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Abstract

We present a computational method, TuMult, for reconstructing the sequence of copy number changes driving

carcinogenesis, based on the analysis of several tumor samples from the same patient. We demonstrate the relia-

bility of the method with simulated data, and describe applications to three different cancers, showing that TuMult

is a valuable tool for the establishment of clonal relationships between tumor samples and the identification of

chromosome aberrations occurring at crucial steps in cancer progression.

Background
It is now widely accepted that cancers arise from an

accumulation of genetic and epigenetic alterations,

through which cells acquire the properties required for

malignancy [1]. These alterations - mutations, chromo-

somal aberrations and aberrant DNA methylation - are

inherently random and undirected, consistent with a

model of clonal evolution [2], in which advanced tumors

result from the clonal expansion of a single cell of origin

and the sequential selection of sublines with additional

alterations conferring a growth advantage. As a result,

the tumor finally detected in clinical conditions usually

displays a complex pattern of genetic alterations. As we

generally only have data for a single time point in can-

cer progression (the time of surgery), the standard

approach to elucidating the various steps in tumorigen-

esis has been to compare genetic alterations in tumors

from different patients, with cancers of different histolo-

gical stages and grades. Early alterations are defined as

changes observed at all stages, whereas late events are

alterations associated exclusively with advanced stages.

The first model of the accumulation of genetic events

was proposed by Fearon and Vogelstein, who described

a five-step model for the development of colorectal can-

cer [3,4]. With the advent of pangenomic copy number

analyses, computational methods were developed for

inferring models of cancer progression through the ana-

lysis of copy number changes in a set of tumors from

various patients [5-10]. However, attempts to find sim-

ple models for other types of cancer were hindered by

the high diversity of genetic alterations encountered,

even in tumors considered to be clinically and patholo-

gically homogeneous, due to the existence of several car-

cinogenesis pathways and the absence of validation on

real examples of tumor progression in a single patient.

A more straightforward approach to unraveling the

succession of steps in cancer development whilst taking

into account the diverse situations in which a healthy

cell may become cancerous is to analyze several samples

from a single patient at different locations or different

time points during the disease. In this way, it is possible

to reconstruct the sequence of alterations really occur-

ring in a patient, rather than a theoretical model gener-

ated by the comparison of heterogeneous samples [11].

Such analyses are possible only if several biopsy speci-

mens are available for the same patient, either because a

premalignant condition led to prospective biopsies [11],

or because recurrences or metastases have been

removed following excision of the primary tumor. Blad-

der cancer is a particularly useful model system for this

kind of study because of its high recurrence rate (50 to

60% of patients with non muscle-invasive bladder

tumors develop one or more recurrences after transure-

thral resection). Analyses of copy number alterations in

several metachronous or synchronous multifocal urothe-

lial tumors have been carried out with microsatellite
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markers [12,13] or by comparative genomic hybridiza-

tion (CGH) [14-17]. Based on chromosomal aberrations

common to several samples, the authors of these studies

were able to reconstruct the relationships between sam-

ples, and showed these tumors to have a monoclonal

origin.

Such analyses may be carried out manually when only

a few events are involved. However, automated

approaches are required to ensure that the maximum

benefit is gained from the most recent technologies for

high-definition pangenomic copy number analysis (> 106

probes on the most recent generation of arrays). We

describe here the first computational method, TuMult,

for reconstructing the lineage of the tumors, together

with the sequence of chromosomal events occurring

during tumorigenesis, based on the high-resolution

mapping of common breakpoints in the copy number

profiles of several samples from the same patient. We

demonstrate the reliability of the method, through the

analysis of simulated tumor progression data. We then

apply TuMult to three experimental data sets (BAC

array CGH and SNP data), corresponding to bladder

tumor recurrences, pairs of primary breast carcinomas

and ipsilateral recurrences [18], and metastatic samples

from different anatomic sites within individual prostate

cancer patients [19].

Results
Reconstructing the tumor progression tree from the

identification of common chromosome breakpoints

Two tumors descended from the same initial cancerous

cell generally have a number of genetic alterations in

common, these changes having occurred before the

separation of the two clones. They also display specific

genetic alterations that occurred independently in each

clone after their separation. A comparison of the altera-

tions in each clone can thus be used to reconstruct the

sequence of chromosomal events giving rise to each

tumor (Figure 1). Logically, clones separating later in

the tumorigenesis process should have more genetic

events in common than those separating earlier in this

process. This is the simple reasoning underlying our

methodology. The TuMult algorithm reconstructs the

tumor lineage tree from the leaves (tumors) to the root

(normal cell), by iterative grouping of the two closest

nodes in terms of chromosome breakpoints. Simulta-

neously, the copy number profile of each intermediate

node, corresponding to an ancestral tumor clone, is

reconstructed at each step of the algorithm (see Materi-

als and methods for details).

As chromosomal aberrations accumulate during tumor

progression, several aberrations may affect the same

region of the chromosome in succession. An aberration

common to two samples will therefore be missed if it is

partly affected by a subsequent aberration overlapping

the same region. However, common breakpoints remain

recognizable in most cases (as illustrated in Figure 2d),

making it possible to infer the initial genetic alteration

occurring in the common precursor of the samples.

Indeed, a breakpoint is only erased if a breakpoint of

the opposite sign occurs at the same location, and such

events are likely to be rare. We therefore decided to use

chromosome breakpoints, rather than chromosome

aberrations, for reconstruction of the tumor progression

trees.

The input data for TuMult are the discretized copy

number profiles of several tumors from the same

patient. Before reconstructing the tumor progression

tree, all the chromosome breakpoints identified in all

the samples from the patient are used to delineate

‘homogeneous segments’ (see Materials and methods),

and the copy number profile of each sample is repre-

sented as a breakpoint amplitude vector (Figure 2a),

representing the absolute values of shifts in copy num-

ber between segments. ‘Up’ (increase in copy number)

and ‘down’ (decrease in copy number) breakpoints are

differentiated in terms of their position in the amplitude

vector. A common breakpoint, defined as a breakpoint

of the same sign and at the same genomic location in

two samples, is thus easy to spot as a non-zero value at

the same position in the amplitude vectors for these two

samples.

At each step in the algorithm, the two nodes that

separated most recently in the tumor lineage, and which

therefore have the largest number of chromosome

events in common, are joined. We have introduced an

identical breakpoint score (IBS) for quantifying the simi-

larity of two profiles on the basis of their amplitude vec-

tors. This score is obtained by adding the amplitudes of

the breakpoints common to both profiles, weighted

down by the frequency of each breakpoint in a reference

data set. Very frequent breakpoints are more likely to

occur independently by chance in the two samples, and

are therefore less informative than rarer breakpoints.

