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The fundamental solution or Green's function for flow in porous media is determined using 

Stokesian dynamics, a molecular-dynamics-like simulation method capable of describing the 

motions and forces of hydrodynamically interacting particles in Stokes flow. By evaluating the 

velocity disturbance caused by a source particle on field particles located throughout a 

monodisperse porous medium at a given value of volume fraction of solids t/J, and by 

considering many such realizations of the (random) porous medium, the fundamental solution 

is determined. Comparison of this fundamental solution with the Green's function of the 

Brinkman equation shows that the Brinkman equation accurately describes the flow in porous 

media for volume fractions below 0.05. For larger volume fractions significant differences 

between the two exist, indicating that the Brinkman equation has lost detailed predictive value, 

although it still describes qualitatively the behavior in moderately concentrated porous media. 

At low t/J where the Brinkman equation is known to be valid, the agreement between the 

simulation results and the Brinkman equation demonstrates that the Stokesian dynamics 

method correctly captures the screening characteristic of porous media. The simulation results 

for ¢;;;.0.05 may be useful as a basis of comparison for future theoretical work. 

I. INTRODUCTION 

Averaged equations describing viscous flow through po

rous media are of great theoretical and practical interest. At 

the fundamental microscale the Stokes equations apply and 

provide a complete description of the entire flow field. How

ever, as a result of the complex and often only statistically 

known geometry of the solid surfaces in the medium, solu

tion of the Stokes equations is generally very difficult. On the 

macroscopic level, Darcy's law, first established empirically 

but more recently derived formally by performing appropri

ate volume averages of the Stokes equations, is applicable. I-4 

The qualitative difference between these two descriptions of 

the flow motivated Brinkman5 to suggest a general equation 

that interpolates between the Stokes equation and Darcy's 

law. His equation, 

J.LV2u- Vp- J.ta2u = 0, V•u = 0, ( 1) 

whereJ.t is the Newtonian fluid viscosity, a- 2 is the perme

ability, and u andp are the average velocity and pressure, is, 

like the Stokes equation but unlike Darcy's law, second or

der in velocity. This is significant since it allows for the solu

tion of flow around a particle or flow caused by motion of a 

particle with no-slip boundary conditions on the surface. 

The averages implicit in ( 1) should be viewed as averages 

over an ensemble of different realizations of the porous me

dium. 

On small length scales in the Brinkman equation, the 

pressure gradient balances the Laplacian of the velocity and 

the flow is essentially viscous. Over larger length scales, 

where the velocity is slowly varying, the pressure gradient 

balances the average velocity as it does in Darcy's law. The 

characteristic length that distinguishes between these two 

regions of scaling is the Brinkman screening length given by 

the square root of the permeability a- 1. In the dilute limit 

a- 1 = ( {i./3) a¢- 112, where a is the characteristic particle 

size and t/J is the volume fraction of solids. In a viscous fluid, 

the velocity disturbance resulting from a point force decays 

as 1/r, where r is the distance from the source point to a point 

in the fluid. At large distances (r)>a- 1) from a point force 

disturbance in a Brinkman medium, however, the response 

is very different, with the velocity disturbance decaying fas

ter, as l/(a2r). 
Though Brinkman's derivation ofEq. ( 1) was heuristic, 

subsequent investigators have rigorously established the va

lidity of this equation at low volume fraction of solids. 6-
12 

The question of the applicability of the Brinkman equation, 

i.e., how well it describes flow behavior in a porous medium, 

at higher values of t/J remains open, however, although theo

retical predictions of permeability based on the Brinkman 

equation agree well with experimentally measured val

ues.5·13 This in itself does not establish its validity (even em

pirically) for other than dilute systems, as the permeability is 

only a single scalar quantity and is not necessarily represen

tative of the general flow field. 

In this paper we employ Stokesian dynamics to approxi

mate the fundamental solution, or Green's function, for flow 

in random porous media. Stokesian dynamics is a general, 

molecular-dynamics-like simulation method capable of de

scribing the motions of, or forces resulting from, hydrodyna

mically interacting particles immersed in a viscous fluid un

der conditions of vanishing particle Reynolds number. The 

general method applied to finite systems ofhydrodynamical

ly interacting particles has been presented recently by Dur

lofsky, Brady, and Bossis14; extensions to infinite systems, 

required for the present problem, are considered by Brady et 

a/. 15 
Once the fundamental solution is determined via Stoke

sian dynamics it can be compared with the solution of Brink

man's equation, allowing an assessment of the applicability 

of the Brinkman equation to porous media of arbitrary vol

ume fraction. 
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We discuss the application of the general Stokesian dy

namics methodology to the present problem in Sec. II. There 

it will be seen that the problem is essentially to form the N

particle mobility matrix, which relates the difference 

between the velocity of each particle and the suspension 

average velocity to the forces exerted by each particle on the 

fluid. Due to the slowly decaying nature of particle interac

tions in Stokes flow, the effects of particles a great distance 

from a given particle must be included. This is accomplished 

efficiently using the Ewald summation technique, recently 

presented for Stokes flow by Beenakker, 16 and shown to 

yield a convergent result by applying the method developed 

by O'Brien, 17 as in Brady eta/. 15 Appropriate manipulations 

and averages of this mobility matrix result in the fundamen

tal solution as well as the permeability for the system in ques

tion. 

In Sec. III we compare our simulation results for the 

fundamental solution with the Brinkman propagator or 

Green's function. Our results are for systems of both point 

forces and identical finite-sized spheres, computed both with 

and without the application of the Ewald summation tech

nique. For very dilute systems (t,b.;;;;0.01 ), the simulation re

sults for the fundamental solution computed with Ewald 

sums agree very well with the Green's function for the Brink

man equation. Because the Brinkman equation is valid as 

t,b-+ 0 this is to be expected and serves as a verification of our 

method. Discrepancies between the Brinkman and simula

tion results are evident in simulations performed without 

Ewald sums, illustrating the importance, even at low t,b, of 

effects from distant particles. In moderately dilute systems, 

t,b = 0.05, the fundamental solution is still well described by 

the Brinkman propagator, though differences are clearly ap

parent. The Brinkman result is seen to be no longer quantita

tively applicable in moderately concentrated systems t,b 
= 0.2, though it still provides a qualitative picture of parti

cle interactions in a porous medium. Finally, we present re

sults for permeability that agree well with the results of 

Brinkman5 and Kim and Russel. 13 

II. DETERMINATION OF THE FUNDAMENTAL 

SOLUTION FOFI FLOW IN POROUS MEDIA 

Our intent is to formulate a method that will allow us to 

determine the velocity field due to a point force disturbance 

in an unbounded porous medium. The disturbance (source) 

is applied at a given position and the suspension velocity 

(response) is measured at all points (field points) within the 

porous medium. By repeating this procedure for many dif

ferent realizations of the porous medium and performing 

appropriate averages, the form of the fundamental sol~tion 

for flow in porous media can be deduced. The particles that 

comprise the porous medium are prescribed to remain fixed 

in space though the forces that they must exert on the fluid to 

remain so are unknown. For a given velocity disturbance at 

some point in the fluid, the force that any particular particle 

must exert to remain fixed depends in part on the positions of 

the other particles in the system. Thus the system is fully 

coupled; the response of each individual particle is affected 

by every other particle. 

