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Abstract-The principal sources of estimation error in sensor 
array signal processing applications are the finite sample effects 
of additive noise and imprecise models for the antenna array 
and spatial noise statistics. While the effects of these errors 
have been studied individually, their combined effect has not 
yet been rigorously analyzed. In this paper, we undertake such 
an analysis for the class of so-called subspace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJitfing algorithms. 
In addition to deriving first-order asymptotic expressions for 
the estimation error, we show that an overall optimal weighting 
exists for a particular array and noise covariance error model. 
In a companion paper, the optimally weighted subspace fitting 
method is shown to be asymptotically equivalent with the more 
complicated maximum a posteriori estimator. Thus, for the model 
in question, no other method can yield more accurate estimates 
for large samples and small model errors. Numerical examples 
and computer simulations are included to illustrate the obtained 
results and to verify the asymptotic analysis for realistic scenarios. 

I. INTRODUCTION 

URING the past decade, a number of so-called “high- D resolution” subspace-based algorithms for array signal 
processing and parameter estimation have been introduced. 
Most of these techniques are presented in the context of 
estimating the directions-of-arrival (DOA’s) of multiple co- 
channel signals using an array of sensors. In recent years, 
attention has shifted from new algorithm development to 
algorithm performance analyses and comparisons. A num- 
ber of research contributions have considered the asymptotic 
effects of additive noise on DOA estimation performance, 
assuming that the array response and noise model are perfectly 
known zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11-[4]. Conversely, others have investigated the effects 
of an imprecisely known array response and noise model, 
while ignoring the finite sample effects of noise [5]-[8]. The 
combined effects of additive noise and modelling errors are 
considered in [9] and [ 101 but only for the high signal-to-noise 
ratio (SNR) case. 

In any practical situation, all of the above error sources will 
be present simultaneously. Not only is one forced to estimate 
the DOA’s using only a finite amount of noisy data, but the ar- 
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ray does not respond as expected, and the spatial characteristics 
of the noise field are not well understood. More precisely, the 
array element positions may not be accurately known, the gain 
and phase response of a given sensor may vary as a function 
of its surroundings, imprecise interpolation techniques must be 
used with arrays calibrated at discrete angles, the noise field 
may change with time, reverberation, channel cross-talk, or 
spatially distributed sources may be present, etc. Together with 
the noise itself, these sources of error will obviously degrade 
algorithm performance, although the amount of degradation 
will depend on the relative contribution of the noise and 
model errors. 

Some approaches have been proposed in the literature to 
mitigate the effects of modeling errors. Optimal techniques 
assuming unstructured perturbations and an infinite number of 
snapshots are derived in [6] and [8]. In [ 111 and [ 121, a method 
that is robust against an unknown noise field is suggested, 
assuming that no information about the perturbation structure 
is available. Examples of techniques for structured perturba- 
tion models include the so-called auto-calibration techniques 
considered in [ 131-[ 151 and the maximum a posteriori (MAP) 
approach [ 161, [ 171. The methods considered herein belong to 
the class of signal subspace fitting (SSF) algorithms [4]. These 
methods have been shown to be first-order equivalent to many 
other parametric techniques for particular choices of a certain 
weighting matrix. Optimal choices of the weighting matrix 
have been derived in [4] and [8] for cases involving finite 
sample effects (FSE) or modeling errors (ME), respectively, 
and the resulting SSF techniques have been shown to give 
the best possible performance of any estimator under their 
respective assumptions. 

The goal of this paper is to extend earlier results on 
algorithm performance analysis to the more realistic case 
where both modeling errors and finite sample effects are 
present. Not surprisingly, it is found that the estimation error 
covariance is, up to first order, a sum of the individual 
contributions from the two types of errors. It is shown that 
an overall optimal subspace weighting for the SSF class of 
methods exists for a particular class of modeling errors. This 
model assumes 1)  additive random array response errors that 
are statistically uniform from sensor to sensor, but possibly 
correlated between different DOA’s (with known correlation), 
and 2) additive random perturbations to the noise covariance 
that are independent from element to element. The SSF 
method using the overall optimal weighting will outperform 
all other SSF techniques when considering both modeling 
errors and finite sample effects. Indeed, in the companion 
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paper [17], the optimally weighted SSF technique is found to 
be asymptotically equivalent with the more complicated MAP 
estimator [16] for the problem at hand. Thus, the covariance 
of the asymptotic distribution of the estimation error coincides 
with the Cram&-Rao bound (CRB) for Gaussian signals, 
perturbations, and noise, and hence, no other technique can 
give lower first-order error variance. 

We begin in the next section by introducing the details of the 
problem considered, including the nominal data model as well 
as the models used for the array response and noise covariance 
errors. The class of SSF methods is also briefly reviewed. 
Section I11 contains the combined performance analysis, and 
Section IV presents the optimal SSF weightings. Some nu- 
merical examples and computer simulations are included in 
the final section. The performance of the overal optimal SSF 
method is compared with that resulting from the FSE- and ME- 
only optimal weightings. Comparisons with the appropriate 
CRB are also made for a particular case involving nonuniform 
sensor position errors (a simulated towed array). 