This score is used at each step in the inference of the

tree to identify the two closest nodes (Figure 2b). The

copy number profile of the common precursor of the

two nodes is then inferred from the breakpoints they

have in common (see Materials and methods), and the

events specific to each tumor, deduced from the break-

points observed in only one of the two tumors, are asso-

ciated with the edges between each tumor and the

common precursor (Figure 2c). This process is iterated

until there is only one node left: the common precursor

of all the samples (Figure 2d). A node corresponding to

the normal cell is eventually added at the top of the

tree, together with an edge from the normal cell to the

common precursor of all samples (Figure 2e).
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Evaluation of the performance of the algorithm with

simulated data

The performance of the TuMult algorithm was evalu-

ated by generating simulated tumor progression trees

for various numbers of tumors, with different levels of

noise and normal cell contamination (see Materials and

methods). The trees were simulated by repeating three

steps: 1, picking up a node from the leaves of the tree

under construction; 2, adding two edges to this node,

with a random number of aberrations at random geno-

mic locations on each edge; 3, calculating the resulting

profiles for the two descending nodes. This process pro-

duces a tree of random topology, with random copy

number profiles for all the nodes. For each condition,

1,000 random trees were generated, and the copy num-

ber profiles of the leaves were used as an input for the

TuMult algorithm. The ability of Tumult to reconstruct

the correct tree topology was investigated by calculating,

in each set of conditions, the percentage of the recon-

structed trees with a topology identical to that of the

original simulated tree (Figure 3a). For trees with the

correct topology, the ability of TuMult to reconstruct

the correct copy number profiles for ancestral nodes

was evaluated by calculating the proportion of probes

with an incorrect copy number status in these nodes

(Figure 3b). The performance of TuMult was bench-

marked by analyzing the same simulated data by the

parsimony method [20]. This method was originally

designed for phylogeny reconstruction. It reconstructs

the tree with the minimum number of changes, each

species being characterized by a set of discrete charac-

ters. We adapted this method to the reconstruction of

tumor progression trees by considering each segment in

the copy number profile as a character, with a discrete

number of values (-2 to 2).

As the number of tumors increases, so does the num-

ber of successive steps in the simulated trees and,

hence, the probability of successive aberrations overlap-

ping the same region, or the same set of probes being

altered by independent events on different edges. As a

result, the performance of the parsimony method rapidly

decreases as a function of the number of tumors (Figure

3, upper panel). By contrast, the TuMult algorithm

inferred the correct topology in all simulations, whatever

Figure 1 Principle of tumor progression tree reconstruction. (a) CGH log ratio profiles of two bladder tumors from the same patient, with

color code as follows: homozygous deletions in blue, losses in green, normal regions in yellow, and gains in red. Chromosomes are delineated

by gray vertical lines and a schematic representation of chromosomes and centromeres is drawn below each profile. Chromosome breakpoints

common to both samples are indicated by dashed lines, with an arrow representing the sign of each breakpoint. For greater clarity, the

common breakpoints on either side of the one-BAC homozygous deletion at 9p21 are not drawn. This common aberration is instead circled in

each profile. (b) Tumor progression tree reconstructed for the two samples. Common breakpoints define early aberrations occurring in the

common precursor of the two samples. Chromosome aberrations specific to each tumor are placed on subsequent edges.
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Figure 2 Overview of the TuMult algorithm. (a) Discretized copy number profiles of three tumors from the same patient (yellow, ‘normal

copy number’; green, ‘loss’; red, ‘gain’). The eight breakpoints identified in the samples (dashed lines) divide the chromosome into seven

‘homogeneous segments’, A to G, in which copy number is constant in any sample. The profiles can be represented as amplitude vectors (see

Materials and methods), in which ‘up’ and ‘down’ breakpoints are distinguished by their position in the vector. A common breakpoint (gray

shading) appears as a non-zero value at the same position in the amplitude matrix. The frequency Fk of each breakpoint is calculated from a

reference data set of independent samples. (b) An identical breakpoint score (IBS), characterizing the similarity of two profiles in terms of

chromosome breakpoints, is calculated for each pair of samples, and the pair displaying the highest level of similarity is selected. (c) The copy

number profile of the common precursor of the two samples is reconstructed based on their common breakpoints, represented by dashed lines

and black arrows. Edges are added between the common precursor (CP) and the two nodes, labeled with the aberrations defined by their

specific breakpoints, represented by gray arrows. Note that a breakpoint may be both common and specific, if its amplitude is larger in one of

the samples, like the ‘down’ breakpoint between segments A and B in this example. (d) Steps (b) and (c) are iterated until there is only one

node left in the front. (e) A ‘normal cell’ node has been added above the common ancestor of all tumors.
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the number of tumors involved, with a very small

increase in error rate for the copy number profiles of

the internal nodes.

The impact of noise and normal cell contamination

were evaluated on simulated trees with five leaves. The

results of TuMult and the parsimony method were unaf-

fected by noise with a standard deviation below 0.10,

and normal cell contamination levels below 40%. The

performance of both algorithms then declined. The

decline was slightly faster for the TuMult algorithm,

which performed a little less well than the parsimony

method in terms of error rate at very high noise levels

(> 0.2; Figure 3b, middle panel) or at high levels of con-

tamination (> 60%; Figure 3b, bottom panel).

However, in the range of noise and contamination

expected for data of reasonably good quality, such as the

data analyzed below (noise < 0.11 and contamination

< 40%), the TuMult algorithm was much more efficient

than the parsimony method, giving the correct topology

in > 98% of cases, with an error rate in the internal node

profiles of < 1.6%.

Application to the study of bladder carcinogenesis

Five patients for whom two to four bladder cancer sam-

ples were available were analyzed with the TuMult algo-

rithm. In four cases, we had metachronous samples

obtained at different times during the course of the dis-

ease. In the remaining case (P3), we had samples from

different synchronous tumors removed from a cystect-

omy specimen (Table 1). The tumors from three

patients (P1 to P3) were analyzed with BAC arrays

(2,385 probes), and the tumors from two patients (P4

and P5) were analyzed with Illumina SNP arrays

(373,397 probes).

Figure 3 Evaluation of the performance of TuMult and the parsimony method with simulated data. Simulated data were generated to

evaluate the performance of TuMult and the parsimony method for the reconstruction of tumor progression trees. The performance of each

algorithm was assessed under each set of conditions by generating 1,000 random trees and calculating (a) the percentage of the reconstructed

trees with the correct topology, and (b), for the trees with the correct topology, the percentage of probes with incorrect copy number status in

the internal nodes. Simulations were carried out for different numbers of tumors (upper panel), various levels of noise in the data (middle panel),

and various proportions of normal cells in the samples (bottom panel). The number of tumors analyzed (between 2 and 6), together with the

levels of noise (between 0.03 and 0.11) and contamination (10 to 40%) estimated for our experimental data are represented by yellow areas.

Letouzé et al. Genome Biology 2010, 11:R76

http://genomebiology.com/2010/11/7/R76

Page 5 of 19



The hypothesis of a monoclonal origin for all samples

was supported by the large number of shared chromo-

some aberrations (Figure 4) in all patients except P5. In

P5, we found that only a small proportion of the aberra-

tions present in tumor S5_C were common to S5_A and

S5_B, raising questions about whether tumor S5_C

resulted from the same initial clone as S5_A and S5_B

but diverged early, or whether it had a different origin

but acquired a few similar events by chance.

Interestingly, sample S5_C was obtained from an inva-

sive tumor, whereas the other two samples from P5

were from superficial Ta tumors. Although S5_C was

detected less than 3 months after S5_B, our analysis

shows that these two samples displayed only a weak clo-

nal relationship, if any. Note that our findings regarding

clonality are highly consistent with clonality determina-

tions based on the partial identity score proposed by

Bollet et al. [18] (Additional file 1).

