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Analysis of the Cavitating Draft
Tube Vortex in a Francis Turbine
Using Particle Image Velocimetry
Measurements in Two-Phase
Flow
Partial flow rate operation of hydroturbines with constant pitch blades causes complex
unstable cavitating flow in the diffuser cone. A particle image velocimetry (PIV) system
allows investigating the flow velocity field in the case of a developing cavitation vortex,
the so-called vortex rope, at the outlet of a Francis turbine runner. The synchronization
of the PIV flow survey with the rope precession allows applying the ensemble averaging
by phase technique to extract both the periodic velocity components and the rope shape.
The influence of the turbine setting level on the volume of the cavity rope and its center-
line is investigated, providing a physical knowledge about the hydrodynamic complex
phenomena involved in the development of the cavitation rope in Francis turbine oper-
ating regimes. �DOI: 10.1115/1.2813052�

1 Introduction

For hydraulic turbines, the operating points at partial flow rate

are associated with a vortex at the runner outlet, in the draft tube

cone. Cavitation develops into the low pressure zone of the vortex
core, see Fig. 1. The vortex rope, a helical vortex that is cavitating
in its core, appears and the cavitating volume varies with the

underpressure level. The rope frequency depends on the � level
and if it comes close to one of the eigenfrequencies of the turbine
or associated circuit, the resonance phenomenon may appear. The
unsteady fluctuations can be amplified and lead to important dam-
age. Jacob �1� presents a review of the effects of this operating
regime on the power plant operation.

A first approach is to model the rope phenomenology. Different
models are proposed. Arndt �2� makes a synthesis of the classical
approaches by defining a swirl parameter to characterize the vor-
tex rope—called the hub vortex. Qualitative correlations between
the swirl number and flow visualization or pressure measurements
seem to be in good agreement.

Alekseenko et al. �3� present experiments of axisymmetrical
vortices in a vertical vortex chamber with tangential supply of
liquid through turning nozzles. They give an analytical solution of
an elementary cylindrical vortex structure considered like an infi-
nitely thin filament, accounting for the helical shape of the vortex
lines. Different laws of vorticity distribution and finally a formula
for the calculation of the self-induced velocity of helical vortex
rotation �precession� in a cylindrical tube is given. Okulov �4�
extends this approach to a conical vortex, for a small cone open-
ing angle. Validations are not available for this approach, and the
cone angle limitation is a strong constraint in applying this model
to turbine vortex ropes.

Wang et al. �5� propose two mathematical models: a partially
rolled-up vortex for predicting the rope frequency and a “spiral
cone cavity” for predicting the cavitation volume in the draft tube.
The results are compared with the wall pressure measurements
and qualitatively with rope visualizations.

Philibert and Couston �6� propose a hydroacoustic model, and

the rope is represented by a pipe characterized by its length, wave

celerity, and a coefficient related to the rope radius variation with

the discharge. The � influence is neglected and experimental data

are needed for the model calibration.

Hocevar et al. �7� use radial basis neural networks to predict the

vortex rope dynamics in a Francis turbine. The pressure spectrum

is well predicted and the void fraction corresponds qualitatively to

the experimental estimation. However, the method depends on the

learning set and cannot predict the unstable behavior of the rope.

Zhang et al. �8�, starting from Reynold’s averaged Navier-

Stokes �3D RANS� numerical simulations, and Susan-Resiga et al.

�9�, starting from a theoretical analysis of experimental data, show

that the rope origin is the absolute instability of the swirling flow

at the cone inlet of the turbine draft tube. However, the rope

evolution in the cone is predicted only from the point of view of

its stability.

A second approach, made possible by the increase of comput-

ers’ power and of the ability of CFD codes to simulate the complex

flow behavior, is the numerical simulation of the rope phenom-

enology. The state of the art in the numerical computation for the

cavitation-free configuration is presented by Ciocan et al. �10�.
They show, for the rope configuration in cavitation-free condi-

tions, that the RANS calculation can give very accurate results,

but a detailed validation is necessary before using the CFD codes

for design purposes. More complex numerical investigations are

presented by Paik et al. �11�, comparing unsteady Reynold’s av-

eraged Navier-Stokes �3D URANS� and direct numerical simula-

tion �3D DNS� numerical simulations in a hydraulic turbine draft

tube. Globally, the phenomenology is well predicted, but discrep-

ancies persist in the turbulence and vortex structures in the

straight diffuser downstream of the elbow. Once more, the need

for detailed flow measurements to improve the draft tube phenom-

enology modeling is mentioned by the authors.