11. PROBLEM FORMULATION 

A .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANominal Data Model 

Consider an array of rn sensors having arbitrary positions 
and characteristics. Impinging on the array are the waveforms 
of d far-field, narrow-band point sources, where d < m. 
The vector of complex sensor outputs is denoted x(t) and 
is modeled by the following familiar equation: 

x(t) = [a(&)l . . . la(&)] [ :]1:(] + n(t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(O)s(t)  + n(t). 

(1) 
The columns of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAni x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd matrix A are the so-called 
array propagation vectors, which are denoted .(e,), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. = 
1, . . . , d. These vectors are functions of the signal parameters 
and describe the array response to a unit waveform with 
parameter(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO 1 .  Although not necessary, we shall assume that 
19~ is a real-valued scalar referred to as the rth DOA. The 
components of the d-vector 6 are the model DOA’s, whereas 
the vector 60 contains their true values. It is assumed that 60 
is an inner point of the parameter set of interest and that A(6) 
is differentiable over this set. 

The d-vector s ( t )  is composed of the complex emitter 
waveforms received at time t ,  and the m-vector n(t) accounts 
for additive measurement noise. The array output is assumed 
to be sampled at N distinct time instants. Based on the 
measurements x(l), . . . . x ( N ) ,  the problem of interest is to 
determine the DOA’s of all emitters. The number of signals 
d is assumed to be known. 

The signal waveforms are regarded as deterministic (i.e., 
fixed) sequences such that the following limit exists: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 ’V 

lim I s ( t ) s * ( t )  = P. 
~ - + m  N 

t= l  

where X* denotes the complex conjugate transpose of X. On 
the contrary, the noise term n(t) is modeled as a stationary, 

complex Gaussian random process that is uncorrelated with 
the signals. The noise has zero mean and is assumed to be 
both spatially and temporally white, i.e. 

~[n( t )n* (s ) ]  = 021St,, (3) 

~ [ n ( t ) n ~ ( s ) ]  = o (4) 

where bt,, is the Kronecker delta. 
It should be noted that the analysis performed under the 

above model remains valid if the signal waveforms happen to 
be realizations of some stochastic process. The corresponding 
stochastic limit in ( 2 )  is then required to hold with probability 
one. See Chapter 2 of [18] for more details on this topic. 

B .  Perturbation Models 

The exact parametrization of the array propagation vectors is 
unknown in any practical situation. Thus, the available model 
a(6) may differ from the “true” propagation vector. It will 
be assumed that the data have actually been generated by the 
equation 

X ( t )  = [a(h) + a(61) l . .  . I.(&) + a(&)] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[;;?:‘I + n(t) 

( 5 )  

(6) 

In some applications, it is conceivable that the physical 
origin of the array model uncertainty could be precisely 
characterized. The perturbations may be due to sensor position 
errors, gain errors, phase errors, mutual coupling between 
sensors, receiver fluctuations due to temperature and humidity, 
quantization effects, etc. It is, in principle, possible to explain 
the effect of each of these error sources from physical insight, 
thus leading to a model where the propagation vectors are 
parametrized by the DOA’s along with a set of extra “pertur- 
bation parameters.” However, in a practical application, all of 
the above-mentioned phenomena (along with several others) 
are likely to be present simultaneously. Clearly, a model based 
on physical insight is impractical in such a case. 

A pragmatic remedy to this situation is simply to assume 
that the array response is a random quantity, whose mean value 
is the known nominal model. Thus, we assume herein that 
the array propagation errors are random with zero mean and 
second-order moments 

= (A + A)s(t) + n(t). 

E[a(O,)a*(Q,)] = vtJB (7) 

E[a(e,)a7eJ)] = 0. (8) 

The sensor-to-sensor covariances are collected in the matrix 
Y = {v tJ } .  Both B and Y are assumed to be available 
to the user, e.g., from system performance specifications. 
Note that the error model (7) allows for direction-dependent 
modeling errors, but the sensor-to-sensor correlation (if any) 
is independent of 6. 

Perturbation models similar to (7) and (8) have been used 
by a number of others, primarily in the analysis of adaptive 
beamforming algorithms [ 191-[21]. The model presented here 
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is actually somewhat more general than what was assumed in 
these papers since we allow for some degree of angle-to-angle 
and sensor-to-sensor correlation. To connect the nonphysical 
model of (7) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8) with the more intuitive idea of gain and 
phase perturbations to the array, let the nominal response of the 
lcth sensor in the direction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB be an(@)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPA, and let j ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d k  represent the corresponding gain and phase perturbation$. 
Then, to first order, we have 

where 

If we let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA092 and 0; represent the variances of ,& and 

&, respectively, and if we assume that the gain and phase 
perturbations are zero-mean and independent, then 

Thus, the model of (7) and (8) simply amounts to assuming 
that vii = 0; + 0: for the ith DOA and that the gain and phase 
errors are roughly “of the same order” (0,: and 0; are equal). 
A similar result also holds for correlations between the errors 
on different sensors and in different directions. 

