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Analysis of the Coverage of Tunable Matching

Networks for the Imperfect Matching case
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Abstract—Since conjugate (perfect) matching of complex loads
and sources over a wide frequency band is not possible, imperfect
matching is necessary. In this work, formulas for the coverage
of tunable matching networks for imperfect matching have been
derived for the first time. It has been found that the coverage area
in this case expands beyond the perfect matching area with more
circles required to define the coverage. Analytical expressions for
the centers and radii of these circles have been derived for the
first time. The theoretical analysis has been provided for the T
and Π networks and verified by circuit simulation and measured
data.

Index Terms—Smith chart, tunable matching networks

I. INTRODUCTION

THE fifth generation (5G) of mobile communications

promises considerably higher data-rates as compared to

the currently available fourth generation (4G) systems. The

utilization of the spectrum below 6 GHz needs to be optimized

to accommodate such high rates, which inevitably calls for

tunable transceivers. A tunable matching network (MN) is at

the heart of such tunable systems.

The primary design metric of tunable MNs, is the coverage

area, which is defined as the set of all complex impedances

that can be matched to a specific load (typically 50 Ω) when

the tunable elements (variable capacitors) are swept across

all combinations (the full dynamic range of the network).

Since there are many different topologies of tunable MNs,

it is important to have rigorous theoretical formulas to define

and compare the coverage of these networks.

In [1]–[5], simulations have been used to define the coverage

areas of tunable MNs. However, they do not indicate the

limits of the tuning elements, and do not provide any phys-

ical insight about the networks. In [6], theoretical formulas

have been presented; however, they provide the coverage

for discrete impedance points (states) and do not give the

continuous coverage. Even though the formulas in [7], [8]

define the boundary area for the full dynamic range, they are

presented for the complex rectangular plane, not the Smith

chart (reflection coefficient plane). The power of the Smith

chart as a visualization tool for the design and analysis of

radio frequency (RF) systems is undoubted [9]. Therefore, in
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Fig. 1. Matching an arbitrary load to an arbitrary source with a tunable MN.
Γin is the reflection coefficient when the source is not connected, while s is
the power wave reflection coefficient when the source is connected.

our previous works [10], [11], we have derived formulas for

the coverage area on the Smith chart. These formulas, however,

only define the coverage for the limited case of perfect

matching (when the reflection coefficient is exactly zero),

which is suitable only for narrowband matching. For practical

applications requiring wideband operation (5G applications),

imperfect matching must be considered [12]. Another example

is power amplifiers where desired impedances are defined as

load-pull contours. Since the optimal efficiency and output

power contours are typically different, a compromise has to

be made and a degree of mismatch is needed.

In this work, we have extended the formulas of [10] to de-

fine the boundary area when the load is imperfectly matched to

the source. Either the magnitude of the power wave reflection

coefficient or the transducer power gain (GT ) can be used

to specify the amount of mismatch between the source and

load. The theoretical formulas presented here are compact;

therefore, convenient for use in CAD tools and provide a useful

instrument for the analysis of wideband tunable MNs.

II. THEORY

The coverage of a tunable MN can be defined as the set

of all complex impedances that can be matched to a specified

load at a particular frequency. A typical scenario is illustrated

in Fig. 1, where an arbitrary load is matched to an arbitrary

source through a lossless network. In this work, the load

is assumed to be real with the same value as the system

impedance; however, the presented formulas can also be used

for complex load matching if the reactive part of the load is

absorbed by the MN.

If the admittance looking towards the input of the MN (Yin)

equals the conjugate of the admittance looking towards the

source (Y ∗

s ), the source will be perfectly matched (also known
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Fig. 2. The coverage area of a MN with a single tunable element. The perfect
matching case correspond to the red solid line. The shaded area corresponds
to imperfect matching with ρ ≤ 0.3 (-5.2 dB). The blue circles correspond to
different values of the tunable capacitor C. This graph is plotted with Cmin

= 0.2 pF and Cmax = 10 pF.

as conjugate matching). The coverage of the tunable MN for

this case has been analysed in our previous works [10], [11].

