
Analysis of the computational and storage
requirements for the minimum-distance decoding
of convolutional codes
W-H. Ng, M.Sc, Ph.D., M.I.E.E.E., and R.M.F. Goodman, B.Sc, Ph.D.

Indexing terms: Coding, Decoding

Abstract

In this paper, we present the analytical results of the computational requirement for the minimum-distance decod-
ing of convolutional codes. By deriving upper bounds for the number of decoding operations required to advance
one code segment, we show that many less operations are required than in the case of sequential decoding This
implies a significant reduction in the severity of the buffer-overflow problem. Then, we propose several modifi-
cations which could further reduce the computational effort required at long back-up distance. Finally we investi-
gate the trade-off between coding-parameters selection and storage requirement as an aid to quantitative decoder
design. Examples and future aspects are also presented and discussed.

List of symbols

v = received sequence
co = tentatively decoded sequence
/ = test-error sequence

tb = sequence consisting of the last b segments of t
\t\ = weight of t
bt = maximum back-up distance in segments for a given \t\
b* = required back-up distance in segments
P = permissible path

T*(b) = back-up distance threshold condition
K = constraint length of the code in segments

bm = maximum back-up distance in segments over which
direct mapping operates

TV = upper bound on the number of computations
Ns = upper bound on the number of computations for sequen-

tial decoding
N* = maximum number of computations

L = maximum decoding search length in segments
d(k) = code distance over k segments

b8 = maximum back-up distance for the back-up search pro-
cedure, in segments

bp = maximum back-up distance for the permissible path search
procedure, in segments

rij = number of paths of weight / in the lower-half initial code
tree

1 Introduction

Sequential decoding is well known in achieving low b.e.r.
with minimumrt£6-/A^0.requirement.'"Based-1orKour.iprevious work, we
proposed.; a-mwfikn«n><listanee-.decoding,, scheme;.lor. convolutional
codes,1'2 which uses the distance and structure properties of convol-
utional codes to significantly reduce the computational effort. In this
paper, we quantitatively assess the number of decoding operations
required by the proposed algorithm and show that this is indeed much
less than that required by sequential decoding. In addition, by div-
iding the decoding, procedure into several regions in terms of required
back-up distance, we suggest modifications to the algorithm which
result in even further computational reductions.

In sequential decoding, the complexity is insensitive to the con-
straint length K and this allows the decoder to utilise a much longer
code than that used by usual convolutional decoders to achieve an
outstanding performance in extremely low b.e.r. region. But the
progress of the decoding is highly variable, involving both forward
extensions and back-up searches to find a tentatively decoded path
satisfying the current metric conditions. Because data are transmitted.
at a constant rate, a buffer is required, and this then raises the possi-
bility of buffer overflow. Indeed, with sequential decoding, it is the
probability of buffer overflow that limits the effectiveness of the
decoder. Any decoding scheme that reduces the number of compu-
tations required per message bit therefore reduces decoding delay
and improves the output error rate achievable with a fixed buffer, or,

Paper 8244 E, first received 12th June and in revised form 29th September 1978

Dr. Goodman is, and Dr. Ng was formerly, with the Department of Electronic
Engineering, University of Hull, Hull HU6 7RX, England. Dr. Ng is with the
Aerospace Corporation, Los Angeles, California 90009, U.S.A.

PROC. 1EE, Vol. 126, No. 1, JANUAR Y1979

conversely, reduces the size of buffer needed to achieve a given output
error rate. Fig. 1 shows the distribution of computational effort for a
typical Fano decoder operating at R ^Rcomp- The probability of the
number of computations required per branch Nr exceeding the
number of allowed computations per branch Na is plotted, where the
unit of computation is taken to be the examination of one branch
of the code tree by the decoder. Hence, by utilising the minimum-
distance decoding algorithm, a much more advantageous trade-off
between buffer size and output bit error rate can be established than
in the case of sequential decoding.

The basic strategy adopted in the minimum-distance decoding
algorithm is to always seek a path at minimum distance from the
received sequence, at every node extension. Compared with the
sequential decoding, this enables us to achieve a significant reduction
in the maximum number of decoding operations, in two main ways.
First, a direct-mapping scheme is utilised to find directly the
minimum-distance path in a single operation without the need for a
back-up search. Secondly, when a back-up search is required, an
efficient search procedure that directly identifies the possible nodes
at which path divergence might have occurred is instigated.