The reason for a random perturbation model as opposed to a 
deterministic one lies in the consideration of how one chooses 
to quantify the effects of the perturbation. In a given fixed 
scenario, of course, the presence of array errors will introduce 
a bias in the DOA estimates. Presumably, if one wanted to 
measure the magnitude of this bias, it would simply be a Eatter 
of directly computing the limiting ( N  - x) estimate H and 
then subtracting 00. This procedure would obviously have to 
be repeated for each perturbation scenario considered since 
the bias would be different in each case. The advantage of 
using a random model is that one can obtain a measure of the 
average effect of the array errors on estimation performance, 
which is measured now in terms of variance rather than hius, 
without being forced to adopt a particular perturbation scenario 
(which may be no more representative than any other similar 
perturbation). 

The covariance structure in (7) and (8) also allows one to op- 
timize performance for the proposed SSF estimation method. 
However, as will be demonstrated in Section V, one can often 
use the resulting optimized SSF approach to also improve 
the performance for more complicated perturbation models. 
More precisely, Example 5.2 shows how the sensitivity to 
underestimation of the number of signals can be reduced, and 
Example 5.3 deals with the case of unknown sensor positions. 
We should also remark that (7) and (8) is indeed a reasonable 
model in the common case of an experimentally calibrated 
array, where the sources of error may be quantization errors 
in collecting the calibration data, interpolation errors in using 
a calibration grid, etc. 

The effects of errors in the noise model on algorithm 
performance will also be studied. As with the array errors, 
we will model the perturbation to the noise covariance as a 
random variable with given moments. It is most convenient 

to specify the conditional mean and covariances of the noise 
given 2, the perturbation’ 

Other than being Hermitian, % is treated as a random matrix 
with independent elements iri, of equal variance: 

Thus, the real diagonal elements of % are independent of all 
other elements, whereas the off-diagonal terms are correlated 
only with their conjugate image. The off-diagonal elements 
are assumed to be circularly symmetric, i.e., the real and 
imaginary parts are uncorrelated and of equal variance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp2 /2 .  
It is assumed that p2 is known, whereas o2 may be unknown. 
Note from (11) and (12) that 

E[n(t)n*(s)] = E E n(t)n*(s) I %}] = 021&,, (14) [ {  
i.e., the total covariance matrix of the noise is identical to the 
nominal spatially white covariance. However, the higher order 
moments of the noise are altered by the perturbation model, 
which will be seen to affect the behavior of the estimation 
techniques under consideration. 

The perturbations of the nominal array propagation and 
noise models introduce a bias in the estimates. In other words, 
it is not possible to determine the DOA’s exactly even from 
an infinite collection of observation vectors, i.e., as N + m. 
However, the goal of our study is to make a mathematically 
consistent first-order analysis of the DOA estimation error in 
the presence of hnrh finite sample and model errors. Thus, the 
size of the perturbations relative to the number of available 
snapshots plays a crucial role. The variances of the estimated 
DOA’s are known to be proportional to 1/N in the finite- 
sample-only case, whereas they are proportional to v,, + in 
the model-error-only case. To make the relative contribution of 
the two error sources of comparable magnitude, we introduce 
the artifice of expressing the array perturbation variances as 

Y = Y/N (15) 

where r is independent of N ,  and similarly 

An asymptotic performance analysis is then carried out as- 
suming N + x. This leads to expressions for the asymptotic 
covariance matrix of the limiting distribution of the estimation 
error involving the combined effects of finite samples and 
modeling errors. 

One could alternatively assume that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN is “large” and that 
11,; + p2 is “small” and perform a first-order analysis in 1/N 

‘The model used here is slightly different but no less general than that 
assumed in 161 and 181, where the conditional covariance of the noise in (11) 
was assumed to be v2( I + C ) .  
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU;; + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp2 simultaneously. This approach can be shown to 
yield results identical to those obtained with the more artificial 
assumption that Y and p are independent of N .  However, 
such a first-order perturbation analysis is quite heuristic and 
does not allow for mathematically precise statements involving 
the limiting distribution (or second-order moments) of the 
estimation error since this distribution necessarily depends on 
the relative sizes of the different sources of errors. Indeed, 
if Y and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp2 are both o(l/N), the limiting distribution is 
independent of the modeling errors, and the analysis of [4] 
applies. On the other hand, if 1/N << ~ : ~ + p ’ ,  the finite sample 
errors are irrelevant, and the analysis of [8] is applicable. By 
adopting the assumptions in (15) and (16), we are simply 
restricting ourselves in this paper to the “in between” cases 
where neither finite sample effects or model errors dominate. 
Further comments on this issue are provided in Remark 3.1 
of Section 111-A. 

C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASubspace Fitting Methods 

surements only through the sample covariance matrix 
Most parametric estimation methods depend on the mea- 

1 ”  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R = - C x ( t ) x * ( t ) .  

t=l 
N 

Under the stated assumptions, R takes the form 

R = (A+A)P(A+A)*+(A+A)z+z*(A+A)*+I= (18) 

where we have defined 

l K  
P = - s ( t ) s * ( t )  

t=l 
N 

1 *v z = - s( t )n* ( t )  
t=l 

N 

t=l 

As N -i 30, R converges (with probability 1) in the absence 
of model errors to the limit 

R = APA’ + 021. (22) 