No linear evolution, in which one tumor could be

identified as the direct descendant of another tumor,

was observed. Instead, each tumor displayed a subset of

specific events occurring after the divergence of the

tumors. In some cases, the primary tumor may have

many more aberrations than the recurrence, as found

for S2_A and S2_B or S5_A and S5_B, consistent with

the finding of van Tilborg et al. [13] that tumor com-

plexity is not correlated with the chronological order in

which tumors are clinically detected. Thus, the aberra-

tions displayed by the primary tumor do not reliably

reflect the initial steps of tumor progression. By con-

trast, tumor progression trees make it possible to iden-

tify the events occurring at the start of tumorigenesis,

even from a set of very complex samples, as in patient

P3, in which a subset of ten early aberrations was identi-

fied, including two amplicons reported to be frequent in

bladder cancer [21-25], at 11q13.3 (Cyclin D1) and

8q22.2 (no known oncogene). The number of cancers

studied was too small for inference, with a satisfactory

level of statistical confidence, of the chronology of chro-

mosomal events in bladder cancer, but the most fre-

quently observed events on the initial edge of the tumor

progression trees were -9q (in four out of five tumor

progression trees), which is known to be one of the ear-

liest steps in most bladder cancers [26-28], and -11p (in

three out of five tumor progression trees). Finally, as the

aberrations observed on the same edge of a tumor pro-

gression tree presumably occurred during the same time

period, we investigated the co-occurrence of the most

frequent aberrations in bladder cancer on the 21 edges

of our five tumor progression trees (see Materials and

methods). Despite the limited statistical power of our

test, due to the small number of trees, -11p was shown

to occur on the same edge as -9q (P = 0.0025) and

–9p21.3 (CDKN2A tumor suppressor; P = 0.012) signifi-

cantly more frequently than would be expected by

chance. This suggests a possible synergic effect of these

three aberrations on tumor growth. Alternatively, the

co-occurrence of such events may have a mechanistic

cause, such as frequent chromosome rearrangement, as

between chromosomes 1 and 16 in Ewing sarcoma [29].

Application to the study of breast carcinogenesis

Fifteen of the 22 pairs of primary breast carcinomas and

ipsilateral recurrences studied by Bollet et al. [18] were

shown to have a monoclonal origin. We analyzed these

15 pairs with the TuMult algorithm. A linear evolution

was found in only one of the 15 pairs of tumors studied,

pair 14 (Figure 5a), all the other pairs displaying events

specific to the recurrence and events specific to the pri-

mary tumor (Figure 5b,c), consistent with the findings

of Kuukasjärvi et al. [30] regarding primary tumors and

metastases. A median of 17 aberrations occurred

between the normal cell and the common precursor, 14

aberrations occurred between the common precursor

and the primary tumor, and 26 aberrations occurred

between the common precursor and the ipsilateral

recurrence (Figure 5d). By contrast to what has been

observed for bladder cancer, the number of aberrations

specific to the recurrence was significantly higher than

the number of aberrations specific to the primary tumor

(P = 0.008). As all patients underwent radiotherapy and

Table 1 Clinical data for the 13 bladder samples analyzed

with the TuMult algorithm

Sample Patient Sex Stage Grade Surgery
time

Copy number
analysis

S1_A P1 M T2 G2 t0 BAC array-CGH

S1_B P1 M T1 G3 t0 + 21.8
months

BAC array-CGH

S2_A P2 M T3 G3 t0 BAC array-CGH

S2_B P2 M T3 G3 t0 + 2.1
months

BAC array-CGH

S3_A P3 M T4 G3 t0 + 157
months

BAC array-CGH

S3_B P3 M T4 G3 t0 + 157
months

BAC array-CGH

S3_C P3 M T4 G3 t0 + 157
months

BAC array-CGH

S3_D P3 M T4 G3 t0 + 157
months

BAC array-CGH

S4_A P4 F T1 G2 t0 SNP array

S4_B P4 F T1 G3 t0 + 14.4
months

SNP array

S5_A P5 M Ta G1 t0 SNP array

S5_B P5 M Ta G1 t0 + 7.8
months

SNP array

S5_C P5 M T3 G3 t0 + 10.3
months

SNP array

In the ‘Surgery time’ column, t0 refers to the time of occurrence of the

primary tumor.
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some also underwent chemotherapy between the pri-

mary tumor and the recurrence, it is unknown whether

the higher complexity of the recurrences resulted from

treatment or were intrinsic to the tumor progression

process.

The 15 tumor progression trees were used to discrimi-

nate between early and late events in breast cancer

development. We considered the 17 aberrations defined

as frequent in breast carcinoma by Hwang et al. [31],

determining the frequency of each of these aberrations

on each edge of the trees. We then used a two-tailed

Fisher’s exact test to determine whether each aberration

was associated with the early step (between the normal

cell and the common precursor) or the late step

(between the common precursor and the primary

tumor) of tumor progression. The edge between the

common precursor and the recurrence was not consid-

ered because some of the aberrations on this edge may

have resulted from radiotherapy. Five events were found

to be significantly associated with the early step: +1q,

-6q, -8p, +8q, and -16q (Table 2). Consistent with these

findings, +1q, -8p, +8q, and -16q were shown to be

among the most frequent aberrations (≥35%) in ductal

carcinoma in situ, a precursor of invasive breast carci-

noma [31]. The other two aberrations also shown to be

common in ductal carcinoma in situ by Hwang et al.,

Figure 4 Bladder tumor progression trees reconstructed with the TuMult algorithm. Thirteen samples from five patients were analyzed

with the TuMult algorithm to reconstruct the tumor lineage and sequence of chromosomal aberrations in each case. Aberrations are annotated

as follows: (–) homozygous deletions, (-) losses, (+) gains, (++) amplicons. Aberration boundaries are indicated in terms of chromosome

cytobands. Tumor progression trees with aberrations indicated in terms of homogeneous segments are available, together with the segment

description tables, from the TuMult web page [43]. Losses of chromosome arms 9q and 11p are underlined, along with homozygous deletions

of 9p21.3. The aberrations -9q and -11p were the most frequent early events in the tumor progression trees. In addition, -9q and -11p occurred

together on the same edge significantly more frequently than would be expected by chance (P = 0.0025). This was also true of -11p and

-9p21.3 (P = 0.012). Clinical details for each sample can be found in Table 1.
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-17p and +17q, were not identified as ‘early’ by our

approach. However, our findings do not conflict with

those of Hwang et al. for -17p, as this aberration was

found in the common precursor in 40% of our trees, but

was not considered to be significantly early because it

also occurred in the late step in 20% of the trees. No

alteration was found to be significantly more frequent in

the late step, consistent with the conclusion of Hwang

et al. that ductal carcinoma in situ is a genetically

advanced lesion, with a degree of chromosome altera-

tion similar to that in invasive breast cancers.