In this paper, we analyse the maximum number of computations
required to advance one branch when using the algorithm, and com-

10"

z 10

io~5

106

2)0 2 I5 22O

Fig. 1
Distribution of computational effort for a typical sequential decoder

Metric rat ion = 1/—9
Threshold spacing = 1 0
Variable channel-error probabi l i ty = p

29

0020-3270/79/010029 + 06 $01-50/0

pare this with the maximum required for sequential decoding, thereby
showing a significant reduction in effort. Then, by dividing the decod-
ing procedure to be adopted into several ranges of back-up distance,
we introduce modifications of the algorithm in the area of subopti-
mum decoding. Future aspects of utilising the proposed decoding
algorithm to achieve a maximum-likelihood decoding with long code
are also discussed.

2 Basic minimum-distance decoding algorithm

In this Section, we will review briefly the basic minimum-
distance decoding algorithm.1'2 Consider the following notation:

v = the received sequence, which may differ from the transmitted
sequence due to channel errors

to = the tentatively decoded path, a path in the code tree which
is being compared with v, and is the decoder's current estimate
of the corresponding transmitted path.

t = to © v = the test-error sequence, which has ones in those
positions where to and v differ

|/| = the weight of t
tb = the last b branches of t.

The code studied in this paper is a single-generator systematic rate 1/2
code with constraint length K = 50 segments. The generator sequence
isg = 31010101100101110001100011111100101100110101010110
in quaternary form; that is, [00] = 0 , [01] = 1, [10] = 2 , and
[11] = 3 .

We now summarise the basic procedures used in the algorithm:
(a) Basic branch operation (b.b.o.).

Whenever an to is found which is known to be at minimum
distance |/| from v, the decoder carries out the b.b.o. to select
the next segment of to, to, , which is the tentative version of the
corresponding transmitted segment. For the code in this study,
we impose a rule that the b.b.o. must choose an tox that results
in a tx = 0 or 1, and eliminate the possibility of tx = 2. Hence,
we always have \tx | < 1.

(b) Maximum back-up distance
When the b.b.o. results in a r, = 0 we can be sure that to has
minimum test-error weight, and the decoder can return to the
b.b.o. after outputting the oldest segment of to as the final
decoded version of the corresponding transmitted segment How-
ever, if tx = 1 it is possible that another path to' may have smaller
test-error weight \t'\ =\t\ — \. In this case, we must determine
whether or not a back-up search is needed, and, if so, how far to
back up. The maximum back-up distance in branches bt depends
on the current value of \t\, and is tabulated in Table 1.

(c) Required back-up distance
If the value of bt is ^bm, the range over which direct mapping
operates, then no search is needed and to' is found by a single
mapping operation. If bt>bm, we can identify a set of nodes
b* < bt at which to' might have diverged from to and instigate
the search procedure at each of these nodes to try to find to'. The
necessary condition for instigating a subsearch at back-up distance
b* =b is \tb\>T*(b), where T*(b) depends on the distance
profile of the code and is tabulated in Table 2.

(d) Permissible path decoding
Assume that there is an to with test-error weight \t\, and we are
searching for an to' of the same length as to but belonging to the
opposite-half truncated tree and having a smaller test-error weight
\t'\. In this case, to' and t' can be derived from to' = to®P and
t = t © P, where P is a truncated path in the lower-half initial
code tree and is called a permissible path. Searching for to' with
the aid of a specially selected set of P will be used to modify the
basic algorithm to reduce decoding effort, and is described later
in the paper.

(e) Direct mapping (d.m.)
Consider a set of test-error patterns t and their corresponding
minimum test-error patterns t', where |/'| = \t ®P\ < \t\, and the
minimum length of P is < 6 m , the range over which direct map-
ping operates. In the decoder we store two sets of / and P into the
memory. During the decoding process, whenever the tentatively
decoded sequence to has a test-error sequence / whose last b
segments tb exactly match a pattern stored in the memory, we
directly map t to t' = t ® P, and to' to to ®P. This guarantees that
the new tentatively decoded sequence to' has minimum test-error
weight. Once a direct mapping takes place, no more searching is
needed and the decoder returns to the b.b.o. If t is such that its
tail sequence does not match any stored tb, either t has minimum
test-error weight, in which case the decoder returns to the b.b.o.,

Table 1
MAXIMUM BACK-UP DISTANCE bt FOR DIFFERENT VALUES OF If I

U\ d(bt)