The rank of the signal covariance matrix P is denoted d’. Let 
the eigendecomposition of R be given by 

m 

R = &eke; = E,n,EI + E,A,E: (23) 
k = 1  

where A, is a diagonal matrix containing the d’ largest 
eigenvalues, and the columns of E, are the corresponding 
eigenvectors. Similarly, A, and E, are composed of the 
smallest eigenvalues and their corresponding eigenvectors. 
From (22), it is easy to see that the m-d’ columns of E, are 
all orthogonal to the matrix A P A ” ,  and they correspond to 
the multiple eigenvalue 02, i.e., A, = 021. Since E, and E, 

are orthogonal, it follows that there exists a full rank d x d’ 
matrix T such that 

E, = A(00)T. (24) 

Equation (24) is the key observation for all subspace-based 
techniques, including those that fall in the class of signal 
subspace fitting (SSF) methods [4]. In the SSF approach, an 
estimate of E, is obtained from the eigendecomposirion of 
the sample covariance matrix 

R = E,A,E; + E,A,E; (25) 

and the following weighted least-squares problem based on 
(24) is solved to estimate 0: 

(26) 

The weighting matrices W, and W, are assumed to be 
positive definite and Hermitian. Roughly speaking, the role 
of the weighting matrices is to whiten the equation error 
Es - AT. The row weighting W, takes care of nonuniform 
modeling errors (it does not appear in the finite-sample-only 
case), whereas the column weighting W, essentially contains 
the inverse variances of the eigenvector estimates. The SSF 
minimization of (26) is often written in a more compact form 
by solving for the linear parameter T: 

(27) 

(8.T) = argrninllWr[E, - A(0)T]Wk/211$. 
e ,T 

6 = arg miri V ( O )  

V ( 0 )  = Tr{I I*WrEsWcEzWr} (28) 

where I I l  denotes the projector onto the nullspace of the 
matrix (W,A)*, i.e., 

I I ~  = I - nP = I - G ( G * G ) - ~ G *  = I - G G ~  (29) 

G = W,A. (30) 

As detailed in [4], a number of important algorithms can 
be cast in the SSF framework by making appropriate choices 
for W, and W,. In particular, it has been shown that for the 
finite-sample-only case, the weighting matrices 

W , = I  (31) 

W, = A2A,’ (32) 

A = A, - 021 

where 

(33) 

yield an algorithm that is asymptotically (large N )  equiva- 
lent to the maximum likelihood method, assuming stochastic 
Gaussian emitter signals. Hence, the DOA estimates ob- 
tained from (28) using the weighting matrices (31) and (32) 
asymptotically achieve the CramCr-Rao bound and thus have 
minimum variance. In a similar fashion, different sets of 
optimal weighting matrices have been derived assuming array 
and noise model errors are present and N -i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc [8]. The 
development of an optimal SSF algorithm that takes both 
finite sample effects and model errors into account requires 
a combined performance analysis that assumes both error 
sources are present. Such an analysis is conducted in the 
next section. Optimal weighting matrices are then derived in 
Section IV for the combined case. 
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111. PERFORMANCE ANALYSIS 

It is well known that in the absence of modeling errors, the 
SSF estimate obtained from (28) converges to the true value 
(w.p.1) as N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ CO. The convergence of the SSF estimate 
when both N + 03 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU , ,  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp2  + 0 readily follows. Thus, 
we conclude that the estimate is strongly consistent under the 
mathematical assumptions ( 15) and (1 6). A useful measure 
for predicting the accuracy in “large enough” sample sizes 
(and, in this case, assuming “small enough” modeling errors) 
is the asymptotic covariance matrix of the parameter estimates. 
Under mild conditions, this is the same as the covariance of 
the limiting distribution of the estimation error. Note that this 
distribution is not necessarily Gaussian since no assumptions 
on the distributions of the perturbation terms are made. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Asymptotic Accuracy 

Let 4 minimize the criterion function (28). Then. V’(8) = 0, 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV’ denotes the gradient. Since the estimate is consistent, 
a standard Taylor series expansion of this equation yields 

0 = V’(8) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN V’(0,) + V’’(Bo)(8 - B o )  N V’(B0) + H e  (34) 

where H denotes the limiting (N -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc) Hessian 

H = lini V”(0,) (w.p.1). 
N+m 

(35 )  

We use the symbol N to specify that terms of order op (1/ fi) 
are neglected. The notation O,(.) and op(.)  represent “in 
probability” counterparts of the corresponding deterministic 
notation (see Section 2.9 of [22]!. From (34), the estimation 
error can be expressed as 8 = 0 - Bo N -H-’V’. Let Q 
denote the limiting normalized covariance of the gradient 

Q = lim NE[V’(&)V“(B”)].  
N - x  

Then, the covariance of the asymptotic distribution of the 
estimation error is 

E[6eT] = C/N (37) 

c = H - ~ Q H - ~ .  (33) 

The asymptotic Hessian depends only on the limiting sample 
covariance and its eigendecomposition and is obtained as in 
the separate error source cases [4], [8]: 

H = 2 Re{(D*W, I I lW,D)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 (TW,T* )T }  (39) 

where Re{} denotes the real part. (i! means elementwise 
multiplication, and 

(40) D = [d,. . . . . d,l] 

(41) 

~t = ( A * A ) - ~ A *  (42) 

T = A ~ E , .  (43) 

To evaluate (36), the derivative of the criterion function is first 
calculated. Following [4], we have 

Gt* } ] .  