These approaches are based on a series of hypotheses for the

rope phenomenology, which are not yet verified experimentally.

Therefore, detailed measurements of the rope volume and the as-

sociated velocity fields, in addition to classical wall pressure and

torque measurements, are of prime importance for quantitative
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validation. An extension of the investigation is necessary in order

to demonstrate the � influence and/or the turbine-circuit interac-
tion influence on the rope phenomenology.

Particle Image Velocimetry �PIV� is a well established tech-
nique, see Adrian �12�. Recently, the PIV measurement technique
has been applied for two-phase flows, as well in liquid-solid
flows—see Kadambi et al. �13�—as in liquid-air flows �bubbly
flows�.

Dias and Riethmuller �14� used the PIV technique to investigate
air bubbles injected into stagnant water. They measured the flow
field induced by a single bubble in a water tank by means of 2D
PIV, along with the contour of the bubble by the shadow detection
method. If the same image is used to obtain the velocity field and
the bubble contour, an error of 40% is observed for the bubble
contour due to the mirror effect of the bubble boundary. Using
fluorescent particles and a high-pass filter, an uncertainty of 3%
for the bubble size and velocity, and 2.5% for liquid velocity at
75% confidence level, is obtained.

Lindken and Merzkirch �15� performed the reconstruction of
the 3D position and volume of bubbles rising in a pipe, along with
the 2D velocity field of the liquid phase. The experimental setup is
made of two perpendicular laser sheets of different wavelengths,
and two cameras focused on the corresponding laser sheet. The
bubble sizes are evaluated from their projections on both laser

sheets. Using a 532�1.5 nm filter on the PIV camera, they ob-
tained an uncertainty of 2% for the liquid velocity, 10% for the
bubble shape, 5% for the bubble center, and 8% for the bubble
velocity, after the rejection by a particular filtering technique of
3–5% of the images due to strong reflections. Next, Lindken and
Merzkirch �16� improved this measurement method by combining
three different techniques: PIV with fluorescent particles, shad-
owgraphy, and digital phase separation. In this way, they charac-
terize the local modification of the turbulence in the liquid phase
by the bubble passage.

Starting from these applications, we developed a PIV two-phase
application that enables simultaneous measurements of the flow
velocity field and the volume of a compact unsteady vapor
cavity—the rope. Specific image acquisition and filtering proce-
dures are implemented for the investigation of cavity volume and
its evolution related to the underpressure level in the draft tube.
For the first time, the development of the rope in the diffuser cone
of a Francis turbine scale model is quantified.

One operating point is selected at partial flow rate operating

conditions: for �=1.18 and �=0.26, which corresponds to about

70% QBEP. To investigate the influence of the cavity size, the

Thoma cavitation number is decreased from �=1.18, cavitation-

free condition, to �=0.38, maximum rope volume, considering

seven � values. For the extreme values of �, nine phases are
acquired in order to reconstruct the rope shape by the ensemble
averaging by phase technique. The measurement conditions are
summarized in Table 1.

2 Scale Model of the Francis Turbine

In a Francis turbine, see Fig. 2, the flow incoming from the feed
pipe is uniformly distributed along the runner inlet circumference
by a spiral casing with gradually decreasing cross section. A first
row of stay vanes ensures the mechanical resistance of the assem-
bly, while a second row, of adjustable guide vanes, provides the
optimum incidence angle to the flow at the runner’s periphery and
adjusts the turbine flow rate.

The kinetic energy of the water is then transformed into rota-
tional energy by the runner and transmitted through the shaft to
the power generator, which produces electrical energy. The re-
sidual kinetic energy at the runner outlet is transformed into pres-
sure energy in the draft tube, composed of the cone, elbow, and
diffuser, and then the flow is released in the downstream reservoir.