2
3
5
7
9

11
13
15
17
17

1
2
6

11
16
25
33
40
48
50

Table 2
DISTANCE PROFILE d{b) AND THRESHOLD CONDITION T* (b) ON
BACK-UP DISTANCE b* = b

b

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

d(b)

' 2
3
3
4
4
5
5
5
6
6
7
7
7
8
8
9
9
9
9
9
10
10
10
10
11

T*(b)

2
2
3
3
3
3
4
4
4
4
4
5
5
5
5
5
6
6
6
6
6
6
6
6
6

b

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

d{b)

11
11
11
12
12
12
12
13
13
13
14
14
14
14
15
15
15
15
16
16
16
16
17
17
17

T*(b)

7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
10
10

or else the required tb and P are not in the memory. Hence, only
when b* >bm + 1 do we need to use the back-up search pro-
cedures. Otherwise, at most, one direct mapping is all we need to
acquire the path having minimum test-error weight.

3 Upper bounds on maximum number of
computations

In this Section, we upper bound the maximum number of
computations required to advance one segment with the use of
minimum-distance decoding, and compare this with sequential decod-
ing.

The code used is as detailed in the preceding Section, and the
search length L is assumed to be long enough (say, L>K> 50), so
that it could be a valid comparison with the equivalent sequential
decoder.

Considering that the decoding proceeds with basic branch oper-
ations (b.b.o.s) and direct mappings (djn.s); the b.b.o. is taken to be
the unit of computation. We therefore assume that one d.m. takes the
same amount of time as one b.b.o. The underlying assumption is that
it takes approximately the same time to compare two paths, regardless
of length, in the range from one to L segments.

Whenever the b.b.o. results in tx = 0, which guarantees that the
path to being followed is at minimum distance from the received
sequence v, the decoder returns to the b.b.o. thus, the minimum
computation for advancing one branch is one b.b.o. If tx = 1 and the
decoder indicates that one d.m. has taken place to find to', the de-
coder also returns to the b.b.o. In this case, it takes two computations,
one b.b.o. and one d.m., to advance one branch. However, if tx = 1,
and the decoder indicates that no direct mapping has taken place and
that bt>bm, then a back-up search for to' is needed. We develop an
equation for the maximum number of computations N as follows.

First, let us assume that we have to search the complete (bt — bm)
unit at back-up distance bt, by examining every path in the unit.
(Note that this assumption is for simplicity in calculating the bound
and is not the actual search procedure adopted in the algorithm).
Because there are (2(6 + 1) — 2) branches in a b unit of the code, this
involves a (2(b*+1)~6m —2) branch search. However, the (bt—bm)

30 PROC. IEE, Vol. 126, No. 1, JANUARY 1979

branches belonging to the present tentatively decoded sequence have
already been searched, and so the required number of branch searches
is (2{bt+1)~bm-2)-(bt-bm). Secondly, there are 2 (b f b ™) paths
of length bm stemming from the end of the {bt — bm) unit, and each
of these is searched by direct mapping. Neglecting the present tenta-
tively decoded path, this requires a search of 2 (b ' ~ b ' ") — 1 bm-units.
Each bm-umt search could require a maximum of bm b.b.o.s and
tamLo* d.m.s. Hence, the maximum number of computations for
this stage is {(2{bt~bm) - 1) (bm + \tbm\max)}- Finally, we add one
computation for the original b.b.o. that resulted in ti=\. The
maximum number of computations for a back-up search of bt > bm is
then

+ {(2(b' \tb)) + l 0)
Fig. 2 illustrates the above calculation for the case (bt — bm) = 3. In
this case, there are 11 branch searches in the (bt—bm) unit, and
7 6m-unit searches stemming from the 7 branches at the end of the
(bt-bm) unit.

Let us now evaluate N for the decoding algorithm. We assume
bm = 16; that is, the direct mapping range is 16 segments. This
choice is determined by the memory size allowable in the decoder.
For example, in Reference 2 it is shown that when bm = 10, we
only need to store 11 permissible paths and 30 tentative test-error
sequences. Even if the memory requirement grows exponentially
with increasing bm, the memory size of a decoder with bm = 16
is still feasible and relatively cheap to implement. The actual value of
bm is therefore up to the individual hardware designer and does not
affect the general nature of our calculations.

Assuming bm = 16 and that bt = 25 and \ti6\max = 5, evaluation
of eqn. 1 shows that the maximum number of computations N(bt =
25) is equal to 11 745. If bt = 33,N(bt = 33) = 3 014617. If bt = 50,
N(bt = 5 0) ^ 4 x 1011.