In all that follows, we suppose that the flow on the parti-
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cle scale is in the Stokes regime; i.e., that the particle Reyn

olds number Ua/v, where Uis a characteristic velocity, a the 

characteristic particle size, and v the kinematic viscosity of 

the fluid, is much less than unity. 

A. Formation of the N-particle mobility matrix 

In Stokes flow problems involving systems ofhydrodyn

amically interacting particles, the velocities of all the parti

cles can be related to the forces exerted on the fluid by each of 

the particles via the mobility matrix M: 

U = M•F, (2) 

where U is the translationaVrotational velocity vector and F 

is the force/torque vector, for all N particles in the system. 

The inverse problem involves the resistance matrix R, which 

relates force/torques to particle velocities; 

F=R·U. (3) 

The resistance matrix is the inverse of the mobility matrix, 

R = M- 1
• (4) 

Here, M and R depend only on the instantaneous particle 

configuration; they are not affected by the velocities or forces 

imposed on the particles. In addition, both M and R are 

symmetric and positive definite. 

General methods have recently been presented for accu

rately approximating R (and therefore M) for both finite 

and infinite systems of hydrodynamically interacting parti

cles.14·15 Because these methods are applied to dynamically 

evolving configurations of particles, substantial effort is re

quired to assure that short-range lubrication forces, which 

act to prevent particles from overlapping during the course 

of a dynamic simulation, are correctly included in the resis

tance matrix. In the present problem, however, only static 

(i.e., instantaneous) configurations need be considered, and 

our interest is in long-range effects, which are not influenced 

by lubrication forces. Thus considerable simplification from 

the more general approaches is possible in the present case. 

We begin the development of the method by considering 

the formulation for a finite system of particles and then pass 

to the thermodyna~ic limit; i.e., let the number of particles 

Nand the volume of the system Vapproach infinity keeping 

the ratioN IV constant. The subsequent development is lim

ited to systems of either point forces or identical spheres of 

radius a, although it is straightforward to generalize to more 

complex systems. Performing a moment expansion of the 

integral representation for the Stokes flow velocity field and 

applying Faxen's law, we have the following relationship 

between the translational velocity of a given sphere, with 

center at xa, and the other N- 1 spheres14: 

p 1 
Ua-U""(Xa) =--+--

61TI-£a 81TI-£ 

X L ( 1 + ;
2 

V
2

) J(xa- Xp)•FP, 

P=l 
P#a 

(5) 

where Ua is the velocity Of sphere a, U"" (Xa) is the imposed 

flow at infinity evaluated at the sphere center, Pis the force 
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exerted by sphere a on the fluid, and J is the free-space 

Green's function or fundamental solution for Stokes flow, 

J(r) = 1/r + rr/~, (6) 

where r = xa - Xp and r = lrl. For point forces, the (a2
/ 

3)V2J term is identically zero. Writing (5) for each of theN 

particles in the system, an approximation to the mobility 

matrix ofEq. (2) can be constructed. For systems of finite

sized spheres, each sphere-sphere interaction is simply the 

well-known Rotne-Prager tensor, the long-range part ofthe 

complete two-sphere interaction, evaluated as though the 

two spheres were alone in the fluid. Effects from third bodies 

do not affect the two-sphere interactions until O(l/r4
), 

where r is a characteristic particle spacing. This is consistent 

with the Rotne-Prager approximation, which also neglects 

terms of 0( 1/~) in the two-sphere interactions. For systems 

of point forces, Eq. ( 5), without the finite size ( a 2 /3) V2 J 

term, is exact; no higher-body effects at all enter in the mo

bility matrix. 

Inversion of the N-particle mobility matrix formed as 

described above gives a far-field approximation to the resis

tance matrix of (3 ). As discussed by Durlofsky eta/., 14 in

verting the mobility matrix actually performs all the many

body reflections among all particles. Thus, although the 

mobility matrix is formed in a pairwise-additive manner, its 

invert, the resistance matrix, contains many-body interac

tions. In fact, it is these many-body reflections, summed 

upon the inversion of the mobility matrix, that give rise to 

the screening characteristic of porous media. In the resis

tance matrix, two-body interactions are via a medium of 

fixed (nonzero force) particles, in contrast to the mobility 

matrix, where two-body interactions are via a medium of 

force-free (nonzero velocity) particles. Therefore, the resis

tance interactions provide precisely the type of information 

required to extract the form of the fundamental solution in 

porous media. 

The discussion up to this point has been limited to sys

tems of finite numbers of particles. We now consider the 

extensions required for infinite systems. To pass to the ther

modynamic limit, the number of particles Nand the volume 

of the system V approach infinity with the ratioN IV con

stant. Thus, the volume fraction of particles 

(7) 

for spherical particles of radius a, can be defined. To simu

late an infinite system we could, theoretically, form the mo

bility matrix as described above for a system of N spheres 

and focus only on a subsystem of N 1 spheres immersed with

in the larger system. For sufficiently large N (N> N 1 > 1), 

such a system should be representative of an unbounded sus

pension; in fact, a rigorously convergent expression can be 

constructed asN and N 1 - oo. This type of approach is, how

ever, very inefficient computationally; N particles must be 

included in the simulation but only N 1 particles provide any 

information. Instead of proceeding as described above, we 

impose periodic boundary conditions, a technique widely 

used in molecular dynamics and Monte Carlo simulations. 

This means that we focus on a system of N particles con

tained within a cell that is periodically replicated throughout 

all space. Taking the periodic cell to be a cube of side H, the 
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volume fraction of particles rp is given by Eq. ( 7) with H 3 

replacing V. Although periodic boundary conditions are im
posed out of computational necessity, our intent is to model 

random systems. Thus the periodic cell must be large enough 

that positions of neighboring particles appear random to a 

particle placed at the center of the periodic cell. This point 

will be discussed in more detail below. In the simulation 

results discussed in Sec. III we shall refer to systems of point 

forces at nonzero volume fractions. What this means is sim

ply that the particles interact as point forces; i.e., without the 

finite-size term in Eq. ( 5). They are still physically spheres 

of radius a, and occupy a nonzero volume, with a well-de

fined volume fraction as given by Eq. (7). 

Because the sphere mobility interactions decay slowly, 

as 1/r, the effects of spheres far from the test sphere must be 

included in the simulation. Therefore, spheres in a given pe

riodic cell must interact not only with spheres in the same 

periodic cell but also with the images in other periodic cells. 

This entails performing so-called lattice sums of the Rotne

Prager tensor of Eq. ( 5). Thus for a system of N particles 

replicated periodically in space, Eq. ( 5) becomes, with no 

impressed flow at infinity, 

ua = __!:___ + _1_ 
61rp,a 81rp, 

XL L (1 + a
2 

V2)J<xa -Xp)•FP, (8) 
y fJ= I 3 

where r numbers the unit cells and the double summation is 

not performed for r = 1, {3 =a. 
Beenakker16 applied the Ewald summation technique, 

previously used to handle slowly decaying Coulombic inter

actions, to these Rotne-Prager lattice sums, casting them 

into a rapidly converging form. In his development, Been

akker specified that the total force on the particles in a unit 

cell be zero, and thus the infinite sum in ( 8) is well defined 

and convergent. It is essential that the convergence of these 

sums be accelerated, as the slow decay of the interaction 

would result in very slowly converging sums at great compu

tational cost and questionable accuracy. Writing the Ewald

summed version of Eq. ( 8) for each of theN particles in the 

periodic cell (see Beenakker16 for details), an approxima

tion to the mobility matrix can now be constructed that is 

valid for N particles immersed in an unbounded system. We 

designate the mobility matrix to which this Ewald summa

tion technique is applied M* and write 

U=M*•F. (9) 

Note that the mobility matrix in Eq. ( 9), as well as all subse

quent mobility and resistance matrices, relate translational 

velocity and force, in contrast to the more general matrices 

in Eqs. ( 2 )-( 4), which relate translational/rotational veloc

ities to force/torque. Similarly, U now designates the parti

cle translational velocity vector and F the force vector. 