The investigated case corresponds to the scale model of the

Francis turbines of high specific speed, �=0.56 �nq=88� of a hy-

dropower plant built in 1926, owned by ALCAN. The 4.1 m di-
ameter runners of the machines were upgraded in the late a 80s.

Fig. 1 Development of the vapor core rope for �=0.380

Table 1 Measurement chart for �=1.18 and �=0.26 operating point

� � /T f /n

1.180 0.38 0.44 0.50 0.56 0.61 0.65 0.69 0.75 0.81 0.300
0.780 0.61 0.300
0.650 0.61 0.300
0.630 0.61 0.300
0.600 0.63 0.300
0.520 0.63 0.309
0.380 0.46 0.53 0.60 0.68 0.73 0.78 0.83 0.360

Fig. 2 Francis turbine scale model
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The elbow draft tube of the scale model turbine was especially
designed for the purpose of the Flow Investigation in Draft Tubes,
FLINDT Research Project EUREKA 1625, see Avellan �17�.

The scale model is installed on the third test rig of the EPFL
Laboratory for Hydraulic Machines and the performance tests are
carried out according to the IEC 60193 standards �18�.

3 Two-Phase Particle Image Velocimetry Measure-

ments

3.1 Particle Image Velocimetry System for Two-Phase
Flow Measurements. The PIV measurements have been per-
formed with a Dantec M.T. system. The pulsed light sheet with a

thickness of 3 mm is generated by two double-cavity Yttrium alu-

minum garnet �Nd:YAG� lasers delivering 60 mJ per pulse. An
optical high power light guide is used for the positioning of the
light sheet in the diffuser cone. Two charge coupled device �CCD�
HiSense PIV cameras are used to visualize the illuminated zone,

with a series of paired images acquired with a 150–200 �s time

delay. The camera resolution is 1280�1024 pixels2 for a 0.20

�0.14 m2 spatial domain. The measurement zone is located at the
runner outlet, in the cone of the turbine, see Fig. 6.

To focus the two cameras on the same zone, an optical mirror

system is used, Fig. 3. The first camera uses a 532�15 nm
antireflection-coated filter, focused on the laser wavelength, and

the second camera has a cutoff filter �	570 nm� on the emission

wavelength of fluorescent particles �RhB-580 nm�. The two cam-

eras are synchronized with the luminous flashes and then simul-
taneously exposed. The vector processing is performed with a

FlowMap 2200 PIV specific processor, based on an 8 bit reso-
lution cross-correlation technique. The shape of the vortex rope is
determined through image processing from the first camera and
the unsteady velocity field is obtained from the second one.

3.2 Particle Image Velocimetry Calibration. From the mea-
suring field to the camera, the optical path encounters three media
of different optical indices: water, polymethylmethacrylate
�PMMA�, and air. For minimizing the optical distortion of the
images and of the laser sheet plane, the diffuser cone windows are
manufactured with flat external walls, in front of the cameras and
the incident laser light sheet. However, due to the conical internal
surface of the draft tube cone, the image distortions remain im-
portant. Therefore, they need to be corrected through a calibration
procedure, even for this 2D measurement setup.

The calibration consists in defining the coefficients of a transfer
function, either linear or nonlinear, that correlates the spatial co-
ordinates in the object plane with the corresponding positions in
the recording plane. This transformation integrates the geometri-

cal and optical characteristics of the camera setup, the perspective
distortion, lens flaws, and the different media refractive indices,
see Soloff et al. �19�. By acquiring images of a target with markers
of well-specified spatial position, their corresponding positions in
the image plane are known, and thus the geometrical transform
matrix coefficients can be determined through a least squares fit-
ting algorithm. The present measurement configuration uses a
third-order polynomial function.

The calibration is performed by placing a 2D target of 200

�200 mm2 with 40�40 black dots on a white background in the
measurement plane position. The test section is then filled with
water for reproducing the optical configuration during measure-
ments. The cameras are focused on the target, the calibration im-
ages are acquired, and the laser sheet is aligned with the target
surface. The target is removed without modifying the optical ar-
rangement. The accuracy of the optical arrangement after the tar-
get removal is verified by checking that the particles do not appear
blurred on the image.