In this work, the coverage is defined as the set of all complex

source impedances, which can be imperfectly matched to a

resistive load with a specific transducer power gain (GT ). The

analysis of [10] is, therefore, a special case with GT = 1. The

analysis is started by the power wave reflection coefficient (s)

at plane A-A′, which is given by [13]

s = ρ∠θ =
Zs − Z∗

in

Zs + Zin
=

|Yin|
2
− YinYs

|Yin|
2
+ Y ∗

inYs

, (1)

where (.)∗ denotes the complex conjugate, ρ and θ are the

magnitude and angle of the power wave reflection coefficient,

respectively. ρ ∈ (0, 1) ⊂ R corresponds to the the amount

of mismatch, while θ ∈ (0, 2π) ⊂ R is an arbitrary angle. It

is worth mentioning that Γin and Γs in Fig. 1 are reflection

coefficients (not power wave reflection coefficients) and are

calculated as

Γin/s =
Y0 − Yin/s

Y0 + Yin/s
. (2)

If the MN is lossless, the transducer power gain is

GT = 1− ρ2. (3)

To calculate the boundary for the imperfect matching case

we need to find all the values of Y ∗

s such that |s| is less than

or equal to a maximum limit (ρ ≤ ρmax). From equation (1),

Ys can be expressed as

Ys =
|Yin|

2
(1− s)

Yin + sY ∗

in

, s = ρ∠θ. (4)

Let us first consider the case where the MN has only one

tunable element. If ρ is fixed and θ is allowed to take all values

between 0 and 2π, an area will be defined for the coverage of

the tunable MN as illustrated in Fig. 2. For each point within

the perfect matching arc, there exists a circle which interior

corresponds to ρ ≤ ρmax. Combining all the circles results

C1 C2
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Y2

Yin

Γin

(a)

C1 C2

L

Y1

Yin

Γin

(b)

Fig. 3. Schematic of (a) Π network. (b) T network.

in the shaded area in Fig. 2, which is bounded by an inner

and an outer circles as well as the Cmin and Cmax circles.

Therefore, the boundary for imperfect matching can be defined

theoretically by calculating the coordinates of the centers and

radii of these circles. It is worth mentioning that the coverage

in Fig. 2 and all other figures are based on Γ∗

s to compare

with the perfect matching case.

A. Methodology for calculating the centers and radii of the

inner and outer circles

As depicted in Fig. 2, the inner and outer circles as well

as the perfect matching circle are all tanget to the |Γ∗

s| = 1

circle at the same point. The problem of finding the centers

and radii of these circles is, therefore, reduced to finding the

tangent point and any other point and use the formula derived

in [10] and given by

xc =
xA

(

x2

B − x2

A + y2B − y2A
)

2 (−x2

A − y2A + xAxB + yAyB)
, (5a)

yc =
yA

(

x2

B − x2

A + y2B − y2A
)

2 (−x2

A − y2A + xAxB + yAyB)
(5b)

and

R =
√

(xc − xA)2 + (yc − yA)2, (5c)

where xc and yc are the coordinates of the center of the circle.

R is the radius of the circle. xA and yA are the coordinates of

the tangent point, and xB and yB are the coordinates of any

other point in the circle.

The tangent point can be found as detailed in [10]. Unfor-

tunately, finding the other arbitrary point is not as straightfor-

ward as the tangent point. In Fig. 4 (a), for the case of the Π
network, the trajectory of Γ∗

s is traced for the case of θ = 0 and

θ = π with C2 swept and C1 kept constant. These trajectories

touch the outer and inner circles at P1 and P2, respectively.

This tangency occurs only once at a critical value of C2, which

is referred to as C ′′

2
. If this value is known, the coordinates of

P1 and P2 can be calculated and the centers and radii of the

inner and outer circles obtained from equation (5).