When the average force the particles exert on the fluid is 

not zero, the expression ( 8) for the velocity of a particle 

must be modified. This can be accomplished in a rigorous 

fashion by applying a technique first proposed by O'Brien17 

to an infinite suspension of forced particles. The details of 

such an approach are in Brady et a/. 15
; here we shall only 
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sketch the derivation. We start from an integral representa

tion for the solution to Stokes equations for the velocity field 

u(x) at a point x in the fluid in terms of integrals of the force 

distribution on the particle surfaces and an integral over a 

mathematical surface r of large radius that cuts through 

both fluid and particles: 

1 N L u(x) = -- L J•a-n dS 
81rp, a= I Sa 

--
1
- ( (J•a + K•u)•n dS. 

81rp, Jsr 
( 10) 

Here J is the Green's function (6), K = - 6p,rrr/r, 
r = x - y, y being a point on the surface, a is the fluid stress 

tensor, and n is the outer normal to the surfaces. 

Equation ( 10) is exact for rigid particles. No diver

gences occur because we have a finite region bounded by the 

surface r. This surface is an arbitrary surface immersed in 

an unbounded statistically homogeneous suspension, i.e., 

the suspension continues outside of r. If the radius of this 

surface is taken to be very large, the variation in J and K will 

be small over a surface element dSr that cuts many particles 

and fluid. Thus in the integrand of the second integral we 

may replace a and u by their suspension averages-fluid and 

particle phase averages-( a) and (u). In a statistically ho

mogeneous suspension, (a) and (u) are either constants or 

linear functions of position, arising from the average pres

sure in (a) and a linear shear flow (if one exists) in ( u). 

Using the divergence theorem, and introducing the sus

pension average quantities, ( 10) can be manipulated to give 

1 N L u(x) - (u(x)) = -- L J•a-n dS 
81rp, a= I Sa 

n iR -- J•(F)dV. 
87rp, 0 

( 11) 

Here, (F) is the average force the particles exert on the fluid, 

n = N IV is the number density of particles, and R is the 

radius of the volume enclosed by the surface r. The above 

reduction is valid for point forces only, but it is straightfor

ward to generalize to the complete problem. 15 It is now per

missible to let R ..... oo , because at large distances from x the 

sum becomes equivalent to a volume integral of n times the 

average force, and ( 11) results in a finite convergent expres

sion for u- (u). Physically, the integral represents a "back 

flow" of fluid, relative to zero volume flux axes (u) = 0, 

caused by the macroscopic pressure gradient that balances 

the excess weight, (F) :1:0, of the particles. It is the velocity 

relative to this average back flow that is the physically signif

icant quantity, not its absolute value. 

Using the above procedure and Faxen laws for particle 

velocities, absolutely convergent expressions for the particle 

velocities in Eq. ( 8) can be obtained. With the obvious 

changes in notation on the particle sums and expanding the 

surface integrals in ( 10) moments, we have in lieu of ( 8) 

3332 Phys. Fluids, Vol. 30, No. 11, November 1987 

~ 1 N( a2) ua_ (u(xa)) =--+-.L L 1 +-V2 

61rp,a 81rp, r 13 = 1 3 

- _n_ ("' (1 + a2 v2) J•(F)dV. 
81rp, Jo 3 

(12) 

The constant term t/J(F) results from the finite particle size 

contributions ( a2 /3) V2 J. [The reduction of ( 10) for finite

sized particles requires some care and is discussed in Brady 

et a/. 15
] Equation ( 12) is an absolutely convergent expres

sion for the velocities of theN particles that have been peri

odically replicated throughout all space. 

It is not necessary for the particles to be periodically 

replicated. Equation ( 11) applies for any distribution of par

ticles, but convergence of the difference between the sum and 

the integral in ( 11 ) or ( 12) can be accelerated by using peri

odic replication and the Ewald summation technique. Ap

plying the Ewald summation procedure to (12) results in 

exactly the same Ewald-summed mobility matrix M* as in 

Eq. (9). The only change the average force makes is to add 

the suspension average velocity to the left-hand side. Thus, 

in place of ( 9) when the particles are not force-free, we have 

U-(u)=M*•F. (13) 

Mathematically, the stipulation by Beenakker that 

(F) = 0 removes a singular term in the reciprocal space lat

tice sum at k = 0, where k is a reciprocal wave vector. The 

constant term t/J(F) and the back-flow integral in ( 12) pre

cisely cancel this k = 0 term when the average force is not 

zero. It may appear surprising that the same mobility matrix 

M* is obtained whether or not the average force is zero, but 

there is a simple intuitive argument that shows it must be 

true. The mobility matrix is a purely geometric quantity that 

describes particle interactions. It cannot depend on the ve

locity, forces, etc., that the particles ultimately have. There

fore, it must be the same whether or not the average force is 

zero. Said differently, in writing the mobility matrix in ( 13) 

the particles do not know whether the forces sum to zero or 

to a finite value; the particle interactions must be the same in 

the two cases. 

The Ewald summed mobility matrix M* contains all the 

information required to compute the fundamental solution 

in porous media. Before describing the manipulations that 

must be performed to extract the desired results, we shall 

briefly consider how M* differs from the far-field mobility 

approximations of Durlofsky et al. and Brady et al. In the 

present problem, the mobility matrix relates translational 

velocities to forces; no angular velocities, imposed rate of 

strain, torques, or stresslets are included. In the formula

tions of Durlofsky et al. and Brady et al., these additional 

interactions are included. In the problem at hand, because 

no nonuniform bulk flow or external torques are imposed 

and because the particles are distributed randomly, the an

gular velocity, rate of strain, torque, and stresslet unknowns 

need not be included. This results in a significant computa

tional savings; M* is reduced from 11N X 11N to 3N X 3N. 
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We mention in passing that the procedure described 

above is fully applicable to ordered as well as random sys

tems. The bulk properties of regular systems are studied in 

detail by Brady eta/. 15 through an approach much like that 

described here. 

B. Fundamental solution for flow In porous media and 
comparison with the Brinkman equation 

To determine the Green's function for flow in porous 

media, we should apply an infinitesimal point force at a point 

in the medium and measure the velocity response at all field 

points (both fluid and solid phase points since Brinkman's 

equation applies to suspension averages). This could be ac

complished by using two "test" particles of very small radii 

in the mobility formulation ( 13), and then forming the mo

bility invert to approximate theN-particle resistance matrix 

a•: 
F = a•·(U- (u) ). (14) 

Recall that interactions in the resistance matrix are via a bed 

of fixed particles. The Green's function can then be extracted 

from ( 14) as described below. 