Consider now a sequential decoder utilising the same coding
parameters as the minimum-distance decoding. When such a decoder
enters a back-up search, the maximum back-up distance is bt, and,
therefore, a complete 6runit search is required. Thus, the maximum
number of computations required for sequential decoding Ns is

equal to the total number of branches in a 6 runi t , minus the number
of branches of to already searched, plus the original b.b.o. Hence
7Vs = (2 b ' + 1 -2)-bt + 1. For bt = 25, Ns(bt = 25) ^ 2 - 6 x 107,
and, if bt = 33, Ns(bt = 3 3) ^ l - 7 x 1010. If bt = 50, Ns(bt = 50) =*
2-3 x 1015.

From the above calculations it can be seen that the ratio of NJN
is 2213 for bt = 25 and tends to a limit of 2b™l\(bm + Ub,Jmax) +
1/ —5700 for large bt. This represents a considerable improvement
over sequential decoding.

4 Determination of maximum number of
computations

In this Section, we tighten the bounds on the maximum
number of computations for minimum-distance decoding by allowing
for the actual search procedure utilised in a back-up search. We will
show that this results in an even more marked decrease in decoding
effort than that presented in the preceding Section compared to
sequential decoding. To facilitate calculation of the bound we divide
the analysis into four sections based on four back-up distances bt and
denote the new bound on maximum computation to be A'*. On the
basis of bm = 16, the four regions are bt < 16, 25, 33 and 50, cor-
responding to the four test-error weight conditions |/ | < 5, = 6, 7
and>8.

4.1 Value of N* lor bt < 16

This case has been previously analysed, showing that at most
one b.b.o. and one d.m. are needed if bt < 16. Hence, W* = 2.

4.2 Value of/V* ior bt = 25

Let us assume that |r, | = 1 and \t\ — U2sl = 6. We therefore
have bt = 25 and want to search for a o>25 whose UJS I = 5. We divide
the analysis into three cases based on the three possible values of the
test-error weight of the first segment of t2s; that is, (U25I ~ 1̂ 24 I)-
Fig. 3 illustrates each case.

a b -unit

Fig. 2
Maximum number of decoding operations N for the minimum-distance
decoding when (bt — bmj = 3

N < [(2 (6 < + l) - b m - 2) - (b t - b m)

b m -un i t search by

bbo.s and d.m.s

t25Ht2J = 2

1*25 I" 1*2*1=°

-unit search;
bJD.as and 5 dm.s

search for a t1

where bt - b =25-16

The terms of the expression are obtained from the Figure as follows:
A = 2 '* m — 2) — (b t — b m) — 11 = number of required branch searches
in a (b(— bm) unit B = (2' f ~ m — 1) = 7 = number of branches or nodes at
the end of a (bf — bm) unit that requires search. Each node could require bm
b.b.o.s and |f(, \max d.m.s. 1 = first b.b.o. that results in a r, = 1

Fig. 3
Calculation of N* for bt = 25 and \t2s I = 6

a U7i\ — l r , J = 0
b I f 2 5 | — | r 2 4 | = 1
c l r , 5 l — | f , J = 2

PROC. IEE, Vol. 126, No. 1, JANUARY 1979 31

(a) Fig. 3a
If 1*251 ~ 1*241 = 0, its complement segment has weight l ^ s l "

1*241 = 2. Therefore, if there is a t'2s stemming from b* = 25 such
that U25I = 5, it will have weight kwl = l*2sl-(U251 ~ Uwl) =
5 - 2 = 3 over the remaining 24 segments. This implies that the
24-unit can be searched by using direct mapping only, as follows.

From the distance property1 of the code (Appendix 9), we can
see that when a back-up search starts at b* >bm and the t' is such
that k ; i - k (_ 6 m l < k ' | < [c / (6 m) - l l / 2 , where b\>i>bm, the
f' can be searched by using only b* b.b.cs and |f'| d.m.s. In this case,
2>m=16 and [d(bm) - l]/2 = 4; therefore, |f/| - |*/-i6l < 3 <
[d(l6) — 1] /2 = 4, and the 25 unit can be searched with a maximum
of 25 b.b.o.s and \t^\ = 3 d.m.s. Hence, when the range of required
back-up distance b* is such that every complement unit between 17
and 25 segments back must be searched; that is, 25>b* > 17, the
maximum number of computations is