(44) 

where G; is the derivative of G with respect to 6’; and 

Since IILW,.E, = 0, we have IILW,Es cv O , ( l / n ) ,  
Gt* = G ( G * G ) - l .  

which gives 

V, 2 -2 Re[Tr{G:IILW,E,W,E:W,Gt*}]. (45) 

Next, note that only the ith column of Gi ,  which is equal to 
W,.d,, is nonzero. This observation gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L: 2 -2 Re{dfW,IILW,E,W,E:W,{Gt*}.i} (46) 

where {Gt*}.; = G{(G*G)-’}. i  is the ith column of 
Gt*. The first-order relation between the estimated signal 
eigenvectors and the sample covariance matrix is (e.g., see [8]) 

(47) IIL WrEs cv ITL W,RE,A-’.  

Using (18) and noting that ITLW,A = 0 and Z N 

O p ( l / f i ) ,  (47) leads to 

IILW,E, N I I l W , ( A P A *  + Z*A* + E)E,A-’. (48) 

Inserting (48) into (45) gives 

where the approximate derivative of the criterion function is 
expressed as the sum of three terms, the first stemming from 
the array modeling errors and the last two from the effects of 
noise. These terms take the form 

where m b i ( 2 ,  and B, are the deterministic vectors 

It  is not difficult to see that the expected values of the 
crossterms (E[V,lVJ*], etc.) are zero, and hence, they do 
not contribute to Q. The terms E[VLkVJk]  are evaluated in 
Appendix A, leading to the following result. 

Theorem 1 :  Let B be obtained from (28), and let the per- 
turbation models of Section 11-B hold. The covariance of the 
asymptotic distribution of the estimation error is then the sum 
of the error covariances derived in [4] and [XI for each of the 
three sources of error considered separately. For large N, we 
have 

An expression for the asymptotic Hessian matrix H is given in 
(39). The effects of array perturbations (AP), noise covariance 
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perturbations (NP), and finite samples (FS) are expressed 
separately as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

QAP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2 Re{(D*W,I ILW,BW,IILW,D) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q N P  = 2ji2 R e { ( D * W r I I L W ~ l l L W r D )  

QFS = 2a2 R e { ( D * W , I I L W ~ l l L W , D )  

o (TW,T*Y~TW,T* )~ }  (58 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
o (TW,A-~W,T* )~ }  (59) 

o (TW,A-~A,W,T*)~}.  (60 )  

Proof: The expressions (58)-(60) are derived in 

The fact that C is written as a sum of the individual error 
covariances is independent of the specific models used in 
Section 11-B; in fact, the above result would hold for any of the 
error models CAP and CNP described in [SI. In addition, even 
though our results have been derived specifically for certain 
multidimensional SSF algorithms, expressions identical to (56) 
and (57) hold for the MUSIC algorithm [23] if one replaces 
the individual error covariances with those derived in [2] and 
[6 ]  and for the ESPRIT algorithm [24] if one uses the results 
of [25] and [26]. 

Remark zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: The precise mathematical meaning of Theorem 
1 is that the covariance matrix of the estimation error in the 
limiting distribution is given by (55).  However, a pragmatic 
use of the result for finite N is, of course, to substitute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y = N T  in (58) and p 2  = Np’ in (59) and to use the 
resulting matrix C/N to predict the covariance matrix of 
the estimation error itself (rather than the covariance of the 
distribution). If N is “large enough” and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv:, i = 1, . . . . d and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p2 are “small enough,” the theoretical results do indeed agree 
well with empirical observations obtained via simulations, as 
demonstrated in Section V. 

We also note that with the substitutions Y = N Y  and 
,!i2 = N p 2 ,  the covariance C/N does not go to zero as 
N 4 30 but rather converges to the expression obtained in [8 ]  
for model errors only. Similarly, for fixed N ,  letting T ---f 0 
and p -+ 0 in C/N yields the covariance for the finite sample 
only case considered in [4]. Thus, even though our analysis 
was conducted assuming U,?, + p2 cv 0(1/N), the results of 
Theorem 1 can be applied to the limiting cases as well. 0 

Appendix A. U 

IV. OPTIMALLY WEIGHTED SUBSPACE FITTING 

The expression for the asymptotic variance of the DOA 
estimates derived in the previous section is useful for pre- 
dicting algorithm performance. This can be done by simply 
substituting into the error expressions the appropriate error 
model, error variances, and weighting matrices corresponding 
to the algorithm of interest. Another important problem is 
selecting the weighting matrices W, and W, so that the 
resulting estimation error is minimized. Because of the nature 
of the expressions (58)-(60), it is convenient to first consider 
the case of array perturbations only and then noise covariance 
perturbations plus finite sample effects separately. The weight 
optimization closely follows the corresponding results in [4] 
and [8], and the proofs are therefore omitted. The expressions 

will be given using the original perturbation variances T and 
pz rather than the N-normalized quantities. 

A .  Array Perturbations 

This case is treated in [ 8 ] ,  where the result is repeated below 
for reference. 