While correct, the above approach is computationally 

expensive because the procedure would have to be repeated 

for many different bed particle configurations and for many 

different test particle locations in order to form averages. 

Instead, we shall simply use two of the bed particles as the 

source and field points, applying a force to one and measur

ing the velocity of the other. For each configuration of bed 

particles all possible pairs of particles can be used as source 

and field points, and a large amount of statistical informa

tion can be obtained from a single realization. Thus, for two 

particles a and/3, we form the two-particle resistance matrix 

corresponding to their interactions: 

(15) 

where a:a and a~.a are the 3 X 3 self-term component matri

ces and a:.a and a;,. are a-{3 interaction matrices of the N

particle resistance matrix. 

If a force is applied to one particle in a porous medium of 

infinite extent, the average suspension velocity (u) as well as 

the total force exerted by the particles on the fluid, .l: ~ 
= N (F), are identically zero. Owing to the imposition of 

periodic boundary conditions in our model systems, how-

ever, the velocity disturbance is periodically replicated 

throughout all space, yielding, in general, nonzero values for 

the total force and the suspension average velocity. In simu

lation (u) or (F) must be specified to obtain a well-defined 

problem, and thusweseteither (u) =Oor (F) :=0. Note, it is 

not possible to prescribe both (u) and (F) because this over

determines the system of equations. The simplification to 

( 12) is obvious in the case (u) =0; for (F) =0 the following 

condition on (u) can be derived from Eq. (14): 

(16) 

for translation of particle 8 with all other particles fixed. 

Averaging (16) over all particles 8, (u) can be simply ex

pressed as 

(u) = ( 1/N)U, (17) 

where U is the translational velocity of any particle with all 

others fixed. Thus, for the case (F) =0, Eq. ( 15) becomes 

[ ~] = [a:a - (1/N)(a!a + a:.a) 

F.a a;,. - ( 1/N) (a;,. + a~.a) 

a:.a- (1/N)(a!a + a:.a>]·[ua]. 

a~.a- (1/N)(a~a +a~) u.a 
(18) 

Equation (18) above, valid for systems in which (F) 

:=0, differs from the result for systems with ( u) = 0 by terms 

proportional to 1/N. Therefore, the results from two specifi

cations will differ by an amount that tends to zero as N-+ oo, 

as would be expected physically. The convergence of the 

results from the two specifications with increasing N will be 

clearly illustrated in Sec. III. Note that the expressions given 

above allow for nonzero (u) even when (F) =0 and nonzero 

(F) when (u) =0. These results, though nonintuitive, are 

consistent with a macroscopic momentum balance. Specifi

cally, in the case (u) :=0, (F) :;60, a macroscopic pressure 

gradient appears which generates an average fluid velocity 

that exactly balances the velocity generated by the periodi

cally replicated translating particle. For the case (u) :;60, 

(F) :=0, no macroscopic pressure gradient exists, even 

though a bulk flow is present, because none is required to 

balance the forces exerted by the particles on the fluid. 

For a direct comparison of the two-particle simulation 
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result with the Brinkman propagator, the two-particle resis

tance expressions, Eq. (15) for the case (u) :=Oand Eq. ( 18) 

for the case (F) =0, must be recast into mobility expres

sions, accomplished through inversions. The resulting mo

bility matrix for either case is designated as M ~.a, where the 

superscript Pindicates that the two-particle interaction is via 

a porous medium. 

The nondimensional velocity field created by a point 

force located at xa in a Brinkman medium is 

(19) 

where u(x) is the velocity at a point x and~ is the force 

nondimensionalized by 6rrpa U. The Brinkman propagator 

/ is given by Howells8 as 

f = (2/a2r)[ (1 + ar + a 2r)e-a'- 1]1 

+ (6/a2r) [1- (1 + ar + j a 2r)e-a']rr, 

(20a) 
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expressed more concisely as 

f =~fa (r}l + ~ ga (r) (rr/r), (20b) 

where fa (r) and ga (r) are apparent from (20a), with the 

factor of~ introduced to cancel the~ in Eq. ( 19). In the limit 

tfJ-+ 0, a, nondimensionalized by the sphere radius a, is given 

by 

(20c) 

Note that the velocity disturbance due to a point force in a 

Brinkman medium decays far away as l/(a2r), in contrast 

to the l!r decay of the Stokes propagator, which can be re

covered from ( 20) in the limit a -+ 0. Also of interest is the 

observation that integration of f over a spherical surface 

results in an expression that decays exponentially with r 

rather than algebraically. 

For any isotropic, homogeneous medium, the propaga

tor or fundamental solution can be expressed in a form anal

ogous to Eq. [20(b) ]; therefore the propagator determined 

by our simulations for flow in porous media, designated P, 

can be written as 

P = ~fp (r)l + ~ gp (r) (rr/r), (21) 

where the velocity field due to a point force is given by re

placing f with Pin Eq. (19). By determiningjp(r) and 

gp(r), the porous medium propagator is fully specified. 

From our simulations we determine M ~. whose off-diag

onal component matrix relates the velocity of a field particle 

located at Xp to the force exerted by a source particle at xa , 
and is therefore the porous medium propagator P. If all the 

particles in the simulation are point forces, the off-diagonal 

component matrix of M ~ gives the Green's function for 

flow in such a porous medium; on the other hand, if the 

particles are all finite-sized spheres, M ~P relates the velocity 

of sphere {3 to the force exerted by sphere a. 

The two functions fp (r) and gp ( r) are determined by 

evaluating the velocity disturbance caused by a source parti

cle as measured by the motion of the field particles. In the 

actual simulation, the following two summations, evaluated 

at discrete values of r, where r is the distance from the source 

particle to the field particle, are performed: 

1 m, 1 I 
0-t/J)-LU~-- u1 dS 

m 1 p = I 41rr sphere 

= [fp(r) +!gp(r)] Ff, (22a) 

1 m, 1 i 
(1-t/J)- L Up•n-- u·ndS 

m2 p =I 21T'r hemisphere 

=! [fp(r) +gp(r)]Ff, (22b) 

where m 1 is the total number of particles contained within a 

spherical shell of thickness !J..r situated a distance r from the 

source particle, and m2 is the total number of particles con

tained within a hemispherical shell oriented such that its 

base is in the 2-3 plane. The subscript 1 refers to the 1 direc

tion, n is the unit normal, and UP is the velocity of particle /3. 
The factors of ( 1 - tfJ) correct for the fact that all field points 

sampled are considered fluid elements, i.e., the particle {3 is 

assumed force-free in ( 15) in computing the summations in 

(22), while in reality a fraction tfJ are fixed in space and 

would have given zero to the sum. By evaluating each of 
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these sums for imposed forces in the 1, 2, and 3 directions 

and by considering each particle in tum as the source parti

cle, a large body of statistical information is generated, yield

ing accurate estimates for fp ( r) and g P ( r). 