The estimated uncertainty for the velocity field measurement is
less than 3% and it has been checked by comparing the velocity
measurement obtained by both PIV and laser Doppler velocimetry
�LDV�, see Iliescu et al. �20�.

3.3 Particle Image Velocimetry Synchronization. The rope
has a 3D helical shape, see Fig. 1. A conditional sampling of the
image acquisition is necessary to reconstruct the spatial position
of the rope. The frequency of rope precession is influenced by the

� value, see Fig. 4 and Table 1, and can change over a revolution
in certain operating conditions. Therefore, the triggering system
cannot be based on the runner rotation.

The technique to detect the rope precession is based on the
measurement of the pressure pulsation generated at the cone’s
wall by the precession of the rope. It has the advantage of working
even for cavitation-free conditions when the rope is no longer
visible, see Ciocan et al. �10�, and for this reason, it has been
selected as trigger for the PIV data acquisition. The pressure sig-

nal power spectra corresponding to the � values are given as a
waterfall diagram in Fig. 4. It can be seen that the frequency of

the rope precession is decreasing with the � value for this oper-
ating point.

As the PIV acquisition is based on the spatial position of the
rope, it was necessary to validate correspondence between the
wall pressure pulsation and the spatial position of the rope. For
this, a second technique based on the optical detection of the rope
passage with a LDV probe was used. By reducing the gain, the
photomultiplier of the LDV system delivers a signal each time the
rope boundary intersects the LDV measuring volume. The posi-

Fig. 3 Two-phase PIV setup for measuring in the diffuser cone
of the Francis turbine scale model

Fig. 4 Waterfall diagram of the power spectra of the wall pres-
sure fluctuations in the diffuser cone
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tion of the measurement volume has been chosen close to the
wall, to avoid receiving multiple signals over the same revolution,
in case the rope crosses the laser beams. The wall pressure signal
acquired in parallel allowed referring the rope position to the pres-
sure signal.

Consequently, the image acquisition is triggered with the wall
pressure signal breakdown given by the vortex passage. The PIV
acquisition is performed at a constant phase delay value with re-
spect to the vortex trigger signal. The influence of the vortex
period variation for this kind of phase average calculation is
checked and fits within the same uncertainty range as the mea-
surement method 3%, see Ciocan et al. �10�.

4 Data Processing

4.1 Image Processing. The two cameras’ images are pro-
cessed separately. The Camera 1 images are processed to extract
the rope characteristics �position and diameter� and Camera 2 im-
age to extract the velocity fields.

The vortex core boundary is irregular, due to vapor compress-
ibility and pressure field fluctuations in the draft tube, which de-
form the vapor volume. The laser light is unevenly scattered back-
ward and sideways at the water-vapor interface and it gives a
strongly illuminated area on images from the first camera. Fur-
thermore, the part of the rope passing in front of the laser sheet,
toward the camera, is present on the image, but at a lower gray
intensity. This entity also obstructs the field of view of the second
camera, and fluorescent particles present in the laser plane, behind
the rope, do not appear on the images used for velocity process-
ing. Thus, a digital mask must be applied on each individual vec-
tor field for eliminating the outliers in this region.

Due to the topology of the rope, the gray intensity distribution
varies drastically on the images from the first camera. In this
context, an adaptive image-processing algorithm has been con-
ceived for detecting the geometrical parameters of the rope cross-
ing the measurement plane �see Fig. 5�. The distortion correction
is performed with the calibration transform prior to image
processing.

Several steps are considered for enhancing the quality of the
raw grayscale image:

• The image is reduced to the zone occupied by the rope,
removing the excess area, which leads to improvement of
the grayscale distribution;

• The gray intensity levels are balanced in the image by his-
togram equalization;

• The noise is removed by nonlinear adaptive bandpass filter-

ing of the image on sliding neighborhoods of 8�8 pixels;
• The brightness is amplified by histogram shifting toward

higher values, weighted logarithmically.

Starting from the improved and uniform quality images, the
next step is to detect the rope shape and its dimensions at the
intersection between the laser sheet and the rope.

