 171 170, 46 165 171
10 341 339, 92 326 341
11 683 683 683 683
12 1365 1362, 53 1347 1365
13 2731 2731 2731 2731
14 5461 5461 5461 5461
15 10923 10923 10923 10923
16 21845 21844, 35 21833 21845