Theorem 2:  Assume that p’ = 0 and lvijl >> a’/(NllA,ll) 
so that only array perturbations contribute to the estimation 
error. Write the asymptotic covariance matrix of the estimation 
error as C = C(W,, W,) to emphasize the dependence on 
the weighting matrices. Then 

W r -  -B-lJ2 (61) 

w, = ( T * T ~ T ) - ~  (62) 

yield minimum variance estimates in the sense that 

c ( B - ~ / ~ ,  ( T * T ~ T ) - ~ )  5 c ( w , ,  w , )  (63) 

for all possible W, > 0 and W, > 0. Here, the matrix 
inequality A 2 B means that the difference A - B is positive 
semidefinite. 

B .  Noise Covariance and Finite Sample Effects 

In this case, we have the following result: 
Theorem 3: Assume that T = 0 so that only the effects 

of noise (including possibly an imprecisely known covariance 
matrix) contribute to the estimation error. Then, it holds that 

(64) 

Since a scaling does not affect the result, the optimal weighting 
matrices are 

C( I ,A2 (Np21  + a2h,)-’) 5 C(W, ,  W,).  

W , = I  (65) 

Proof: This result follows by applying Lemma A.2 of 
[27] to the expressions (39), (56), (59), and (60). 

Note that the interesting quantity is the ratio of the variance 
of the noise covariance perturbation and the variance of the 
noise itself, i.e., the relative perturbation on each element of 
the noise covariance. 

C .  Combined Errors 

For the special case of uniform array perturbations, the fol- 
lowing result provides the overall optimal weighting matrices 
when all error sources are present. 

Theorem 4:  Assume that B = I. Then, the choices 

W r = I  (67) 

provide minimum variance DOA estimates. 
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Proofi This result is also a straightforward application of 

It is interesting to see how (68) "interpolates" between 
the optimal weighting matrices for the individual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAP, NP, 
and FS cases. Unfortunately, no overall optimal choice of 
weighting matrices has been derived in the general case for 
arbitrary array and noise model errors. However, one may 
still suggest reasonable choices that normally lead to improved 
performance, even if it is not proven to be optimal. A possible 
extension of Theorem 4 when (7) and (8) holds is simply to 
use (67) and (68) as is, even if B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# I. Another interesting 
possibility, which has been motivated by the form of (68), is 
to modify the row weighting as 

Lemma A.2 of [27]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

W, = (B + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd-"' (69) 

where Q is a scaling that controls the relative contribution 
of the AP optimal row weighting W, = B-'12 and the 
NP + FS choice W, = I. Briefly, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( Y  should be small if 
array perturbations are the major source of error (high SNR 
and/or large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ) ,  whereas it should be chosen large if noise 
modeling errors and/or finite sample effects dominate. In more 
general cases, where (7) and (8) and/or (13) do not hold as 
stated, one can still use the above results to generate weighting 
matrices that improve performance, even if not proven to be 
optimal. This possiblility is further investigated in Examples 
5.2 and 5.3. 

D. Using Estimated Weighting Matrices 

A difficulty with the implementation of the optimal SSF 
technique is that the weighting matrices depend, in general, on 
unknown quantities. A natural approach is to replace these by 
consistent estimates, but one may wonder if this approach leads 
to any performance loss. To verify that estimated weighting 
matrices do not deteriorate the asymptotic estimation accuracy, 
we shall first show the following more general result. 

Lemma 1: Let d be obtained by minimizing the criterion 
function V(O,q) ,  where the dependence on the parameter of 
interest, 0 and a nuisance parameter 77 has been stressed. The 
true values of 0 and 77 are assumed to be inner points of their 
respective definition sets, and the criterion function is assumed 
to be differentiable with respect to both arguments. Express the 
estimate of 0 as a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7). 6 =  TI). and assume that 
the estimate is root-N consistent for all choices of 7). i.e., 

&) - 00 = O , ( l / J N )  (70) 

for all q. Then, q can be replaced by any (weakly) consjstent 
estimate without affecting the asymptotic properties of 8, i.e. 

(71) i ( 7 , )  = e($ + o ? , ( l / J N ) .  

Proof: The mean-value theorem implies that 

for some f j .  However, the assumption (70) readily implies that 

U 88 = O, ( l / f l )  for all 71, and the result follows. 

The weighting matrices of interest herein are restricted to be 
Hermitian and positive definite. To apply Lemma 1, we can, for 
example, parametrize W, using its Cholesky decomposition 

where Wf12 is lower triangular. The parameters qi of Lemma 
1 can then be chosen as the real and imaginary parts of the 
elements of the nonzero part of W;I2. Since this parametriza- 
tion clearly satisfies the requirements of the lemma, the 
following results. 

Corollary I :  The weighting matrices of Theorems 2 4  can 
be replaced by consistent estimates without affecting the 
asymptotic optimality. 

V. EXAMPLES 

In this section, some numerical examples are presented to 
illustrate our results. Computer simulations are also included 
to investigate the applicability of the first-order expressions to 
realistic scenarios. 