The average force exerted by a fixed particle immersed 

in a uniform flow ( nondimensionalized by 611'p,a U), referred 

to as the drag coefficient K - 1
, can be determined directly 

from Eq. ( 14 ). Specifically, the drag coefficient is given by 

1 (1 N N ) 
K-'=-tr- L L R!p , 

3 N a=IP=! 

(23) 

where R!p, nondimensionalized by 61T'p,a, is as defined 

above. The dimensionless permeability a- 2 is related to the 

drag coefficient by 

a- 2 = ~ {1/t/J )K. (24) 

In the actual simulations, particles are placed randomly, 

via random sequential addition, in the periodic cell. Particles 

are not permitted to overlap. As mentioned above, it is im

portant that the periodic cell be large enough that our results 

are not influenced by the imposition of periodic boundary 

conditions. In a Brinkman medium, the screening length, 

beyond which sphere interactions can be expected to differ 

significantly from those in a Stokes fluid, is the square root of 

the permeability, a- 1
• To ensure that the model system is 

indeed sufficiently large, we require that the ratio of the peri

odic cell size, H [cf. Eq. (7) ], to the Brinkman screening 

length be large compared to unity; e.g., 

aH;::;:,3.4N 113tfJ 116 > 1. (25) 

In most of our simulations, N = 125; t/J varies from 0.002 

( aH;:::;:, 6) to 0.2 ( aH;:::;:, 13). Thus, as we shall see in Sec. III, 

our system is indeed large enough to display screening. 

All of the simulations discussed in the next section were 

performed on a Cray X-MP supercomputer. In simulations 

involving the application of the Ewald summation tech

nique, lattice sums are computed over 125 periodic cells, and 

approximately six minutes of CPU time are required. Over 

90% of this time is spent computing the lattice sums; thus 

simulations of 125 particles without the application of the 

Ewald summation technique require less than 30 sec of CPU 

time. 

Ill. RESULTS 

In this section we present simulation results for particle 

interactions in porous media, computed both with and with

out the application of the Ewald summation technique, and 

compare them with the Brinkman solution at four different 

values of t/J: O.Dl, 0.002, 0.05, and 0.2. The comparison is in 

terms ofthe functionsf(r) andg(r) and the drag coefficient 

or resistivity K - 1
• All distances are nondimensionalized by 

the sphere radius a. The results presented at a given value of 

t/J are averaged over three independent, random realizations. 

In each realization every particle in tum is considered as the 

source particle, yielding a large body of statistical informa

tion. At given values of t/J and N, several sets of simulations 

are generally performed to gauge the differences between 

results computed with different system specifications; e.g., 

finite-sized spheres versus point forces or (u) =0 vs (F) =0. 
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In these cases, the same three realizations are used for each 

set of simulations. The variations between the results of the 

three realizations are generally quite small. In thefp (r) and 

gp (r) results, the standard deviations of the three-realiza

tion average are usually smaller than the size ofthe symbols 

on the figures by the third or fourth data point after r = 2 

(typically rz 3.5 to rz 5) and remain so for all larger values 

of r. For the first few data points, the standard deviation is 

generally about 10% of the average for both fp (r) and 

gp ( r). More specific information concerning the variations 

between the three realizations will be cited only in those 

cases where the variations differ significantly from the gen

eral observations cited above. 

We first consider results for¢= 0.01. Figures 1 (a) and 

1 (b) display the simulation results, shown as X 'sand + 's, 

forfp(r) andgp(r) for a system of 125 point forces. In this 

and all subsequent figures the X 's correspond to simulations 

of point forces for which (u) =0 and the + 's to simulations 

of point forces for which (F) =0. The results in Figs. 1 (a) 

and 1 (b) are for simulations performed with the application 

of the Ewald summation technique. The solid lines are the 

Brinkman medium results, given by Eqs. (20), with a as 

given by the infinite dilution result Eq. (20c), and the 

dashed lines are pure fluid (Stokes propagator) results; 

0.15 
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I 

0.12 I 
\ 
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\ 
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0.09 
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FIG. I. Comparison of ¢1 = 0.01 theoretical and simulation results for (a) 
/(r)and (b) g(r). Simulations performed for 125 point forces with the ap

plication of the Ewald summation technique. The X 's are (u) =0 results; 

+ 's are (F) =0 results, the solid curves are the Brinkman propagator 

fs (r) and g8 (r) functions, and the dashed curves are the Stokes propaga

tor. The vertical line on the abscissa in these and all subsequent figures indi

cates the half-box width. 
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f 5 (r) =g5 (r) = (i)r- 1
• Thehalf-boxwidth (H /2 = 18.7) 

is indicated by a vertical line on the abscissa. Both sets of 

simulation results agree quite well with the Brinkman medi

um results and deviate from one another only slightly and by 

a nearly uniform offset. As discussed in Sec. II, the two sets 

of simulation results deviate from one another by an 0( 1/ N) 

amount; a larger variation between them will be evident in 

theN= 27 results shown below. 

Note that the simulation results agree with the Brink

man propagator over the entire range of r, up to r-;:::;32. At 

the parameter values for these simulations (¢ = 0.01, N 

= 125) the box size H is 37.4. The maximum distance 

between two particles is ,jjH /2 ( = 32.4), the distance from 

the center of the periodic cell to a comer. Because portions of 

spherical surfaces of radius r extend beyond the periodic cell 

(a cube of side H), for values of r beyond H /2, the summa

tions in Eq. ( 19) are not actually over the surfaces of spheres 

of radius r but over the portion of the surface of a sphere of 

radius r that falls within a cube of side H. This geometrical 

limitation results in a diminution in the amount of statistical 

information as r ..... ,jjH /2, but does not affect the validity of 

Eq. ( 19) or the agreement between the simulation results 

and the Brinkman equation in the region H /2 < r < ,J3H /2. 

Because the Brinkman equation is rigorously valid for a 

random, infinite system as ¢J ..... O, we expect our simulation 
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FIG. 2. Comparison of ¢1 = 0.01 theoretical and simulation results for (a) 

/(r) and (b) g(r). Simulations performed for 125 point forces without the 

application of the Ewald summation technique. The X 's are (u) sO simula

tion results, the solid curves are the Brinkman propagator, and the dashed 

curves are the Stokes propagator. Note the deviation of the simulation and 

Brinkman results for r > H /2. 
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results to recover the Brinkman propagator at low 4> for suf

ficiently large N. Figures 1 (a) and 1 (b) indicate that a peri

odically replicated random system of 125 point forces does 

indeed behave as a Brinkman medium when the particles are 

specified to be fixed in space. This can be taken as verifica

tion that the inversion of the mobility matrix M* results in 

all many-body scatterings (at least at the level of point 

forces), yielding a medium that behaves fundamentally dif

ferently than either a pure fluid or a suspension afforce-free 

particles. 

We next present results for simulations of point forces at 

the same parameter values as above (t/> = 0.01, N = 125), 

but without the application of the Ewald summation tech

nique. In these simulations, periodic boundary conditions 

are imposed but no lattice sums are performed; i.e., particles 

interact only with their nearest neighbors and not with an 

infinite replication of images. The results forfp (r) andgp (r) 

areshowninFigs. 2(a) and 2(b). Again the X'scorrespond 

to point-force simulation results with (u) =0, the solid lines 

to the Brinkman propagator and the dashed line to the 

Stokes propagator. Though agreement with the Brinkman 

solution is good for both f~ctions in the range 2<r< 17, 

agreement beyond r-;:::; 20 becomes poor, particularly for 

gp(r), which tends to the Stokes solution for r>27. Com

parison of Figs. 2(a) and 2(b) with Figs. 1 (a) and 1 (b) 

clearly illustrates the importance of the effect of distant par

ticles, even for 4> as low as 0.01. As will be seen below, the 

effect of distant particles is similarly important for 4> = 0.05. 