Application to the study of metastatic progression in

prostate cancer

In a recent article, Liu et al. [19] analyzed anatomically

separate tumors from men who died from metastatic

prostate cancer. They showed that although individual

metastases displayed specific aberrations, all the samples

Figure 5 Accumulation of chromosome aberrations during breast cancer progression. Fifteen pairs of primary breast carcinomas and

ipsilateral recurrences were analyzed with the TuMult algorithm. Patients are denoted as in the original article by Bollet et al. [18]. (a) In patient

P14, all the aberrations of the primary tumor were found in the recurrence, consistent with a linear evolution. (b) In patient P13, both the

primary tumor and the recurrence display specific events, implying that the recurrence was not directly descended from the primary tumor. (c)

The proportion of all the aberrations in the tree occurring before the common precursor (white), between the common precursor and the

primary tumor (blue hatched) or between the common precursor and the recurrence (red hatched) is presented for each of the 15 patients. P14

is the only example of linear evolution among the 15 trees. (d) Boxplots of the number of aberrations occurring at each step in tumor

progression trees. CP, in the common precursor; PT, between the common precursor and the primary tumor; IR, between the common

precursor and the ipsilateral recurrence. **P-value < 0.01, as determined in a two-tailed paired t-test.
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from a given patient had a monoclonal origin, and

maintained a signature copy number pattern of the pre-

cursor metastatic cancer cell. The Affymetrix Genome-

Wide Human SNP Array 6.0 data from this article, com-

prising the copy number profiles of 58 metastatic sam-

ples taken from different anatomic sites in 14 patients,

are available from the Gene Expression Omnibus data-

base [32]. We used these data to reconstruct the tumor

progression tree in each patient with the TuMult algo-

rithm. Consistent with the conclusion of Liu et al., each

tree displayed a common precursor of all samples, with

a substantial number of aberrations (median = 26.5

events).

We first used the tumor progression trees to look for

recurrent events at the onset of metastasis. In each tree,

the common precursor of all metastases represents the

ancestral clone from which all the metastases spread,

and is thus likely to harbor the crucial alterations trig-

gering metastasis. We determined the frequencies of

gains and losses within the genome in the metastatic

precursor clones of the 14 tumor progression trees (Fig-

ure 6). Thirteen aberrations were detected in more than

half the precursors, including gains at 7p (57%), 8q

(86%), 10q21 (50%), 12q (57%) and Xp22 (50%), and

losses at 5q21 (50%), 6q14-21 (64%), 8p21 (93%), 13q13-

22 (71%), 16q22-24 (57%), 17p13-11 (79%), 21q22 (50%)

and 22q13 (50%). Loss of 8p21 (in 13 out of 14 cases)

and gain of 8q24 (in 11 out of 14 cases) were the most

frequent events in our metastatic precursor clones, sug-

gesting that they may play a role in metastatic progres-

sion. Consistent with these observations are the findings

that gain of MYC (8q24) is associated with poor prog-

nosis in prostate cancer, and that the pattern of 8p21-22

loss with 8q24 gain is an independent risk factor for sys-

temic progression and cancer-specific death in this

disease [33].

For eight patients, the set of metastases included sev-

eral metastases from the same organ, either at the same

anatomic site (liver), or in the same type of organ, but

at different locations (lymph nodes and bone metas-

tases). We investigated whether metastases from a given

organ were more closely related to each other in the

trees than to metastases from other organs. The liver

metastases were systematically more closely related to

each other than to other metastases. They were always

derived from a single precursor (as in patient 21; Figure

7a), with specific events not found in the other metas-

tases (Figure 7b), forming a subtree in the tumor pro-

gression tree. This finding is significant, since the

probability of observing such a pattern in the three

patients by chance, calculated as the proportion of all

the possible tree topologies in which liver metastases

form a subtree, is only P = 0.003. By contrast, lymph

node and bone metastases were often found together

with other metastases in the tumor progression trees

(Additional file 2). One possible interpretation of the

late divergence of liver metastases is that specific altera-

tions are required for liver invasion. Thus, all liver

metastases would be likely to arise from a subclone of

the prostate tumor with the required alterations. Alter-

natively, the invasion of the liver by one clone may be

the limiting step for metastatic spread in this organ,

Table 2 Early or late occurrence of the most frequent aberrations in breast carcinoma

Aberration Occurrence in the common precursor
(CP)

Occurrence between the CP and the primary
tumor

Association with early/late
events

+1q 53% 13% 0.050a

-3p 7% 13% 1

-6q 40% 0% 0.017a

-8p 60% 0% 0.00070c

+8p 0% 7% 1

+8q 53% 0% 0.0022b

-9p 27% 0% 0.10

-11q 20% 7% 0.60

+11q 0% 7% 1

-14q 27% 7% 0.33

+16p 0% 7% 1

-16q 47% 7% 0.035a

-17p 40% 20% 0.43

+17q 20% 13% 1

-18p 7% 7% 1

-18q 27% 7% 0.33

+20q 0% 0% 1

aP ≤ 0.05; bP < 0.01; cP < 0.001; Fisher’s exact test.

Letouzé et al. Genome Biology 2010, 11:R76

http://genomebiology.com/2010/11/7/R76

Page 9 of 19



with all the metastases in the liver resulting from the

dissemination of a single clone successfully colonizing

the organ. We favor this hypothesis because the alterna-

tive explanation would probably result in lymph node

and bone metastases being closely related too, and

because no organ-specific alterations were identified by

Liu et al.

Discussion
In this paper, we introduce a new method for unraveling

the succession of chromosome aberrations occurring

during the process of carcinogenesis. It has recently

been shown that copy number data for several samples

from the same patient can be used to demonstrate clon-

ality [18], or to elucidate the biology underlying relapse

[34] or metastasis [19]. However, a computational

approach for automatically reconstructing tumor

lineages and the sequence of chromosomal events from

high-definition copy number data was lacking. Several

algorithms for reconstructing trees from discrete charac-

ter vectors or distance matrices have been developed in

phylogenetics [20,35-39], but particular features specific

to copy number data, in particular the cumulative nat-

ure of aberrations, made it necessary to develop a dedi-

cated algorithm.

One of the key features of the TuMult algorithm is

that it focuses on chromosome breakpoints, rather than

aberrations, making it possible to reconstruct the ances-

tral chromosomal events from profiles with several

imbricated aberrations. As a result, the performance of

TuMult is little affected by the complexity of the trees,

unlike the parsimony method, the performance of which

declines rapidly with the occurrence of overlapping

aberrations. However, reasoning in terms of breakpoints

introduces additional difficulties. First, an odd number

of common breakpoints may be identified for a given

chromosome. This occurs in the rare cases in which a

common breakpoint is erased by a subsequent break-

point of the opposite sign at the same location, or when

two independent aberrations share a common break-

point by chance. In this case, some of the information

required for inference of the sequence of events with

certainty is lacking, so TuMult reconstructs the scenario

involving the smallest number of changes. These rare

situations occur mostly in conditions in which a large

number of events have accumulated, accounting for the

slight increase in error rates with increasing numbers of

tumors. Second, the copy number profiles must be of

sufficiently high quality for the identification of common

breakpoints. With increasing noise and normal cell con-

tamination, the breakpoints may be shifted a few probes

away by segmentation algorithms. A tolerance threshold

was introduced to deal with such samples. However, as

increasing this threshold decreases the specificity of

common breakpoints, we recommend the discarding of

samples of very low quality (noise standard deviation >

0.12 or normal cell contamination > 50%) when analyz-

ing data with TuMult. If these precautions are taken,

the tumor progression trees reconstructed with TuMult

are highly reliable, as demonstrated from our analysis of

simulated data.