A .  Example 5.1 : Unstructured Array and Noise Model Errors 

In this scenario, the wavefield of two Gaussian signal 
sources is recorded using a perturbed uniform linear array 
(ULA) of 711 = 6 sensors with half-wavelength interelement 
spacing. The emitters are located at 6' = [O". 5"] relative to 
array broadside, which corresponds to an angle separation of 
a quarter of the Rayleigh beamwidth. The array response is 
perturbed according to the model (7) and (8), with B = I and 

1.0 0.7 
= O.Ool [".7 1.01 

A nondiagonal Y is assumed here since the DOA's are closely 
spaced so that some correlation between the perturbations is 
expected (it should be mentioned that this does not drastically 
affect the performance of any of the methods). The covariance 
of the additive noise is also assumed to be slightly perturbed 
from its nominal value a21. The noise model errors are 
generated according to the model (12) and (13), with p2 = 
0.001. The baseband signals are zero-mean Gaussian, 90% 
correlated, and of equal power, and the noise is assumed to 
have unit power (a2 = 1). 

A batch of N = 100 snapshots is generated for a variety 
of SNR's, and the SSF technique of Section II-C is applied 
to each data set using W, = I and three different column 
weighting matrices: 

W, = A2A;' (finite sample errors only), referred to as 

W, = (T*YTT)-' (array perturbations only), referred 

W, = ( T * Y ~ T  + / L 2 A p 2  + - A - 2 ~ s ) - '  (overall 

optimal weighting), referred to as optimal subspace fitting 
(OSF). 

weighted subspace fitting (WSF) [4] 

to as robust subspace fitting (RSF) [8] 
0 2  

N 
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RMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
I /  , .  

I .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.5 t 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

O5 10 15 20 25 30 
SNR (dB) 

Fig. 1. Theoretical and empirical RMS error versus SNR for the SSF 
technique using different column weighting matrices, and perturbations in 
both the array and noise models. 

Fig. 1 depicts the results of a Monte-Carlo simulation involv- 
ing 256 independent trials for each SNR. The lines represent 
the error predicted by the theoretical expressions of Section 
111, whereas the symbols indicate the empirically calculated 
RMS errors. Only the results for the estimation of 81 = 0" are 
shown, where the results for 82 are similar. 

The empirical RMS errors agree well with the theoretically 
predicted values for this case. Note also that, as expected, 
WSF is optimal for low SNR, RSF is optimal for high SNR, 
whereas OSF provides overall optimal estimates. 

The previous example serves as an illustration of the per- 
formance improvement offered by the proposed method when 
the fairly restrictive perturbation model of Section 11-B holds 
exactly. A perhaps more interesting question in practice is 
whether the OSF weightings also can be used to reduce the 
sensitivity under more physically motivated error models. The 
next two examples address this point. 

B .  Example 5.2: A Weak Unmodeled Source 

An important source of errors in the covariance matrix of 
the noise is the presence of (weak) undetected signal sources. 
This type of error gives rise to a highly directional perturbation 
that does not fit the model of (12) and (13). Nevertheless, as 
illustrated in this example, the optimal weighting as derived 
in the previous section can be used to potentially reduce the 
sensitivity to such a perturbation. The scenario used here is as 
in Example 5.1 but without the unstructured array and noise 
perturbations. The SNR of the two signals is fixed to 10 dB, 
and an additional emitter of -10 dB SNR, uncorrelated with 
the signals of interest, is located at a varying DOA, ranging 
from 10 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50". The probability of detecting the weak source 
using the technique proposed in [28] is less than 30% for all 
cases. The empirical RMS error of the OSF (using (66) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p 2 / c 2  = 0.1) and WSF estimates is shown in Fig. 2. Both 
methods were applied assuming zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd = 2 signals. In this case, 

0.6l I 
I O  15 20 25 30 35 40 45 50 

DOA (deg) 

Fig. 2. Empirical RMS error versus the location of a weak (-10 dB) 
undetected signal source. 

only the results for $2 are shown; the performance difference 
for 01 is smaller in this scenario. 

This example suggests that by taking noise model errors 
into account, one can obtain an estimator that is less sensitive 
to the presence of weak undetected sources. 

E.rample 5.3: Antenna Position Errors 

This example involves a ten-element, nominally uniform 
linear array with perturbed sensor positions. The standard 
deviation of the position errors in the direction perpendicular 
to the array is assumed to vary quadratically from X/3000 at 
one end of the array to X/30 at the other end, whereas the 
errors in the direction parallel to the array are assumed to be 
independent and a factor of smaller. This is similar to an 
example in [6] that attempts to model the nonlinearity of an 
underwater towed array. 

This type of array perturbation leads to values for Y and B 
that are angle-dependent (see equation (37) of [6]), and hence, 
no combined optimal weighting is possible. However, in an 
attempt to find a weighting that, at least heuristically, balances 
the two types of errors, we choose to use the weighting scheme 
(cf. (68) and (69) and note that ,U = 0 in this example): 

(74) 
ff2 

N 
T*YTT + - k 2 A ,  

W , =  B f - I  ( (75) 

where 

r = 2 * n * p 1  (76) 

B = -B, (77) 
1 -  

P 
and where 
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$0 10' 102 103 

Number of Snapshots, N 

Fig. 3. 
a nominal linear array with sensor position perturbations. 