25

N* = Z C/ + 3) + l = 217
/ = 17

(b) Fig. 3b
If U2SI — U24 1 = 1. its complement segment U25I — I*M I = 1,

and |fM I = 5 implying b*t =bt = 25 only. Also, |f/| - |f/_161 < 5 -
1 = 4 for 2 4 < / < 1 7 , which is equal to [d (16) - l] /2, implying that
the search at b* = 25 can be carried out by means of 25 b.b.o.s and 4
d.m.s. Hence N* = 25 + 4 + 1 = 30
(c) Fig. 3c

If l*2sl — 1*241 = 2, its complement segment \t'zs\ — 1*241 =
0, and U241 = 4 again, implying b* = bt = 25 only. In this case,
Ir̂ s 1 = 5, which indicates that there is a possibility that |f/| — |f/_ 161 =
|f2Sl = 5 > [d (1 6) - l] / 2 = 4 , for some /within 2 5 < / < 1 7 , and so
the search cannot be directly carried out with b.b.o.s and d.m.s only.
The worst case situation is therefore one in which there are (25 —
16) = 9 consecutive zero test-error weight segments stemming from
b* =25. In this case the 6m-unit at the end of the path is searched
with direct" mapping, and each of the 9 complement path segments
having double test-error weight are searched in a manner similar to
case (a). The zero test-error weight portion and the terminating
6m-unit can be searched with a maximum of 25b.b.O:S and 5 d.m.s,
and the paths stemming from the double error segments can be

24

searched with 2 0 + 3) computations. Hence, the maximum num-
j = 17

ber of computations is

N*(bt = 2S)max = (25 + 5)+ 3) = 219
7 = 17

From the above calculations, it can be seen that the maximum num-
ber of computations for bt = 25 will not exceed 219. Not only is
this significantly less than the value calculated for sequential decoding,
but it is also 53 times less than the bound N(bt = 25) calculated in
the preceding Section.

4.3 Value of N* for bt= 33

• • • Let -us assume that if pl^-l-jiirl-^i^V^^yfy: ==.335Jaad-,we;

are searching -for'a1* uzywhoser \t$3'\ = 6'. If there" is a f̂ satisfying
this test-error weight condition, the analysis can again be split into
three cases based on the weight of the first segment of ^33, that is,
1*33 I - 1 * 3 2 I:

(a) If |f331 — |f321 = 0, its complement segment has weight U33 i —
IfM I = 2. Hence, |f^l = U33I - (1*331 ~ 1*32 I) = 4 = [d(bm) -
l]/2 = |f/| —|f/_i6|, for 32>i> 17. This means that the search for
f33 at b* = 33 can be carried out with a maximum of 33 b.b.o.s and
4 d.m.s. When each node between 17 and 33 needs to be searched,
that is, 33 > b* ^ 1 7 , the maximum number of computations is

33

N* = Z (/ + 4) + 1 = 494
y = i7

(b) If |f331 — U321 = 1, its complement segment has weight \t331 —
1*32 I = 1. and |f321 = 6. From Tables 1 and 2 it can be seen that for
|f331 = 7, and |/321 = 6, we have 33 = b* < 25. Therefore, the maxi-
mum number of computations for this case is the sum of the com-
putations for b* = 33 and b* <25 . If there is a f̂ stemming from
b* = 33 such that U33I = 6, we would be searching for a f̂ j with
1*321 = 5 after accepting the first segment stemming from b*.
Hence, the worst-case situation is similar to that of Section 4.2 (c)~;
that is, (32 — 16) = 16 consecutive zero test-error weight seg-
ments stemming from the first segment of ^ 3 , ending with a bm:\init
search. Also, the 16 opposite branches each having double test-error
weight are searched according to case (a) in Section 4.2. Therefore,

when the range of required back-up distance b* is such that 33 =
b* < 25, the maximum number of computations is

N*(bt = 33)m<w = N*(bt = 25)maJC+(33 + 5)

+ Z C/ + 3)
;' = 17

= 219 + 38 + 440

= 697

(c) If U331 — U321 = 2, its complement segment has weight \t^3 \ —
If321 = 0 and U321 = 5. Therefore, b* = 33 only. After accepting the
first segment stemming from Z?*> we consider two cases based on the
test-error weight of the two branches stemming from the accepted
node. These are detailed in Fig. 4.

b.b.o.s .2(30 b.b.o.s.
30

15 b.b.o.s c (j b.bo.s+3 d/ns.) = 366
j=17

(33 b.b.o.s.6 d.m.s) =39

(1 bb.o.)