The applications of TuMult in cancer research are

numerous. First, TuMult makes it possible to go back in

time, reconstructing the genomic profiles of ancestral

tumor clones of particular interest that are not accessi-

ble by sampling. We have shown that, in both bladder

and breast cancers, recurrences do not generally arise

directly from the primary tumor. The primary tumor

thus displays many specific events and is poorly repre-

sentative of the initial tumor progression step. By

Figure 6 Frequency of gains and losses in the metastatic precursor clones of 14 patients with metastatic prostate cancer. Fourteen

patients with various metastatic samples taken from different anatomic sites were analyzed with the TuMult algorithm to generate the lineage

of the metastases and to reconstruct the copy number profile of the common precursor of all metastases in each patient. The frequency of

gains (in red) and losses (in green) in the genome were calculated for these 14 metastatic precursor clones.

Letouzé et al. Genome Biology 2010, 11:R76

http://genomebiology.com/2010/11/7/R76

Page 10 of 19



contrast, the common precursor of all samples usually

displays a small set of aberrations, even if all the tumors

studied have complex profiles. This strategy may be of

particular interest when trying to identify the initial

events in carcinogenesis, particularly for cancers in

which early lesions are rarely accessible. Another ances-

tral clone of particular interest was highlighted when

studying the metastatic process in prostate cancer. We

were able to reconstruct the copy number alterations of

the metastatic precursor clone giving rise to all the

metastases in each patient. A few recurrent aberrations

were identified in these clones. These aberrations poten-

tially play an important role in metastatic spread and

may be good predictors of metastasis in prostate cancer.

Second, tumor progression trees could be used in

integrative studies aiming to develop a general model of

Figure 7 Metastases spreading in a patient with prostate cancer. Five metastases were removed from patient 21 (data from Liu et al. [19]),

including three liver metastases (21-2a, 21-2b and 21-2c), one adrenal metastasis (21-3) and one bone metastasis (21-6). (a) Tumor progression

tree reconstructed with the TuMult algorithm. The three liver metastases have a longer clonal relationship than the other metastases, all being

derived from common precursor 3. (b) Copy number profiles of chromosome 2 in the five metastases. Four common aberrations, delimited by

dashed lines, occurred in the common precursor of all the samples. The seven circled aberrations are specific to the three liver metastases,

showing these tumors diverged later in the tumor progression tree. These aberrations appeared in common precursor 3, from which the liver

metastases are derived.
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tumor progression. In such studies, individual tumor

progression trees are much more informative than a col-

lection of individual samples, as the relative times at

which aberrations occurred is already known in each

patient. As a proof-of-concept, with only 15 breast

tumor progression trees, we were able to identify most

of the early aberrations previously described as charac-

teristic of ductal breast carcinoma in situ, the precursor

lesion of invasive breast cancers [31,40], despite our

data corresponding only to invasive samples. Conversely,

the analysis of cases with both superficial and invasive

tumors may facilitate identification of the genes respon-

sible for invasiveness, through studies of the aberrations

occurring between the common precursors and invasive

samples.

Finally, the tumor lineage per se may provide insight

into the spread of cancerous cells to different parts of

the organ, or different parts of the body. Analysis of the

copy number profiles of metastases in the data set from

the study by Liu et al. [19] revealed the relationships

between the metastases in the different organs, showing

that liver metastases always diverged from a single pre-

cursor clone.

One factor limiting the application of TuMult is the

need to have access to several tumors from the same

patient, either at different time points during the disease

(recurrences), or from different sites at a single time

point. Most tumors are thought to be heterogeneous,

consisting of a mixture of clones that have diverged

from the same initial cancer cell. The microdissection of

distant parts of a single tumor may therefore make it

possible to reconstruct the sequence of aberrations

occurring during the clonal development of the tumor,

providing access to early and late events, just like the

analysis of samples from different tumors [41]. Using

ultra-deep sequencing, Campbell et al. [42] were able to

infer the interrelationships between subclones in two

tumors. Most genomic analyses to date have focused on

the search for similarities in large tumor data sets, with

the aim of identifying the fundamental mechanisms of

cancer. The next step may be to dig deeper into the

dynamic pathways of cancer progression by analyzing

the unique succession of changes driving carcinogenesis

in each patient.

Conclusions
We report here a novel computational approach for

unraveling the successive copy number alterations driv-

ing carcinogenesis. We have shown that TuMult is

highly reliable for reconstructing both tumor lineage

and the copy number profiles of ancestral tumor clones,

significantly outperforming the parsimony method.

TuMult is a new tool of great interest for researchers

seeking to develop a profound understanding of the

development of cancer from the analysis of several sam-

ples. The annotated R code of the program is provided,

together with detailed user instructions and examples of

formatted data [43].

Materials and methods
Patients and bladder tumor samples

We obtained 28 bladder tumor samples from patients

admitted between 1993 and 2002 to the Henri Mondor

Hospital. Thirteen of these samples were multiple

tumors from five patients (two to four metachronous or

synchronous samples per patient; Table 1). The other 15

samples came from 15 independent patients (Additional

file 3) and were used as the reference data set for esti-

mation of the frequency of breakpoints at each location

in the bladder SNP data. All subjects provided informed

consent and the study was approved by the ethics com-

mittee of Henri Mondor Hospital. Flash-frozen tissue

samples were stored at -80°C immediately after transur-

ethral resection or cystectomy. DNA was extracted with

the cesium chloride [44] or proteinase K/phenol/chloro-

form method. DNA purity was assessed by determining

the ratio of absorbances at 260 and 280 nm. DNA con-

centration was determined with a Hoechst dye-based

fluorescence assay [45].

BAC array CGH

Eight bladder tumors from three patients were analyzed

with HumArray 2.0 arrays, consisting of 2,385 BAC

clones covering the human genome with an average

resolution of 1.3 Mb, as previously described [46]. These

arrays were obtained from the UCSF Cancer Center

Array CGH Core Facility. Probes were labeled and

hybridization was carried out as described elsewhere

[47]. Images were analyzed with SPOT 2.0 software [48].

Poor-quality spots were removed in a pre-processing

step: only spots with a reference signal intensity above

25% of the background reference signal (the 4,6-diami-

dino-2-phenylindole (DAPI) signal) were considered reli-

able. Spots located in zones of spatial bias were ignored

[49]. No value was assigned to 25 BACs in the data, and

these BACs were therefore eliminated from the analysis.

Each BAC was assigned ‘gain’, ‘normal’ or ‘loss’ status,

using the GLAD segmentation algorithm [50]. BACs

with log2 ratios below -0.8 and over 0.8 were assigned

‘homozygous deletion’ and ‘amplification’ status,

respectively.