To calculate C ′′

2
, the source impedance (Z∗

s ) is expressed in

terms of the input impedance (Zin) for s = ±ρ (θ = 0 and π),

which gives:

Z∗

s = ℜ{Zin}
1± ρ

1∓ ρ
+ jℑ{Zin}, (6)
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Fig. 4. Trajectory of Γ∗

s for θ = 0 and θ = π for the Π network of Fig. 3 (a).
(a) C2 is swept between -20 pF and 20 pF (blue circles). ρ, the frequency,
C1, and L are kept constant. (b) Same as (a) but with C1 swept and C2

constant.

where ℜ{.} and ℑ{.} denote the real and imaginary, respec-

tively. It can be inferred from (6) that the transformation form

Zin to Z∗

s , which is a bilinear transformation, affects the real

part only since the imaginary part of Z∗

s is the same as that

of Zin. It can be deduced, focusing on the real part , that P1

and P2 are stationary points; therefore, C ′′

2
can be calculated

by solving

∂ℜ{Zin}

∂C2

= 0. (7)

For the case of sweeping C1 (Fig. 4 (b)), C ′′

1
can be calculated

similarly by substituting C1 for C2 in equation (7).

The analysis method presented in this section can be applied

to any lossless network with ideal lumped components or

transmission lines. The Π and T networks are analyzed in

the following sections, respectively to illustrate the method.

B. Analysis of Π-type Networks

The schematic of a Π network is illustrated in Fig. 3 (a).

Firstly, C1 is swept while C2 is held constant at either its

minimum or maximum to obtain the first pair of circles.

Secondly, C2 is swept while C1 is held constant to get the

second pair of circles. If

Cmin < C ′

2
< Cmax, (8)

where

C ′

2
=

1

ω2L
, (9)

an auxiliary circle is needed to complete the boundary [10].

1) C1 variable and C2 constant: For the first case, C2 ∈
{Cmin, Cmax} while C1 can take any real number between

these two limits. To plot the complete circle, however, we

will let C1 ∈ R. The first point to be calculated is the point

at which this circle is tangent to the outer circle (|Γ∗

s| = 1).

This point is referred to as point A and corresponds to C1 =

∞. Using this value, the real and imaginary parts of Γ∗

s are

xA = −1 (10a)

and

yA = 0, (10b)

respectively. To obtain the other arbitrary point equation (7)

gives

C ′′

1
=

Y 2

0
L− C2

(

1− ω2LC2

)

(1− ω2LC2)
2
+ (Y0ωL)

2
, (11)

where Y0 is the characteristic and load admittance, L is the

inductance and ω is the angular frequency. Using this value

for C1 the real and imaginary parts of Yin are calculated as

ℜ{Yin} =
Y0

(

1− ω2C2L
)

+ Y0ω
2C2L

(1− ω2C2L)
2
+ (Y0ωL)

2
(12a)

and

ℑ{Yin} =
ωC2

(

1− ω2C2L
)

− Y 2

0
ωL

(1− ω2C2L)
2
+ (Y0ωL)

2
+ ωC ′′

1
, (12b)

from which the real and imaginary parts of Ys can be calcu-

lated as

ℜ{Ys} =
|Yin|

2
ℜ{Yin}

(

1− ρ2
)

[ℜ{Yin} (1± ρ)]
2
+ [ℑ{Yin} (1∓ ρ)]

2
(13a)

and

ℑ{Ys} =
|Yin|

2
ℑ{Yin} (1∓ ρ)

2

[ℜ{Yin} (1± ρ)]
2
+ [ℑ{Yin} (1∓ ρ)]

2
, (13b)

where the upper of the (± and ∓) refers to the case where θ =

0, while the lower refers to the case where θ = π. These two

cases correspond to the outer and inner circles, respectively.