(32 b.b.o.s^d.m.s)=36

1] 3 b.b.o.s. 2(29 b.b.o.s.4 d.m.s) =69
29

2 ^T->M. U b.b.os.S(j b.b.o.s.3 dm.s) = :

(33 b.b.os.5 d.m.s) = 38

consecutive >^0
zero-weight segments

b

Fig. 4
Determination of the maximum number of computations N* for
searching a t33 with \t'33\ — 6 when U33 I = 7, bt = 33 and |/33 | —

a D i s t r i b u t i o n o f t e s t - e r r o r w e i g h t w h e n I r ^ I — | f j , I = 1 W * = 1 + 7 1 + 3 6 6 +
3 9 = 4 7 7

b D i s t r i b u t i o n o f t e s t - e r r o r w e i g h t w h e n I f j , I — If, , I * 1 N* = 1 + 3 6 + 6 9 +

3 5 2 + 3 8 = 4 9 6

4.3.1 Details of Fig. 4a

If the test-error weight of both branches is 1, that is |f321 —
|̂ 3j | = 1 , there are four contributions to the total number of compu-
tations. These are as follows: First, there is the original b.b.o. that
resulted in | f t | = 1 and U33| = 7. Secondly, the maximum number
of computations for the search stemming from the two segments
with weight U311 - l*3ol = 1 is equal to 3 b.b.o.s + {2(30b.b.o.s +
4 d.m.s)} = 71. Thirdly, the search stemming from the segment with
weight l*3i I — U30I = 0 requires a maximum of (33b.b.o.s +
6d.m.s) = 39 computations. Fourthly, the searches stemming from
those branches opposite to the consecutive zero test-error weight

30

segments require a maximum of 15 b.b.o.s + JC (j b.b.o.s + 3 djn.s)

= 366 computations. The maximum number of computations in this
case is therefore

TV* = (1 + 71 + 39 + 366) = 477

4.3.2 Details of Fig. 46

If the test-error weight of the two branches is 2 and 0,
that is, U321 — l*3i I T6 1, there are five contributions to the total
number of computations. These are as follows. First, there is the
original b.b.o. which gave 1̂33 1 = 7. Secondly, the search stemming
from the segment with weight |r32 | — |f311 = 2 requires a maximum

32 PROC. IEE, Vol. 126, No. 1, JANUARY1979

of (32b.b.o.s + 4 d.m.s) = 36 computations. Thirdly, the search
stemming from the segment with weight If̂ | — |f3Ol= 1 and the
two subsequent parallel segments each of weight U301 — I/291 = 1
requires [3b.b.o.s + {2(29b.b.o.s + 4d.m.s)}] = 69 computations.
Fourthly, the search stemming from the path containing 14 consecu-
tive zero weight segments requires a maximum of (33b.b.o.s +
5 d jn.s) = 38 computations. Finally, the search stemming from those
branches opposite to the consecutive zero test-error weight segments

29

requires 14b.b.o.s + 2 (/' b.b.o.s + 3 djn.s) = 352. Therefore, the
i= 17

maximum number of computations for this case is

N* = 1+36 + 69 + 38 + 352 = 496
From the calculations presented above, it can be seen that the maxi-
mum number of computations for bt = 33 will not exceed 697. This
is an extremely small amount when compared with sequential decod-
ing, and is 4325 times less than the value of N(bt = 33) presented in
Section 3.

4.4 Value of/V* forfc, > 3 4

By extending the similar technique utilised in the preceding
Section and using the weight distribution of the initial code tree, we
can calculate the maximum number of computations required at
back-up distance greater than 33. However, let us at this point say
that we wish to restrict the number of computations in a back-up
search to be an absolute minimum value in order to have a very small
buffer. We must therefore modify the algorithm to cope with searches
at back-up distances of bt > 34. This is dealt with in the following
Section.