SNP arrays

We analyzed 20 bladder tumors, comprising 15 indepen-

dent tumors and 5 multiple tumors from two patients,

with Illumina HumanCNV370 Genotyping BeadChips

(Illumina Inc.). Hybridization was performed by Integra-

Gen (Evry, France), according to the instructions
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provided by the array manufacturer. Fluorescent signals

were imported into BeadStudio software (Illumina Inc.)

and normalized. The normalized fluorescence signals for

a sample were compared with the signal intensities of a

set of reference genotypes in Beadstudio software, and

the log2 ratios between the sample and reference signals

(log R ratios (LRR)) were calculated as previously

described [51]. In addition, the B-allele frequency (BAF)

for the sample was estimated, based on the reference

genotype clusters [51]. Segmentation was carried out

with the BAFsegmentation algorithm [52,53], with

amplitude (ai.thr) and size (ai.size) thresholds for signifi-

cant allelic imbalance detection set at 0.53 and 10,

respectively. As this method requires heterozygous

SNPs, the × and Y chromosomes of the male patient

were segmented based on LRR, using the CBS algorithm

[54] (R package DNAcopy [55]) with default settings

except for the significant level for accepting change-

points (a), which was set to 0.001, and a size threshold

of 10 SNPs for significant aberrations, which was added

to ensure concordance with the smoothing for other

chromosomes. A discrete copy number status was then

assigned to each segment, based on its median LRR

value. The zero level for normal copy number segments

was first determined as the median LRR in regions of

allelic balance, as previously decribed [56]. Segments

with a median LRR more than 0.05 above the zero level

were assigned ‘gain’ status and segments with a median

LRR more than 0.5 above the zero level were assigned

‘amplified’ status. Segments with a median LRR more

than 0.05 below the zero level were assigned ‘loss’ status

and segments with a median LRR more than 0.5 below

the zero level were assigned ‘homozygous deletion’ sta-

tus. SNP data for breast samples were kindly provided

by Bollet et al., and the details of array processing and

copy number alteration determination for these samples

are provided in the corresponding article [18].

Generation of tumor lineage trees

Overview of the method

The clonal development of several tumors in a patient

can be represented as a rooted tree, where the root

represents the normal cell (NC), the leaves are the

tumors removed from the patient, and the intermediate

nodes are the common precursors of the observed sam-

ples. We want to reconstruct the most likely tumor line-

age and to infer, simultaneously, the copy number

profiles of the intermediate nodes. In other words, we

want to reconstruct the copy number profiles of the

common ancestors of the tumors. We use a bottom-up

agglomerative strategy to do this. Let the Front be the

set of nodes with no upstream edge at a given step of

tree reconstruction. Initially, the Front is the set of

tumors removed from the patient. At each step of the

algorithm, the two closest nodes in the Front, in terms

of breakpoints, are joined. The copy number profile of

their common precursor is inferred, and the common

precursor replaces the two nodes in the Front. This step

is iterated until the Front contains only one node: the

common ancestor of all samples.

Definition of breakpoint and amplitude vectors

We define a chromosome breakpoint as a change in

copy number status between two consecutive probes.

Chromosome breakpoints are also defined at chromo-

some ends, where copy number differs from the normal

value. Before tumor lineage reconstruction, each chro-

mosome is divided into ‘homogeneous segments’ delim-

ited by all the breakpoints identified in the samples

from the patient. A segment is thus a continuous set of

probes for which copy number is constant in any sample

from the patient. Let N be the number of segments

delimited on the chromosome. For each sample, the

copy number profile on the chromosome can be repre-

sented as a vector s ε {-2, -1, 0, 1, 2}N where sj repre-

sents the copy number of segment j (-2, homozygous

deletion; -1, loss; 0, normal; 1, gain; 2, amplification). A

breakpoint vector b is defined from s as follows:

b s

b s s i N

b s

i i i

N N

1 1

1

1

2

=
= − ≤ ≤

= −
−

+

,

There is therefore a breakpoint between segments i -

1 and i if, and only if, bi ≠ 0. Each breakpoint is charac-

terized by its sign: ‘up’ if bi > 0, ‘down’ if bi < 0, and its

amplitude |bi|.

We need to consider ‘up’ and ‘down’ breakpoints sepa-

rately. We have therefore simplified the notation, defin-

ing breakpoint amplitude vector a as follows:

a b if b

a b if b

i i i

N i i i

= ≥
= − ≤+ +

0

01

The amplitude vectors of all chromosomes are then

joined end-to-end to form the amplitude vector of the

whole profile. In the following, a refers to the amplitude

vector of the whole profile of the tumor. The generation

of the segment, breakpoint and amplitude vectors is illu-

strated in Additional file 4.

Note that the functions associating a segment vector s

with a breakpoint vector b and a breakpoint vector b

with an amplitude vector a are bijections. In other

words, any amplitude vector corresponds to a unique

breakpoint vector and a unique segment vector.

Biological viability of a chromosome breakpoint vector

All aberrations involve the occurrence of two break-

points (one ‘up’ and one ‘down’), so a breakpoint vector

b represents a biologically viable chromosome only if
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‘up’ and ‘down’ breakpoints are balanced:

bi
i

N

=

+

∑ =
1

1

0

This condition is verified by definition in the tumor

breakpoint vectors, but it must be checked for each

chromosome when reconstructing the copy number

profiles of common precursors.

Definition of a common breakpoint

We define a common breakpoint of tumors Ti (repre-

sented by its breakpoint amplitude vector ai) and Tj

(represented by vector aj) as a breakpoint of the same

sign observed at the same location in the two samples,

that is, belonging to k a ak
i

k
j/ ,> >{ }0 0 . An adjustable

tolerance threshold was introduced to recognize as com-

mon breakpoints, breakpoints located very close

together, for which the slight difference in location

probably resulted from small discrepancies in the

smoothing process. For bladder samples, the 95th per-

centiles of the errors in the location of the breakpoints,

estimated by permuting the markers within each seg-

ment and re-segmenting 100 times, were used as toler-

ance thresholds. The Bollet and Liu data were already

discretized. We therefore used a threshold of ten probes

for these data sets, consistent with the thresholds esti-

mated for our bladder samples analyzed with SNP

arrays.

Identical breakpoint score

At each step of the algorithm, the two nodes that sepa-

rated most recently in the tumor lineage are joined. As

chromosome aberrations accumulate during tumor

development and are passed on to daughter cells, we

can assume that the later two tumor clones separate,

the more chromosome breakpoints they will have in

common. We defined an identical breakpoint score

(IBS) to quantify the number of breakpoints common to

two nodes.

Let us consider two nodes, Ni and Nj, characterized by

their amplitude vectors, ai and aj. We first define the

common amplitude vector aij as the amplitude vector of

breakpoints common to nodes Ni and Nj:

a a ak
ij

k
i
k
j= ( )min ,

As very frequent breakpoints are more likely than rare

breakpoints to occur independently, by chance, on sev-

eral occasions, the added value of each breakpoint is

weighted down according to its frequency Fk in a refer-

ence data set of independent tumors, as proposed by

Bollet et al. [18]. Three data sets were used to estimate

the frequencies of ‘up’ and ‘down’ breakpoints at each

location: 50 previously published bladder tumors for

BAC arrays [46], a set of 15 independent bladder tumors

for SNP arrays, and the same set of 44 control samples

used by Bollet et al. for breast tumors.