An adaptive threshold is applied on the enhanced grayscale
image, for separating the area with concentrated high intensity
values from the rest, thus obtaining the position of the zone where
the laser sheet crosses the rope boundary.

In parallel, another adaptive threshold is applied on the histo-
gram of the grayscale image for separating the rope shape from
the dark background in a binary image. The accuracy of the rope
shape detection depends on the gray level gradient between the
rope and the background. The position of the rope edge can vary

with less than 1% Rin and this is the spatial uncertainty of the rope
contour. The local minima �holes� on the binary image are filled
for smoothing the rope contour. The various white spots of small
area are filtered and only the shape with the largest area is kept for
further processing. The boundary of this area represents the edge
of the rope in the measurement plane. This area is also used like a

digital mask for filtering the outliers in the velocity field.
A circular cross section of the rope was assumed throughout

this evaluation. Thus, the intersection between the rope and the
measurement plane is an elliptical contour. The parameters of the
ellipse depend on the local geometrical characteristics of the coni-
cal rope helix �angle of incidence, local curvature radius, opening
angle of the conical supporting surface�. The best approximation
of the real rope diameter in our case is the distance between the

edges of the rope along a 45 deg direction, applied on the rope
intersection with the measurement plane previously obtained. For

a variation of the angle with �10 deg, the induced error on the

rope diameter is 2% Rin.
An example of a raw image superposed on the rope shape and

the rope diameter obtained by image processing is presented in
Fig. 6. A detailed description of the image-processing steps is
given by Iliescu �21�.

Then for each image, the rope center position and the rope

diameter are available with an uncertainty of 2% Rin. The aberrant
images are filtered on criteria of minimum/maximum dimension
of the rope area and rope diameter. The rate of validated images is
95%.

4.2 Velocity Field Processing. For the Camera 2 image, the
distortions of position coordinates and particle displacements are
corrected through the calibration transform.

For the velocity field calculation, in order to eliminate the out-
liers in the region of the rope or due to the residual bubbles

Fig. 5 Image-processing flowchart
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shadow, a mask previously obtained by the image processing of
the Camera 1 image is applied on the Camera 2 image. The raw
vector maps are processed by cross correlation of the two frames
from this masked image of the second camera. The results are
filtered by range �vectors four times higher than the mean value
are rejected� and peak �the relative height of the highest cross-
correlation peak compared to the second highest is chosen 1.2�
validation criteria. An example of velocity field is presented in
Fig. 7; the instantaneous velocity field is superposed on the raw
image for illustration. Statistical convergence is acquired with
1200 velocity fields for 3% uncertainty.

5 Flow Analysis

5.1 Velocity Phase Average. By ensemble averaging on
phase of the instantaneous velocity fields, the mean velocity field
is obtained in relation to the phase of the rope precession and for

different volumes of the rope corresponding to � values between
0.380 and 1.180. Assuming that the rope shape and the corre-
sponding flow field remain constant over one revolution, the phase
of the rope corresponds to its spatial angular position and the
spatial velocity field can be reconstructed accordingly, see Fig. 8.

The vortex structure is present for all the investigated � values,

and the core of this vortex, with a low pressure area set by the �
level, is cavitating and hence determines the rope volume. The
cavity volume influences the flow field only locally.

As discussed by Ciocan et al. �10�, the average flow velocity
shows the decelerated swirling flow that develops in the central
stagnation zone. The vortex encloses this zone of average velocity
near zero.

The phase average velocity distribution is very similar for all �
values. While the flow rate is the same, the influence of the rope
volume on the mean velocity field is comparable with the mea-
surement uncertainty. Thus, in phase average, the flow structure is

the same for all � values, but a local modification of the velocity
field and turbulent kinetic energy field in the near vicinity of the
rope is expected. Unfortunately, for the moment, it is difficult to
analyze this zone due to the lack of uncertainty near the rope
boundary region, and strong and random reflections as well as
shadows at the intersection of the rope with the laser sheet are
observed.