Having established that theN= 125 point-force simula

tions at 4> = 0.01 with the application of Ewald sums do in

deed reproduce Brinkman's result, the effect of the size of the 

periodic cell will now be considered. Shown in Figs. 3 (a) 

and 3(b) arefp (r) andgp (r) for systems of27 point forces 

for 4> = 0.01 (H /2 = 11.2) for simulations performed with 

Ewald sums. Again, the X 's correspond to (u) =0 and the 

+ 's to (F) = 0. The standard deviations in the fp ( r) and 

gp (r) data points for the N = 27 simulation results are 

slightly higher than those observed with N = 125. lngp (r), 

standard deviations of 0(0.01 to 0.02), for both the (u) =0 

and (F) =0 simulations, exist in the second, third, and sixth 

data points (r = 3.45, 4.42, 7.33 ). At larger values of r, the 

standard deviations for the N = 27 simulation fp (r) and 

gp(r) functions are, though small [-0(0.001), smaller 

than the size of the symbols] , about a factor of 3 larger than 

those for theN= 125 simulation functions. 

It is apparent from Figs. 3 (a) and 3 (b) that, though the 

trends agree with the Brinkman result, the offsets between 

the simulation and Brinkman results and between the two 

simulation results are noticeably greater than for the N 

= 125 simulations [compare Figs. l(a) and l(b)]. 

Further, these variations are statistically significant. As 

shown in Sec. II the two sets of simulation results deviate 

from one another by an 0( liN) amount. To determine the 

variation of the offset between the Brinkman and simulation 

results with system size, additional simulations with (u) =0 

were performed at 4> = 0.01 for systems of 64 and 90 point 

forces. The offset is quantified by computing the average of 

the difference between the simulation and Brinkman results 

over the range H /2 < r < .,f3H /2. Least squares fits for log-
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FIG. 3. Comparison of <,6 = 0.01 theoretical and simulation results for (a) 

f(r) and (b) g(r). Simulations performed for 27 point forces with Ewald 

sums. The X 's are (u) =0 simulation results, the + 's are (F) =0 simula

tion results, the solid curves are the Brinkman propagator, and the dashed 

curves are the Stokes propagator. The deviations between the two simula

tion results for /(r) and between the simulation results and the Brinkman 

function are noticeably larger than for theN= 125 simulations [see Fig. 
l(a)]. 

log plots of offset in both fp ( r) and g P ( r) vs N for 

27 ..;;N..;; 125 give slopes of - 0.94 ± 0.05 and - 0. 77 

± 0.03, respectively. Thus over this range of N the average 

offset scales approximately as N - 0
·
86

• Only considering the 

range 64.-;N.-;125, the slopes are - 1.03 ± 0.13 and 

- 0.87 ± 0.01 for the offsets infp (r) andgp (r), respective-

ly, giving an average offset that scales approximately as 

N - 0
·
95

• Therefore, it appears that the difference between the 

Brinkman and simulation results scales approximately as 

N -I, as does the offset between the two sets of simulation 

results. Further, it is evident from Figs. 1 (a) and 3(a) that 

for simulations with (F) =O,fp(r) approaches/B (r) from 

above and for simulations with (u) =0 the approach is from 

below. Such a trend does not exist for the gp ( r) functions. 

We next briefly consider simulation results for very di

lute systems: 4> = 0.002. These simulations, performed for 

125 point forces with Ewald sums and (u) =0, are of interest 

because they allow comparison over a large range of r (HI 

2 = 32.0). Figures 4(a) and 4(b) display the results for 

fp(r) andgp(r); agreement with the Brinkman solution is 

excellent over the entire range of the results, r < 54. Note the 

only slight difference between the Stokes and Brinkman g ( r) 

functions in Fig. 4(b) and the agreement of the simulation 
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FIG. 4. Comparison of tfi = 0.002 theoretical and simulation results for {a) 

/(r) and {b) g{r). Simulations performed for 125 point forces with Ewald 

sums. The X 's are (u) =0 simulation results, the solid curves are the Brink

man propagator, and the dashed curves are the Stokes propagator. 

results with the latter. Despite the only slight quantitative 

differences between the simulation (or Brinkman) results 

and the pure fluid (Stokes) results, it is important to empha

size that the simulation and Brinkman/(r) and g(r) func

tions decay as 1/(a 2 ~) at larger while the pure fluid func

tions decay as 1/r. This fundamental difference can be 

readily appreciated if one computes the spherical average of 

the Brinkman and Stokes propagators: the Brinkman propa

gator behaves as e-ar /r, while the Stokes propagator still 

only decays as 1/r. 

We now tum from very dilute systems to a considera

tion of moderately dilute porous media: <fJ = 0.05. The simu

lation results presented at <fJ = 0.05 are both for systems of 

125 point forces and 125 identical finite-sized spheres. When 

considering systems of finite-sized spheres, comparison of 

the simulation results with the Green's function for the 

Brinkman equation may no longer be appropriate. Rather, 

the simulation results should be compared to the Brinkman 

equation equivalent of the Rotne-Prager tensor for Stokes 

flow; i.e., the Brinkman Green's function plus twice the Fax

en law contribution, 8 

3337 

/(1) = {1 + [ ~2 +(~2rl v2} /. 
B0 (a) = 1 +a +!a2

, 

B2 (a) = (ea- B0 )/a2
, 
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(26a) 

(26b) 

(26c) 

where/ is given by Eq. (20a). The (aB2/B0 )
2V2 f term 

in (26a) arises because V2 f satisfies the Helmholtz equa

tion, giving V4 
/ =a2V2

/.
18 Note that V2

/ decays ex

ponentially with r, so its effect is only noticeable at small r. 

Further, the dilute limit approximation for a, Eq. ( 20c), will 

not be used but rather the value for a obtained from the 

simulation [ cf. Eq. ( 24) ] . 

The results for fp(r) and gp(r) for simulations per

formed with Ewald sums are displayed in Figs. 5(a) and 

5(b). The X 's correspond to point force, (u) =0 simulation 

results; the + 's to point force, (F) =0 simulation results; 

O's to finite sized sphere, ( u) = 0 simulation results; the solid 

curves to the Brinkman propagator / 8 (r) and g8 (r) func

tions computed using the point force simulat;i!-:>n result for a 
(aPf = 0.6775), and the broken curves to the / 8 (r) and 

g8 (r) functions, corresponding to f 0 > in Eq. (26), com

puted using the finite-sized sphere simulation result for a 

(a.r. = 0.6348). By rz6, the solid and broken curves for 

both / 8 (r) and g8 (r) are in good agreement despite the 

slightly different a values. 
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FIG. 5. Comparison of tfi = 0.05 theoretical and simulation results for {a) 

/(r) and {b) g{ r). Simulations performed for 125 particles with the applica

tion of Ewald sums. The X 's are ( u) = 0 point force simulation results, the 

+ 's are (F) =0 point force simulation results, the O's are (u) =0 simula

tion results for finite-sized spheres, the solid curves are Brinkman propaga

tor functions (a= 0.6775), and the broken curves are Brinkman Rotne

Prager functions {a = 0.6348). The deviations between the simulation and 

Brinkman results indicates the loss of accuracy of the Brinkman equation at 
tfi=0.05. 
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Though quantitative agreement between the Brinkman 

functions and the simulation results does not exist except at 

large values of r, qualitatively the results are in fair agree

ment even at moderate values of r. Both the simulation and 

Brinkman results, for both point forces and finite-sized 

spheres, display negative minimums in/(r) at moderate val

ues of r. The fp ( r) results for systems of finite-sized spheres 

lie above those for systems of point forces, just as the/B (r) 

functions of Eq. ( 26) lies above the Brinkman propagator 

fB (r) function. In the g(r) functions both the simulation 

results for systems of finite-sized spheres and the Brinkman 

Rotne-Prager result level off near r = 2 while the simulation 

results for systems of point forces and the Brinkman propa

gator decrease monotonically. In all cases, however, quanti

tative differences are apparent between the simulation and 

Brinkman results. 