The IBS is simply the number of breakpoints common

to the two nodes, weighted by their frequency in the

reference data set:

IBS a a a Fi j
k
ij

k

k

,( ) = −( )∑ 1

Similarly, we define the distance between two nodes as

the number of breakpoints differing between the two

profiles, weighted by their frequency in the reference

data set:

D a a a a Fi j
k
i

k
j

k

k

,( ) = − −( )∑ 1

At each step of the algorithm, the two nodes from the

Front with the highest IBS are joined. If several pairs

have the same IBS, the pair with the smallest distance is

chosen.

Generation of the copy number profile of the common

precursor of two samples

At each step of the algorithm, the profile of the com-

mon precursor of the two nodes joined, CP(ai,aj), is

inferred. This profile is reconstructed chromosome by

chromosome, through the identification of breakpoints

common to the two nodes. In this paragraph, notations

a and b therefore refer to the amplitude and breakpoint

vectors of a single chromosome.

First, the common breakpoints are identified by com-

puting the common amplitude vector of the two nodes,

aij, as described above:

a a ak
ij

k
i
k
j= ( )min ,

The balance between the ‘up’ and ‘down’ breakpoints

in this vector is then checked, because an unbalanced

profile (for example, one common breakpoint ‘up’ and

no common breakpoint ‘down’) does not define a viable

copy number profile. This is done by inferring the com-

mon breakpoint vector bij corresponding to aij, and

checking the balance between ‘up’ and ‘down’ break-

points by calculating the sum δ of all the breakpoints

affecting the chromosome:

 = ∑bk
ij

k

Two situations emerge at this point. First, if δ = 0, ‘up’

and ‘down’ breakpoints are balanced, the amplitude
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vector of the common precursor is given directly by:

CP a a ai j ij,( ) =

Second, if δ ≠ 0, ‘up’ and ‘down’ breakpoints are unba-

lanced. The set of breakpoints in the common precursor

does not define a viable copy number profile and

requires correction (see next section) to restore the

equilibrium.

Correction of unbalanced chromosomes

In rare cases, the number of common breakpoints of each

sign (’up’ and ‘down’) differ for a given chromosome:

 = ≠∑bk
ij

k

0

There are two possible reasons for this (Additional file

5). In the first case, if several aberrations appearing

independently in several lineages have, by chance, a

breakpoint in common, this breakpoint will be consid-

ered as a common breakpoint and incorporated into the

common precursor without a counterpart of the oppo-

site sign, leading to an unbalanced profile. In this case,

the actual profile of the common precursor is obtained

by removing the false common breakpoint. In the sec-

ond case, if two aberrations successively affect two

neighboring segments, a breakpoint may be erased by

the occurrence of a breakpoint of the opposite sign at

the same location. One of the breakpoints defining a

common aberration may therefore be missing in one of

the two descendant nodes, leading to an unbalanced

profile. In this case, the actual profile of the common

precursor is obtained by adding the breakpoint that has

been erased to the profile of the common precursor.

Thus, to restore breakpoint equilibrium in the com-

mon precursor, we need to either remove a breakpoint

of sign(δ) from the common breakpoint vector (the first

case), or add a breakpoint of sign(-δ) chosen from the

breakpoints specific to one of the two samples (the sec-

ond case). As each choice generates a different common

precursor and a different sequence of events for the

chromosome considered, each possible modification is

automatically evaluated in terms of the sequence of

events it would generate. The breakpoint correction that

does not lead to an impossible event (such as a segment

deviating from the set of authorized values {-2, -1, 0, 1,

2}) and minimizes breakpoint usage is selected (Addi-

tional file 6), and the status of the breakpoint is cor-

rected in the profile of the common precursor.

The particular case of amplicons

Amplicons are known to originate from mechanisms

different from those responsible for generating losses

and gains, including unscheduled DNA replication or

inverted duplications [57]. In particular, amplicons can-

not be considered as an accumulation of gains targeting

the same region. We therefore treated amplicons sepa-

rately from other aberrations. Once the copy number

profile of the common precursor has been recon-

structed, amplicons common to both descending nodes

are incorporated into it, and amplicons specific to one

of the descendant nodes are placed on the relevant edge.

Visualization of the trees

The tumor progression trees produced by the TuMult

algorithm were exported in .dot format. Images were

produced from the .dot files with the open source graph

visualization software Graphviz [58].

Analysis of simulated tumor progression trees

Simulation of tumor progression trees

We implemented an algorithm to generate simulated

tumor progression trees to validate the reconstruction

methods. First, a common precursor is created from the

‘Normal tissue’ node. Then, at each step of the algo-

rithm, a node is randomly chosen in the front, from

which two new nodes are created, until the required

number of tumors is obtained. The profile of each new

node is determined as follows: 1, random selection of

the number nab of aberrations to add, between 3 and 15

(in line with the numbers observed in experimental

trees); 2, random selection of nab pairs of ‘up’ and

‘down’ breakpoints; 3, calculation of the copy number

profile obtained by adding the aberrations thus defined

to the previous node. Aberrations that would lead to an

impossible copy number (out of {-2, -1, 0, 1 2}) are dis-

carded and replaced by a new randomly generated aber-

ration to avoid the creation of meaningless profiles. This

algorithm was used to simulate tumor progression trees

of random topologies, with various numbers of tumors.

We obtained realistic copy number profiles by setting

the number of probes to 2,360, as in our reference CGH

data set for bladder tumors, and weighting the random

sampling of breakpoints according to their frequency in

this reference data set.

Effects of noise and normal cell contamination

We investigated the impact of noise in the log ratio and

normal cell contamination on the performance of the

method by generating simulated log ratio signals from

the discrete copy number profiles of each node. For

each copy number status N, the theoretical log ratio

value was calculated as a function of the percentage C

of normal cells in the sample:

log logratio
N C C

=
× −( )+ ×









1 2

2
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Noise was then simulated by adding random values

drawn from a normal distribution with a mean of 0 and

a standard deviation of S. Simulations were carried out

for values of C from 0 to 0.8 (80% of normal cells in the

sample), and values of S from 0 to 0.2. The values of S

in our experimental data, estimated as the standard

deviation of the difference between raw and smoothed

log ratios after segmentation, were between 0.03 and

0.11. The percentage C of normal cells in each sample

was between 10 and 40%, as assessed by hematoxylin

and eosin staining of the histological sections adjacent

to those analyzed.

Reconstructing tumor progression trees with the parsimony

method

The parsimony method [39] identifies the tree with the

minimum number of changes from a set of leaves char-

acterized by discrete character vectors. It could therefore

be used to benchmark the TuMult algorithm. For this

purpose, each tumor profile was divided into N ’homo-

geneous segments’, as in the preliminary step for the

TuMult algorithm, and represented as a vector s ε {-2,

-1, 0, 1, 2}N where sj is the copy number of segment j.

These discrete vectors were used as an input for the

pars program of the Phylip package [20].

Evaluation of the reconstructed tree

We evaluated the two methods by comparing each

reconstructed tree with the original simulated tree. We

first checked that the topology of the reconstructed tree,

and hence the inferred tumor lineage, was identical to

that in the simulated tree. We did this by calculating

the Robinson-Foulds distance [59] between the two

trees with the treedist program in the Phylip package

[20]. A distance of zero indicates that the trees are iden-

tical. For each simulation data set, we calculated the

percentage of the trees correctly inferred by each algo-

rithm (Robinson-Foulds distance = 0). Then, for the

trees with the correct topology, we checked that the

copy number profiles of the internal nodes (correspond-

ing to ancestral clones) were correctly reconstructed.