5.2 Vortex Centerline for the Cavitation-Free
Configuration. For the cavitation-free configuration, see Fig. 7

for �=1.180, the vortex center is detected starting from the veloc-
ity field analysis. Four methods are commonly used, see Sadar-
joen et al. �22�, to detect its position:

• minimum of velocity
• streamline curvature centers density
• maximum of vorticity ���C�
• maximum of normalized helicity C� �C / �C����C�

In swirling flows, the main contribution to the vorticity is given
by the mean tangential and axial components, and the vorticity
profile is significant in the plane normal to the vortex filament. For
the instantaneous velocity fields, the vorticity calculation is very
sensitive to the relative position of the vortex and measurement
plane. Consequently, computing the vorticity distribution only
with the two measured velocity components does not have the
proper physical meaning, nor has the helicity.

Due to the unsteadiness of the flow, an instantaneous velocity
field may present zones of low velocity outside the vortex center
zone. Thus, the minimum of velocity criterion, easy to implement,
is not relevant in this case.

The second method, streamline curvature center density, is
more consistent. By the streamline generation in each gridpoint,
for each unsteady vector field, we compute the curvature centers
of the streamlines, and the regions with high density of curvature
centers indicate the presence of a vortex center. The center posi-

Fig. 6 Extraction of the rope diameter by image processing from each instantaneous image

Fig. 7 Streamlines on instantaneous velocity fields for the
same corresponding phase � /TÈ =0.61 and different � values
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tion is given by the mean of the curvature centers coordinates.
To speed up the computation time for the center detection, a

combination of these two criteria has been used as vortex center-
tracking algorithm. The streamline generation is performed only
in the regions where the minimum velocity is obtained. The sec-
ond method is applied afterwards to detect the vortex center. An
instantaneous result, obtained by these two methods, see Fig. 9,
shows a very good coherence of the center position within the
measurement resolution range. The validation rate on instanta-
neous fields, based on coherent position criteria, is higher than
99%.

5.3 Rope Contour Phase Average. Starting from each

image-processing result, for each rope precession phase and each

� value, the ensemble averaging by phase of the rope shape is

performed, and thus the rope characteristics �position and diam-

eter� in the measurement plane are determined.

Assuming that the angular velocity of the rope is constant over

a rope revolution, i.e., assuming a solid body rotation of the rope,

the rope precession temporal phase is transposed into angular po-

sition. In this way, the spatial position of the rope core is recon-

structed in the turbine cone, see Fig. 10. Adding the measured

diameters, in a plane normal to the core, leads to rendering the 3D

rope shape, see Fig. 11.

For the same � value, the rope center position and the mean

Fig. 8 Phase averaged vectors field for �=0.380

Fig. 9 Vortex center detection for noncavitating conditions
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value of the rope diameter are calculated, and the corresponding
standard deviations are estimated for the entire measurement
zone, See Fig. 12.

Fig. 10 Vortex centerlines for �=0.380 and �=1.180

Fig. 11 Reconstruction of the rope volume

Fig. 12 Standard deviation of the rope position and rope volume
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5.4 Flow Behavior Corresponding to � Variation. The pro-
cedure to determine the geometrical parameter of the rope in

phase average, already described, is applied for seven � values.
The rope diameters as well as the rope center position in the

measurement zone are represented versus the � value. Associated
with these values, the standard deviations of the rope diameter and
vortex center position are calculated, see Fig. 13.

The rope diameter decreases from low to high � values. The
standard deviation of the rope diameter is related to the rope di-
ameter fluctuations and is a measure for the rope volume varia-
tion. This calculation is physically significant due to the axial
pressure waves that act on the vapor cavity, resulting in a volume
variation under the influence of the local change of pressure dis-

tribution. The standard deviations are quasiconstant for all � val-

ues at 2.5% of R1̄e, except for the value 0.380, where it increases

at 4.3% of R1̄e, see Fig. 13. For �=0.380, the rope area referred to

the local cone section area has a variation between 0.5% and

1.2%.