It is our belief that the discrepancies between the simula

tion and Brinkman results at t/J = 0.05 are real and will per

sist as N-+ oo. The small deviations between the (u) =0 and 

(F) =0 point force results indicate that the simulation re-
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sults have essentially converged for increasing N, and con- g(rl 

siderable quantitative differences still exist between the sim

ulation and Brinkman results, particularly ing(r). Further, 

simulations performed with systems of27 point forces do not 

indicate that the simulation results tend toward the Brink

man results with increasing N. For simulations in which 

(F) :::0, theN= 27 fp (r) results lie consistently above the 

N = 125 fp (r) results. At r = 2.28, where the largest abso

lute deviation for r<; 10 between the two occurs ( -0.01), the 

discrepancy in theN= 27 results relative to theN= 125 

results is 16%. The fact that the minimum in fp (r) for 

N = 27 simulations lies above that for N = 125 simulations 

suggests that the minimum becomes more negative, and thus 

deviates more from the Brinkman result, as N increases. The 

gp (r) results for the two simulations deviate only slightly; at 

r = 2.28 the N = 27 simulation result exceeds that of the 

N = 125 simulation result by 1.5%, while at r = 3.82 the 

N = 27 result falls below theN= 125 result by 6%. Thus, 

there is no evidence that the t/J = 0.05 point force simulation 

results tend to the Brinkman solution with increasing N. 

The Brinkman equation provides an exact description of 

flow in random porous media as t/J-+0. Rigorous derivation 

of the Brinkman equation requires only point force interac

tions among the fixed particles-no higher moments are 

necessary. Therefore, the quantitative differences between 

the point force simulation results and the Brinkman propa

gator at t/J = 0.05 are significant; they indicate that the 

Brinkman equation has begun to lose accuracy for systems of 

point forces at t/J as low as 0.05. 

The next simulation results presented are for t/J = 0.05, 

N = 125 with (u) :::0 but without the application of the 

Ewald summation technique. Simulations of systems of 

point forces under these conditions resulted in nonpositive 

definite mobility matrices for some realizations, while simu

lations of systems of finite-sized spheres yielded well-be

haved mobility matrices in all cases. Results for fp (r) and 

gp (r) for finite sized spheres are shown in Figs. 6(a) and 

6(b). The open circles are the simulation results and the 

solid and broken curves are the Brinkman propagator and 
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FIG. 6. Comparison of~= 0.05 theoretical and simulation results for (a) 

f(r) and (b) g(r). Simulations performed for 125 finite-sized spheres with

out Ewald sums. The O's are ( u) = 0 simulation results, the solid curves are 

Brinkman propagator functions (a= 0.6775), and the broken curves are 

Brinkman Rotne-Prager functions (a= 0.6348). Thef(r) simulation re

sults are aphysical for r > H /2. 

Brinkman Rotne-Prager results, respectively, with the same 

a's as in Figs. 5(a) and 5(b). (As discussed below, simula

tions performed without the application of the Ewald sum 

technique do not yield reasonable a values.) The results for 

fp (r) agree qualitatively with the Ewald summed t/J = 0.05 

simulation results [Fig. 5 (a) 1 for 2 < r < 10, but beyond this 

the trend is entirely different. For r>H /2, thefp (r) simula

tion results are rather aphysical; they increase in magnitude 

with increasing separation. The gp (r) results appear more 

reasonable, though they deviate considerably from the re

sults of Fig. 5(b) and actually tend more toward the Stokes 

solution [not shown in Fig. 6(b) 1 than the Brinkman solu

tion at larger. This was also the case for the t/J = 0.01 gp (r) 

results for simulations performed without Ewald sums [see 

Fig. 2(b) 1· 
The last set of simulation results to be considered is for 

moderately concentrated suspensions, t/J = 0.2. In simula

tions with N = 125, the mobility matrix lost positive defi

niteness in all cases when the Ewald summation technique 

was not applied (for systems of either point forces or finite

sized spheres) and also when the Ewald summation tech

nique was applied to systems of point forces. Thus the only 

results presented are for systems of 125 finite-sized spheres 

simulated with Ewald sums. Thefp ( r) and gp ( r) results for 
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these simulations are shown in Figs. 7(a) and 7(b). The 

open circles correspond to the ( u) = 0 simulations, the aster

isks to (F) =0 simulation results, the solid curves to the 

Brinkman propagator using the value for a obtained from 

the simulation (a= 1.989), and the broken curves to the 

Brinkman Rotne-Prager functions using the same value for 

a. Thestandarddeviationsinthefp(r) andgp(r) simulation 

results are very small for all values of r-in all cases smaller 

than the size of the symbols. The simulation and Brinkman 

results deviate significantly, though the trends are still in 

qualitative agreement. Note that the deviations between the 

two are similar to those observed at t/J = 0.05; thefp (r) sim

ulation results display a more negative minimum than do the 

/ 8 (r) curves, while thegp (r) simulation results lie consider

ably abovetheg8 (r) curves at small to moderate values ofr. 

The t/J = 0.2 simulation results should be interpreted 

more as an indication of the loss of the validity of the Brink

man equation than as an accurate estimate of the actual po

rous media/(r) andg(r) functions. At t/J = 0.2, characteris

tic nearest-neighbor interparticle spacings r 12 [r12 = (~1T/ 
t/J) 113

] are 2.76 sphere radii, to be contrasted with 7.48, 12.8, 

and 4.38 at t/J values of 0.01, 0.002, and 0.05, respectively. 

The relatively near spacing of the spheres at t/J = 0.2 indi

cates that higher moments in the expansion of the integral 
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FIG. 7. Comparison of ¢1 = 0.2 theoretical and simulation results for (a) 

/(r) and (b) g(r). Simulations performed for 125 finite-sized spheres with 

Ewald sums. The O's are (u) =0 simulation results, the •·s are (F) =0 sim

ulation results, the solid curves are Brinkman propagator functions 

(a= 1.989), and the broken curves are Brinkman Rotne-Prager functions 

(a= 1.989). The Brinkman equation is not valid at ¢1 = 0.2. 
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expression for the Stokes flow velocity field may be required; 

in other words, the Rotne-Prager tensor may no longer suf

fice as a description of two-sphere mobility interactions. 

Further, lubrication may need to be introduced into there

sistance matrix to accurately account for very short-ranged 

interactions. These extensions are available and straightfor

ward, 14
•
15 but require considerably more computation time 

than the present method and were therefore not implemen

ted. Also, the use of bed particles rather than infinitesimal 

test particles may affect the behavior near r = 2 at this high 

value of t/J. The t/J = 0.2 simulation results may find addi

tional use as a "known" result to serve as a comparison with 

a theoretical treatment of nondilute porous media where 

sphere-sphere interactions are approximated by the Rotne

Prager tensor. 