Finally, the real and imaginary parts of Γ∗

s can be calculated

as

xB =
Y 2

0
−ℜ{Ys}

2 −ℑ{Ys}
2

(Y0 + ℜ{Ys})
2
+ ℑ{Ys}2

(14a)

and

yB =
−2Y0ℑ{Ys}

(Y0 + ℜ{Ys})
2
+ ℑ{Ys}2

. (14b)

Once the coordinates of the two points A and B are calculated,

the centers and radii of the inner and outer circles can be

calculated from equation (5).

2) C2 variable and C1 constant: For the tangent point of

this case, C2 is assigned a value of ∞, which yields

Ys = jBs, (15a)

where

Bs =
ω2LC1 − 1

ωL
, (15b)

from which the coordinates of Γ∗

s can be calculated directly

using (14). For the case of the other point, solving (7) yields

C ′′

2
=

C1

ω2LC1 − 1
, (16)

which can be used to calculate the real and imaginary parts of

Yin from equation (12) by replacing C2 and C ′′

1
with C ′′

2
and
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Fig. 5. Simulation results of the Π network of Fig. 3 (a). L = 12 nH, Cmin

= 2 pF, Cmax = 10 pF, frequency = 0.7 GHz, ρ = 0, 0.1, and 0.5. Full circles
and circuit simulation are included for the case of ρ = 0.5.

C1, respectively. Next, (13) and (14) can be used to calculate

Ys and the coordinates of Γ∗

s , respectively.

Once the centers and radii of the inner and outer circles are

calculated, the complete coverage can be plotted as illustrated

in Fig. 5 for the perfect matching case as well as ρ = 0.1

and 0.5. To verify the theory, circuit simulation has also been

included for ρ = 0.5. As expected, increasing ρ expands the

coverage at the cost of a higher return loss.

C. Analysis of T-type Networks

The schematic of the T network is illustrated in Fig. 3 (b).

The analysis of this network is similar to the Π network.

1) C1 variable and C2 constant: For this case C2 ∈
{Cmin, Cmax} while C1 ∈ R. To calculate the tangent point

(point A), C1 is assigned a value of zero leading to zero values

of Yin and Ys. Therefore, the real and imaginary parts of Γ∗

s

are

xA1 = 1 (17a)

and

yA1 = 0, (17b)

respectively. To calculate the coordinates of the second point

(point B) equation (7) cannot be used because the partial

derivative of ℜ{Zin} with respect to C1 is zero. Sweeping

C1 does not affect ℜ{Zin} and hence the trajectories of Γ∗

s

for θ = 0 and θ = π are identical to the inner and outer circles,

respectively as illustrated in Fig. 6. Therefore, in this particular

case, the choice of C1 is arbitrary. A logical choice is C1 =

∞, based on which the real and imaginary of Yin are given

by

ℜ{Yin} =
Y0 (ωC2)

2

Y 2

0
+ (ωC2)

2
(18a)

and

ℑ{Yin} =
Y 2

0
ωC2

Y 2

0
+ (ωC2)

2
−

1

ωL
, (18b)

θ = 0

identical to

inner circle

θ = π

identical to

outer circleC1 −→ ∞

perfect matching

circle

C1 = 0

Fig. 6. Trajectory of Γ
∗

s for θ = 0 and θ = π for the T network of Fig. 3
(b). C1 is swept (blue circles correspond to different values of C1). ρ, the
frequency, C2, and L are kept constant.

respectively. These values can be used in equations (13) (a) and

(13) (b) to calculate the values of Ys, which are subsequently

used in equation (14) to calculate the coordinates of Γ∗

s for

the two cases where θ ∈ {0,π}.

2) C2 variable and C1 constant: For this case C1 ∈
{Cmin, Cmax} while C2 ∈ R. The tangent point in this case

corresponds to C2 = 0, which gives

Yin = jBs, (19a)

where

Bs =
ωC1

1− ω2C1L
. (19b)

Ys can be calculated from (13) as

Ys = jBs, (20)

which is used in (14) to calculate the coordinates of Γ∗

s .