Theoretical and empirical RMS error versus number of snapshots for 

Here, B, and B, are, respectively, the covariances of the 
position errors in directions parallel and perpendicular to the 
array. As alluded to above, in this example, both B, and B, 
are diagonal, B, = B,/10, and the kth diagonal element of 
By is given by 

The structure assumed for B in (79) is motivated by the 
covariance expressions given in equation (37) of [6] for 
antenna position errors. The scaling term [j is used to guarantee 
that our heuristic weighting matrices converge to the WSF 
weightings when IlBll << zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc r z / ( N ~ ~ A s ~ ~ ) .  

The performance of the SSF approach using these weighting 
matrices is compared with WSF and RSF for a scenario 
involving two uncorrelated, 20-dB emitters located at 10 and 
15" relative to array broadside. A total of 1000 Monte-Carlo 
trials are conducted for various values of N ,  and the number 
of snapshots and the results are plotted in Fig. 3 along with the 
corresponding CRB [16]. Here, OSF refers to the combined 
weighting matrices above. The lines in the figure correspond 
to our theoretical analysis, whereas the symbols represent the 
empirical results. The advantage of the combined weighting 
is clearly evident in these results, and the agreement with the 
theoretical curves is reasonably good. The slight discrepancy 
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN = 10,20 is due to the fact that our analysis is asymptotic 
in N .  Despite this, the empirical results are within 5% of the 
theoretical predictions for N as small as 20. 

VI. CONCLUSION 

found to accurately predict empirical mean-square errors down 
to the threshold region. The derivation of optimal weight- 
ing matrices required a fairly simplistic model of the array 
response and noise covariance perturbations. However, for 
more complicated models, heuristic weighting matrices based 
on our analysis will often lead to significantly improved 
performance as compared with not taking the model errors 
into account. This is illustrated by two examples involving 
underestimation of the number of signals and nonuniform 
sensor position errors. 

Implementation of the overall optimal technique requires 
knowledge of the covariances of the perturbation terms. An 
interesting question not considered herein is the sensitivity 
to misspecifications of these quantities. However, we should 
point out that the first-order effect of such errors vanish (by 
Corollary 1 in Section IV). Moreover, if the misspecification is 
a small scaling error, the proposed optimal weighting matrix is 
still a reasonable interpolation between the optimal weightings 
designed for one error source (array errors, noise covariance 
errors, or finite sample errors) only. 

APPENDIX A 
P R O O F O F  THEOREM 1 

In this Appendix, the terms E[V&V,k] are evaluated, where 
VLk is defined in (50)-(52) for k = 1 . 2 , 3 .  Towards this end, 
the following formulas are first presented. If XI. . . . . xq denote 
arbitrary deterministic vectors, we have 

E[x;AX2X;AX'] = 0. 

E[x;A*x~x;Ax~] = x ; Y ~ x ~ x : B x ~  

(A. 1) 

E[x;Zx~x;Zxq] = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

E[x;Z*X~X;ZX~] = ~ x ; x ~ x X ~ P X ~  

('4.2) 

E[x;Cxzx;Cx4] = f14 + - X;XzX;X4 ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC) 

We have shown how to conduct a combined performance 

neously. For the special case of random unstructured per- 
turbations to the array and noise models, we have derived 

for the optimally weighted subspace fitting estimates were 

x ( " 2 h k . l  + 5 k . l )  

+ (a26;.1 + i r , l ) ( U 2 S k , ,  + a k j  
analysis of subspace fitting algorithms that accounts for errors 
introduced by additive noise and modeling errors simulta- 

1 

N 2  

+ ( n ' ~ ~ , , ~  + p2)zT ix4 , : r j j : r : 2J  

= - X(04 + ~L2St,s)Z;,Z27:C;Jx4j 

= (U' + ,,2/N)x;x2X;x, + (U"N + p2)x;x2x;x4. 

t , s  r , j  
row and column subspace weighting matrices that yield mini- 
mum variance DOA estimates. The theoretical error variances 
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For two arbitrary scalars 2 1  and 2 2 ,  it is easily seen that 

Using this fact and applying (A.l) and (50) leads to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E[V,1V,1] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2 Re{ E[/3:APA*ata,*APA*/?, 

+ a: APA*/?,a,* APA*/3,]} 

= 2Re{ a: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABa, a,* A P T  TPA*/3, } . (A.4) 

Similarly, by observing that a:/?, = 0 (which follows directly 
from (53) and (54)) and using (A.2) and (A.3), the noise- 
dependent terms are obtained as 

E[K2V32] = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Re{a:aj/3j*APA*/3i} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2a2 (AS) 
N 

Combining (36), (A.4)-(A.6), and using (15), (16), and (22) 
gives 

Q,, = Jlm NE[&&] = 2Re{a,*Ba,/3,*APYTPA*/3, 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( f i 2  + a4)a:a,/3;/3, 

+ 0; APA*P,} 

= 2Re { a: B a, /3; A P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY PA * /3, 

+ ,!i2a:a3/3~PL + a2a:a,/?,*R/3,}. 

(A.7) 

To obtain a more compact matrix formulation for Q, we use 
some identities that are derived from (22)-(24): 

GtW,E, = GtW,AAtE, = AtEs = T (A.8) 

Inserting (53) and (54) and (A.8)-(A.10) into (A.7) results in 

Q = QXP + QNP + Q F S  (A.11) 

where the expressions for the matrices involved are as given 
in ( 5  8)-( 60). 
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