5 Searches atbt > 34 using permissible path decoding

Consider that we have a to with test-error weight |f| and
we are searching for a w' with test-error weight k ' | < U | . In this
case, w' and t' can be found from w' = to ®P, and t' = t ®P, where
P is one of a set of truncated patterns from the lower-half initial
code tree and is denoted a permissible path. Unfortunately, it is
not possible to store all the possible P of length > 34 because of the
large memory this would entail. This can be seen by examining one
of the weight conditions on P which is \P\ <2 \t\. In general, \t\max

increases with increasing search length/, and \P\max increases linearly
with \t\max and, therefore, the number of permissible paths satisfying
the weight condition \P\ < 2 \t\max could exponentially increase with
l̂ lmox- Fortunately, we are obtaining results that show that the
number of permissible paths can be reduced by simply limiting the
maximum weight of P, and that the effect of this path reduction on
coding gain is extremely small, even if the maximum weight of P is
reduced to \P\max <d(L), where d(L) is the minimum distance of the
code overZ, segments.3

Let us therefore evaluate the approximate amount of storage
needed to store a reduced set of P by estimating the weight structure
of the code.

Minimum distance and weight spectrum as a function of constraint
length Jias been studied by using.a sequential decoder simulator- to.
analyse the structure of different- half-.rate systematic codes.4 From"
this study we may conclude- that, among the good'codes, there is
very little difference in the weight distribution, and that the increase
in distance with constraint length is consistent with a relationship of
the form d(K) = C + 0-22 K, where C is a constant of about 2 to 4
and 0-22 is a factor equal to the asymptotic ratio of distance/con-
straint length for a half-rate code, based on the Gilbert bound. Table 3
shows a typical weight distribution for a half-rate code, where k indi-
cates the length of the path in segments and the value of rij indicates
the number of paths of weight j . For example, it can be seen that
there are 12 paths of length 33 which have weight 13. Also, the Table
shows that d(i)min = d(j + h)mln for / = 33, 37, 41, 45, 49 and 0 <
h < 3 . From the structure of convolution^ codes, we can estimate the
number of minimum-distance, paths for values k between those given in
the Table, by interpolation. Because 50% of code branch pairs stemming
from a given node have weight 0 and 2 and the other 50% have

Table 3
WEIGHT DISTRIBUTION OF THE LOWER-HALF INITIAL CODE TREE OF
A TYPICAL HALF RATE CODE

k

33
37
41
45

"13

12
"14

142
13

"15

848
144
12

4428
1019
170
16

«17

18066
5396
1103
172

"18

65294
24156
6629
1333

weights equal to 1, we would expect that nj(k = i) ^ 2/i;(/fc = / + 1) =*
4nj(k = i + 2)^Snj(k = i + 3), where / = d(i)min = d(i + h)min. We
can then estimate the number of minimum distance paths for 34 <
k<50. For example, as ni3(k = 33) = 12, «!3(A: = 34) = 6 etc.
Using this method, the total number of minimum-distance paths
works out to be in the region of 124. We may now consider two
ways of reducing the number of P stored for 34 < b* < 50.

In the first case we apply the general rules for permissible path
selection, that is, \P\ is odd and P2 =01 . In addition, we impose
the restriction \P\ <d(L = 50) = 17 that is, \P\ = 15 and 17 only.
From interpolation of the values in Table 3, and by knowing that
roughly 1-/16 of all paths of a given length end in 01, we can estimate
that the total number of paths needed to be sorted is several thousand.
Hence, a maximum of several thousand path-comparison operations
could be performed in search for a CJ' with \t'\ < \t\, via w' = w ® P.

In the second case, we restrict the selection of permissible paths in
such a way that (a) only minimum weight paths are stored and (b)
if the weight is odd P2 = 0 1 , or if the weight is even />, = 0. Only a
very few of the estimated 124 minimum-weight paths would satisfy
the above two conditions, indicating that an exceedingly small mem-
ory is sufficient to store the permissible paths in this case. The de-
coder would then proceed as follows whenever a back-up search in
the range 34 < b* < 50 is required:

(i) If d(b*)min is odd, Fig. 4a, a search will be carried out at b* =
b to find a t' with \t'\ =\t®P\< \t\, where the P are those stored
permissible paths with length equal to b segments long. When such
a t' is found, we will return to the b.b.o. Otherwise, go to (iii).

00 If d(b*)min = d(b* — l)min is even, Fig. 4b, a back-up search
at b* = b will be carried out as follows. We first denote f_, as the
portion of t without the last segment tx, which therefore has length
(b — 1) segments. The same applies to tlx and t'. We then search for
a t'-i with U'_, I = It'.i "e P\ < |f_, I where the P are those stored
permissible paths' with length (b - 1) segments. When such a rl, is
found, we extend it with the b.b.o. to derive a t[. If the b.b.o. results
in a t\ = 0, we accept t' as the minimum-weight path. Otherwise, go
to (iii). For the case of d{b\)min even, but d(b* - l)min is odd, co
is accepted as the minimum-weiglit path without any search.