For the case of the second point, solving equation (7) gives

C ′′

2
=

1

ω2L
. (21)

The real and imaginary parts of Yin can be calculated recep-

tively as

ℜ{Yin} =
ℜ{Y2} (ωC1)

2

(ℜ{Y2})
2
+ (ℑ{Y2}+ ωC1)

2
(22a)

and

ℑ{Yin} =
ωC1

[

(ℜ{Y2})
2
+ (ℑ{Y2})

2
+ ℑ{Y2}ωC1

]

(ℜ{Y2})
2
+ (ℑ{Y2}+ ωC1)

2
,

(22b)

where

ℜ{Y2} =
Y0 (ωC

′′

2
)
2

Y 2

0
+ (ωC ′′

2
)
2

(22c)

and

ℑ{Y2} =
Y 2

0
ωC ′′

2

Y 2

0
+ (ωC ′′

2
)
2
−

1

ωL
. (22d)

Next, equations (13) and (14) can be used to calculate the

coordinates of Ys and Γ∗

s , respectively. Once the coordinates
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Fig. 7. Simulation results of the T network of Fig. 3 (b). L = 12 nH, Cmin

= 2 pF, Cmax = 10 pF, frequency = 0.7 GHz, ρ = 0, 0.1, and 0.5. Full circles
and circuit simulation are presented for the case of ρ = 0.5.

(a) (b) (c) (d)

Fig. 8. Measurement and theory for a T network. (a) Photograph of the
fabricated circuit. (b) ρ = 0 (Perfect matching). (c) ρ = 0.1 (-10 dB), GT =
-0.04 dB. (d) ρ = 0.3 (-5 dB), GT = -0.4 dB. The measurement is performed
at 0.5 GHz with: Cmin = 1 pF, Cmax = 9 pF and L = 10 nH.

of Γ∗

s are known, equation (5) can be used to calculate the

centers and radii of the circles for this case.

In Fig. 7 the complete coverage of the T network is

illustrated for the perfect matching case as well as ρ = 0.1

and ρ = 0.5. For the latter case, circuit simulations have also

been included to verify the theory.

III. MEASURED RESULTS

A prototype T network has been fabricated as depicted in

Fig. 8 (a) to verify the theoretical formulas derived in the

previous sections. Lumped components have been used for

the fixed elements while varactors (Infineon BB388) have

been used for the tunable capacitors. The physical size of

the circuit has been miniaturized and the measurements have

been taken at a relatively low frequency (0.5 GHz) to reduce

the electrical size. With a load of 50 Ω, Γin is measured

directly with a vector network analyzer (Keysight N5242A).

The connectors and feed structures have been de-embedded.

Γ∗

s is calculated directly from Ys, which is calculated from

equation (4). To compare the theory and measurement, the

varactor has been characterized separately to determine its

minimum and maximum capacitance values.

The measured results compared to the theoretical coverage

are illustrated in Fig. 8 (b)-(d) for three different values of

ρ. It can be observed that a good agreement between the

simulation and the measurement has been achieved. The minor

discrepancies can be attributed to the losses and parasitics

of the inductors and capacitors used in the prototype. As

discussed in [10], any impedance on the edge of the Smith

chart has either a zero or infinite real part. To match such

impedance to a real load, the MN must be lossless. For the

case of practical MNs with non-zero losses, the coverage shifts

towards the point of infinity impedance (middle right of the

chart), which is evident in Fig. 8.

IV. CONCLUSION

The theoretical analysis of the coverage of tunable MNs,

which is presented in our previous work, has been extended

to include the coverage when the load is not perfectly matched

to the source. We believe the formulas in this work provide

a powerful tool for the analysis of tunable MNs. As a future

work, this analysis can be extended by including the losses

of the MN to provide a more general design tool for tunable

MNs.
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