Finally, we consider the results for the drag coefficient 

K - 1
, for the simulations discussed above. Reasonable results 

for the drag coefficient are obtained only in simulations per

formed with the application of Ewald sums. Without Ewald 

sums, for 125 particles, K - 1 = 0.114 at tfJ = 0.01 for point 

forcesandK -I = 0.0712at(J = 0.05 forfinite-sizedspheres. 

These results are clearly unrealistic; K - 1 must exceed unity 

and increase with increasing t/J. 
Displayed in Table I are drag coefficient results with 

simulations performed with Ewald sums. The standard de

viations presented correspond to variations between the 

averages for each of the three distinct realizations. In the last 

column are the results of Kim and Russel 13
; for t/J<0.05 their 

low t/J expansion result [their Eq. (2.14)] is presented and 

for t/J = 0.2 their numerical value. Several trends are appar

ent from the simulation results. Most importantly, K -I in

creases with increasing t/J; this is not the case when the Ewald 

summation technique is not applied. Values forK - 1 are con

sistently higher for simulations of systems of point forces 

than for simulations of systems of finite-sized spheres, pre

sumably a result of the slightly different nature of the many

body reflections that occur upon inversion of the mobility 

matrix for a system of finite-sized spheres compared to those 

for a system of point forces. 

The K -I values presented in Table I increase with de

creasing system size, although this trend does not appear to 

be statistically significant; i.e., the standard deviation also 

increases with decreasing system size, as would be expected. 

TABLE I. Results for the drag coefficient K - 1 defined in Eq. ( 24). All 

simulations were performed with the application of the Ewald summation 

technique. 

Point force 

or 

¢1 N finite size K-1 (K-I)a 

0.002 125 PF 1.098 ± 0.024 1.102 
0.01 125 PF 1.259 ± 0.044 1.280 
0.01 125 FS 1.237 ± 0.043 1.280 
0.01 27 PF 1.320 ± 0.082 1.280 
0.05 125 PF 2.040 ± 0.032 1.981 
0.05 125 FS 1.791 ± O.D35 1.981 
0.05 27 PF 2.178 ± 0.126 1.981 
0.2 125 FS 4.396 ± 0.056 4.61 

• Results from Kim and Russel. 13 
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For very small systems, however, a statistically significant 

increase in the drag coefficient would be expected to occur. 

Due to the imposition of periodic boundary conditions, a 

small system is not truly random and would behave some

what as an ordered, periodic system. Reference to Kim and 

Russel13 (their Table III) shows that the drag coefficient is 

consistently greater (at least for ¢<0.45) for ordered as 

compared to random systems. 

Finally, we note that the agreement between the simula

tion results for the drag coefficient and the results of Kim 

and Russel is quite good; within 10% in all cases. This would 

be expected for low c,6, but it is somewhat surprising that the 

agreement persists for c,6 as large as 0.2. At c,6 = 0.2, the 

Brinkman equation does not provide a quantitative basis for 

computing sphere interactions in a porous medium, as is 

evident from Figs. 7(a) and 7(b). Although the¢= 0.2sim

ulation results for fp(r) and gp(r) are only approximate 

(see discussion above), the drag coefficient result is expected 

to be more reliable, due to the relatively small effect oflubri

cation in the calculation of the drag coefficient (refer to 

Brady eta/. 15 for a discussion of this point). In their perme

ability calculations, however, Kim and Russel approximate 

sphere-sphere interactions as via a Brinkman medium at all 

values of c,6. Though this approximation loses accuracy at 

moderate and high c,6, there are apparently compensating 

effects in their calculations that render the final result for the 

permeability accurate. 

IV. CONCLUSIONS 

In this paper, we have applied the general methodology 

of Stokesian dynamics to determine the form of the funda

mental solution for flow in porous media. In simulations of 

dilute porous media, the results clearly show that the system 

behaves as a Brinkman medium, with long-ranged interac

tions screened by intervening fixed particles, rather than as a 

viscous fluid. This "effective medium" behavior of the simu

lated porous medium comes about upon the inversion of a 

properly constructed N-particle mobility matrix, which it

self derives from a moment expansion of the integral repre

sentation of the Stokes velocity field. Thus the effective prop

erties of the medium arise naturally out of the Stokesian 

dynamics methodology; they need not be postulated a priori. 

Indeed, we have presented our analysis of the Brinkman pro

pagator as if it were obvious that Stokesian dynamics neces

sarily gives the correct answer. In retrospect, it is obvious 

that Stokesian dynamics is correct, and we hope the present 

study provides a convincing proof. In a subsequent publica

tion, we shall show that the effective interactions among par

ticles in sedimenting suspensions can be determined in much 

the same way as those of porous media using the Stokesian 

dynamics method. 19 

The results presented in Sec. III demonstrate the agree

ment between the simulation and the Brinkman equation at 

low c,6, but quantitative differences between the two, indicat

ing the loss of validity of the Brinkman equation, are evident 

for ¢;;;.0.05. The results also show the importance of includ

ing the effects of distant particles via the Ewald summation 

technique; at c,6 = 0.01 and c,6 = 0.05 qualitative inaccuracies 
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appear at large distances from the source particle in simula

tions performed without Ewald sums. Over more restricted 

regions (r<H /2), however, the simulations performed 

without the application of Ewald sums do provide reasona

ble results. It may seem surprising that the Brinkman equa

tion starts to break down at what appears to be a rather low 

volume fraction, but it should be realized that a characteris

tic interparticle spacing at c,6 = 0.05 is only slightly larger 

than four particle radii; particles are actually rather close 

together. Permeability or drag coefficient calculations only 

yield realistic values when the Ewald summation technique 

is applied; in these cases agreement with the self-consistent 

results of Brinkman5 and the results of Kim and Russel 13 is 

consistently good up to c,6 = 0.2, the highest value of c,6 con

sidered. 

In addition to presenting the form of the fundamental 

solution for flow in porous media at various values of c,6, the 

simulation results at c,6 = 0.05 and c,6 = 0.2 may find addi

tional use as a basis of comparison for future theoretical 

work. Rubinstein 12 rigorously derived the Brinkman equa

tion by considering a dilute system of fixed spheres approxi

mated as point forces, but his diluteness criterion is highly 

restrictive. In another paper, Rubenstein20 suggests that sub

sequent theoretical approaches, aimed at rigorously describ

ing porous media at higher values of c,6, may involve higher 

multipoles. In this case, the theoretical results may be direct

ly comparable to our simulation results for systems of finite

sized spheres. 

The procedure presented in this paper is appropriate for 

studying at most moderately concentrated suspensions. Ex

tensions to more concentrated systems are developed and 

applied to the study of bulk properties (the nature of the 

fundamental solution is not considered) of ordered systems 

by Brady et a/. 15
; disordered systems are presently under 

study. For disordered systems, a Monte Carlo method is ap

plied to assure that hard-sphere distributions are obtained; 

the simple random sequential addition used in the present 

study reaches a percolation threshold at moderate values of 

volume fraction and subsequently fails. Further, at high vol

ume fractions the full Stokesian dynamics method, which 

includes lubrication interactions, must be used. 
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