(iii) We go to the next value of b*, or if this is (b*)max,we accept
w as the best path and return to the b.b.o. In the latter case, the
oldest segment of co that is output as the corresponding segment of
the transmitted sequence could be in error. If this happens, however,
the decoder will eventually receover.

K< 0

> ' •

b.b.o. results
in a t,=0

PROC. IEE, Vol. 126, No. 1, JANUAR Y1979

Fig. 5
Using permissible -path decoding to search for a t' with \t'\<\t\ at
34 <b* <50

a d(b*) is odd
t' exists if there is a P having b* segments long such that | / ' | = \t © P\ < | / |
b d(b*) =d(b* — 1) is even
t' exists if (i) there is a Phaving (b* — 1) segments long such that |r' , | = |f ® P\
and (ii) b.b.o. results in a f', = 0 " "'

33

6 Discussion

In this paper, we have analysed the computational and
storage requirements of the proposed minimum-distance decoding
algorithm. By adopting different search techniques at different
stages in the search procedure we obtain an efficient trade-off be-
tween coding parameter selection and memory requirement. We
can now discuss the various options available when implementing the
algorithm by dividing the back-up distance into three regions: bm,
bs and bp, where 0 < bm < bs < bp < L.

First, we would utilise direct mapping for all back-up searches at
distance b* <bm, because the maximum number of computations
N*(bt <^bm)max is only equal to 2. This is the direct-mapping or bm

region. The bigger the bm region, the smaller the buffer requirements,
but the larger the decoder path storage requirement.

Secondly, the region of back-up distance that uses the minimum-
distance search procedure is denoted the bs region, where bs>bm.
The bigger the value of bs, the bigger the buffer requirement, es-
pecially if bs >40.

Thirdly, we denote the long back-up distance region that requires
a larger buffer size, and that often causes buffer overflow in sequential
decoding, as the bp region. In this region, we use permissible path
decoding with path reduction on the total number of paths, and this
implies that the decoding is now suboptimum. Two different path-
reduction techniques are used: one with \P\<d(L)min and another
with \P) = d{k)min. The value of k used could be either L>k>bs

or L > k > bm depending on the trade-offs required. The \P\ =
d(k)min approach requires much smaller memory and much fewer
computations than the \P\ < d(L)min approach, but will result in
a slight loss of coding gain in the lower signal/noise-ratio region.

As has been shown, the minimum distance decoding at present
requires significantly less computational effort than sequential decod-
ing, resulting in a much reduced probability of dismissal. In a pre-
vious paper,s we proposed a bidirectional search for convolutional

codes which could achieve maximum-likelihood decoding with long
codes, and the decoding algorithm discussed in this paper could
easily be adopted in both the forward and backward decodings of
the bidirectional search procedure. Further computational analysis
is proposed for the bidirectional search and hybrid convolutional
coding system with the aid of involved computer-simulation study.

7 Acknowledgments

This work was completed while Dr. Ng was with the
University of Hull and before he joined the Aerospace Corporation.

8 References

1 NG, W-H.: 'An upper bound on the back-up depth for maximum likelihood
decoding of convolutional codes',IEEE Trans., 1976, IT-22, pp. 354-357

2 NG, W-H., and GOODMAN, R.M.F.: 'An efficient minimum-distance de-
coding algorithm for convolutional error-correcting codes', Proc. IEE,
1978,125, (2), pp. 97-103

3 NG, W-H., KIM, F., and TASHIRO, S.: 'Maximum likelihood decoding
scheme for convolutional codes', ITC Record, Los Angeles, California,
1976

4 FORNEY, D. Jr.: 'High-speed sequential decoder study'. Contract DAA
B07-68-C-0093, Codex Corp., 1968

5 NG, W-H.: 'Bidirectional search for convolutional codes', Proc. IEE, 1978,
125, (6), pp. 495-500

9 Appendix

Fundamental distance property

Convolutional codes are group codes, and if u> and co'
are paths in opposite halves of any A:-unit, then JC = u> ® to' is a code
path in the lower-half initial code tree. Therefore, the distance be-
tween half trees of any fc-unit depends only on k and not on which
fc-unit is chosen, and is equal to the minimum weight path in the
lower-half initial code tree.

34 PROC. IEE, Vol. 126, No. 1, JANUARY 1979