In fact, for the 0.380� value, it was demonstrated by hydroa-

coustic simulation, see Nicolet et al. �23�, that a pressure source

located in the inner part of the draft tube elbow induces a forced

excitation. This excitation represents the synchronous part of the

vortex rope excitation. An eigenfrequency of the hydraulic system

is also excited at 2.5 fn, see Fig. 4, and the plane waves, generated

by the pressure source, propagate in all the hydraulic circuit. The

Fig. 14 Rope diameter variations versus the vortex phase �

Fig. 13 Rope diameter variations versus the � value

021105-8 / Vol. 130, FEBRUARY 2008 Transactions of the ASME

Downloaded 06 Jul 2009 to 128.178.4.3. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



passing of the plane waves in the rope section induces succes-
sively an expansion and a contraction of the vapor volume of the
rope, which explains the increase of the rope diameter standard

deviation for this � value.

For the lowest � value, the rope diameter and its standard de-
viation remain virtually unchanged �the change is smaller than the
measurement uncertainty� with respect to the precession phase
angle over the measured domain, see Fig. 14.

The vortex center position is nearly constant between low �
values and cavitation-free conditions, see Fig. 15. For low � val-
ues, the eccentricity of the rope position—the position of the rope
center related to the cone symmetry axis—increases and thus the

pressure amplitude fluctuation at the wall increases too, see Fig. 4.

The standard deviation of the vortex center position is represen-

tative of the flow stability. For �=0.380, the location of the rope

center has an unsteady spatial variation of �8% of the local ra-

dius of the cone. The resonance at this � value induces a loss of

stability of the rope position highlighted by the increase of the

standard deviation of the vortex center position, i.e., it doubles

from 2% to 4.1% Rin, except for the value 0.380, where it in-

creases at 4.3% of Rin.

In the cone cross section, the rope center eccentricity �the ra-

dius of the rope center� increases following the phase evolution:

Fig. 16 Vortex position variations for �1.180 and 0.380 values versus the vortex
phase �

Fig. 15 Rope center variations versus the � value
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the rope goes closer to the wall downstream in the cone. This
evolution induces the increase of the wall pressure fluctuation
synchronous with the rope rotation. The standard deviation corre-
sponding to the rope position is quasiconstant for all phases
�depth� in the measurement zone, see Fig. 16.

6 Conclusions

The PIV system gives the opportunity to survey the flow veloc-
ity field in the diffuser cone of a scale model of a Francis turbine
at part load operating conditions with a precessing cavitation rope.
From the experimental results, the complete description and quan-
tification of the velocity, simultaneously with the rope boundary
behavior, were obtained for different cavitation conditions.

The synchronization of the PIV acquisition with the rope posi-
tion allows, by ensemble averaging, the reconstruction of the rope
volume in correlation with the corresponding velocity field, in the
cone of the turbine model. Image processing provides an estima-
tion of the rope diameter and the positions of the vortex center in
the measuring zone.

For a particular � value that corresponds to a coincidence of the
rope excitation with an eigenfrequency of the hydraulic circuit,
the influence of the pressure source on the rope dynamics is
shown.

An experimental database has been built and is now available
for future validation of analytical modeling and numerical simu-
lation of draft tube flows.
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Nomenclature
BEP 
 best efficiency operating point

C 
 mean absolute velocity �m/s�
Cp 
 pressure coefficient Cp= �p–p̄� /1 /2�c

m1̄

2
�-�

Cref 
 mean flow reference velocity Cref=Q /�Rin
2

�m/s�
D1̄e 
 runner diameter �m�

E 
 specific energy �J/kg�
fc 
 vortex rotation frequency �Hz�
Q 
 flow rate �m3

/s�
QBEP 
 flow rate at the best efficiency operating condi-

tion �m3
/s�

k 
 turbulent kinetic energy �m2
/s2�

fn 
 runner rotation frequency �Hz�
NPSE 
 net positive suction specific energy �J/kg�

R 
 local cone radius �m�
Rin 
 runner outlet radius �m�

Z 
 current cone elevation �m�
Zin 
 runner outlet elevation �m�
Z 
 cone height �m�

� 
 rotational angular velocity �rad/s�
� 
 local rope diameter �m�

� 
 specific energy coefficient �-�
� 
 flow rate coefficient �-�
� 
 thoma number �=NPSE /E �-�
� 
 vortex polar angle �=2�fc� �rad�
� 
 rope phase �rad�
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