We did this by calculating, for each reconstructed tree,

the proportion of probes per node with a discrete copy

number status different from that in the original simu-

lated tree.

Determination of co-occurring events in bladder

carcinogenesis

If two aberrations are found on the same edge of a

tumor progression tree, they must have occurred in the

same time interval. Therefore, if two aberrations have a

strong synergistic effect on tumor growth, they would

be expected to be found on the same edge of a tumor

progression tree significantly more frequently than

would be expected by chance. We defined a set of

aberrations frequently observed in bladder cancer on the

basis of their frequency in the reference data set of 50

samples. Gains and losses were considered to be fre-

quent in bladder cancer if they occurred in more than

20% of samples, whereas amplicons and homozygous

deletions were considered frequent if they occurred in

more than 10% of samples. Only aberrations found in at

least three edges in the tumor progression trees were

retained for further analysis. The co-occurrence of each

pair of aberrations was then assessed by Fisher’s exact

tests, with correction for multiple testing, as previously

described [60], using the q-value package in the R com-

puting environment. The false discovery rate was set at

15%.

Identification of early and late events in breast

carcinogenesis through the integration of individual

tumor progression trees

The tumor progression trees obtained from 15 pairs of

primary breast carcinomas and ipsilateral recurrences

were used to discriminate between early and late events

in this disease. These trees contain three edges: one

edge from the normal cell to the common precusor

(CP), one edge from the CP to the primary tumor, and

one edge from the CP to the recurrence. We therefore

defined an aberration as early if it occurred between the

normal cell and the CP, and as late if it occurred

between the CP and the primary tumor. Aberrations

occurring between the CP and the recurrence were not

considered because they may have resulted from radio-

therapy administered between the primary tumor and

the recurrence. The 17 chromosomal aberrations identi-

fied as common in breast carcinoma by Hwang et al.

[31] were analyzed. We first calculated the frequency of

each aberration as an early or late step in the 15 tumor

progression trees. As these aberrations span whole chro-

mosome arms, we considered an aberration to be pre-

sent on an edge if 60% of the probes on this arm were

aberrant. Finally, we used two-tailed Fisher’s exact tests

to determine whether each aberration was significantly

more present in the early or late step of carcinogenesis.

Availability

The TuMult algorithm was implemented in the R lan-

guage. The annotated code is provided, together with

detailed instructions for use and examples of formatted

data [43]. CGH and SNP data for the 78 bladder tumors

used in this study (CGH data comprises 8 multiple

tumors and the reference data set of 50 samples; SNP

data comprises 5 multiple tumors and the reference

data set of 15 samples) are available through Gene

Expression Omnibus [32] accession number [GEO:

GSE19195].

Letouzé et al. Genome Biology 2010, 11:R76

http://genomebiology.com/2010/11/7/R76

Page 16 of 19



Additional material

Additional file 1: Consistency of tumor progression trees and the

partial identity score for sample clonality. The partial identity score

was developed by Bollet et al. [18] to determine whether two samples

have a monoclonal origin. We investigated the consistency of our results

with this approach by investigating the clonality of our bladder samples

with the partial identity score (top), and reconstructing tumor

progression trees for the pairs of breast samples characterized as non-

clonal in the paper by Bollet et al. (bottom). (a) The partial identity

scores were calculated for each pair of bladder tumors analyzed. The

distributions of these scores for pairs of samples from different patients

were calculated from the reference data sets (left, BAC array data; right,

SNP data). The 95% quantile, used by Bollet et al. as the threshold for

classifying a pair as monoclonal, is indicated as a red line. The only pairs

of samples from the same patient with a partial identity score below the

threshold were those involving sample S5C. Detailed numbering of pairs

for CGH data: 1, S1A-S1B; 2, S2A-S2B; 3, S3A-S3D; 4, S3B-S3D; 5, S3C-S3D;

6, S3A-S3B; 7, S3A-S3C; 8, S3B-S3C. Detailed numbering of pairs for SNP

data: 1, S4A-S4B; 2, S5A-S5B; 3, S5A-S5C; 4, S5B-S5C. (b) The tumor

progression tree obtained for the pair of breast tumors P2, classified as

non-clonal by Bollet et al. TuMult identified no common events between

the samples. (c) Boxplots of the number of aberrations occurring at each

step in the tumor progression trees obtained for true recurrences (left) or

new primary tumors (right). CP, in the common precursor; PT, between

the common precursor and the primary tumor; IR, between the common

precursor and the ipsilateral recurrence. Very few events are found in the

common precursors of the trees for new primary tumors, consistent with

their low partial identity scores.

Additional file 2: Tumor progression trees of metastatic prostate

cancers with several metastases from the same anatomic site or

type of organ. (a) Tumor progression trees of three patients with

several metastases from the same anatomic site (liver). Liver samples

were always more closely related to each other than to metastases from

the other organs. In each tree, the liver samples are derived from a

single common precursor, with a substantial number of events not

encountered in the other samples. (b) Tumor progression trees of six

patients with several metastases from the same type of organ but at

different anatomic sites (lymph node and/or bone metastases). The

tumors from the same type of organ are associated in P24, P28 and P30,

but not in P17, P32 and P33.

Additional file 3: Clinical data for the 15 bladder samples

constituting the reference data set for bladder SNP data.

Additional file 4: Segmentation of the profiles and generation of

the amplitude vectors. Generation of the amplitude matrix. (a)

Discretized copy number profiles of three tumors for a given

chromosome (yellow, ‘normal copy number’; green, ‘loss’; red, ‘gain’). The

four breakpoints identified in the samples (dashed lines) divide the

chromosome into five ‘homogeneous segments’. (b) The profiles are

equally well represented in a segment matrix, in which the copy number

for each segment and each sample is encoded by an integer (-1, loss; 0,

normal; 1, gain), in a breakpoint matrix, in which each value represents

the difference in copy number between two adjacent segments, or an

amplitude matrix, in which ‘up’ and ‘down’ breakpoints are distinguished

by their position in the vector. A common breakpoint (gray regions)

appears as a number of the same sign at the same position in the

breakpoint matrix, or as a non-zero number at the same position in the

amplitude matrix.

Additional file 5: Two scenarios lead to an unbalanced chromosome

in the common precursor. (a) Left: the two tumors independently

acquire two different aberrations with a breakpoint in common. Right:

the ‘up’ breakpoint between segments B and C in the common

precursor is lost in tumor 2 due to the loss of the neighboring segment

C. (b) In both cases, only one breakpoint remains common to both

samples, resulting in an unbalanced chromosome for their common

precursor.

Additional file 6: Correction of an unbalanced chromosome. Detailed

procedure of the correction of chromosomes with unbalanced ‘up’ and

‘down’ breakpoints.

Abbreviations

BAC: bacterial artificial chromosome; CGH: comparative genomic

hybridization; CP: common precursor; IBS: identical breakpoint score; SNP:

single nucleotide polymorphism.
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