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Abstract—Tunable matching networks are crucial for agile
radio frequency circuits. To optimally design such networks the
overall coverage needs to be determined. In this work, analytical
formulas for the coverage area within the Smith chart of a three-
element tunable-network are derived. It has been found that up
to sixteen circles bound the coverage area. Analytical expressions
for the centers and radii of these circles have been derived and
verified by circuit simulation as well as measured data. The
formulas in this work can be readily integrated into CAD tools,
thus provide a valuable tool for the design of tunable circuits.

I. INTRODUCTION

Reconfigurable wireless transceivers are becoming very

important for future systems such as long term evolution (LTE)

and LTE-advanced. At the heart of such systems, are tunable

circuits like filters, antennas, and matching networks (MN).

The latter are important to design power amplifiers [1] and

antennas [3].

Lumped-based MNs are very attractive at frequencies below

three GHz due to their small form factors and high qualities.

Variable capacitors and inductors can be used to design tunable

networks. Since variable inductors can not be physically

realized, a variable capacitor in parallel with a fixed inductor

can be used. A typical topology with three tunable elements

is analyzed in this work as illustrated in Fig. 1.

One of the main characteristics the RF designer needs to

know about a tunable MN is the range of complex impedances

that it can match to a specific load (typically 50 Ohm). This

range of impedances can be described by an area within the

Smith chart. In [4], formulas for the coverage area have been

derived for the rectangular complex-impedance plane. It is

more useful to provide the coverage on the Smith chart because

it can be presented against other design metrics [5]. In our

previous work [6], we have derived analytical formulas for

the coverage in the Smith chart for networks with two tunable

elements. In this paper, analytical formulas for a matching

network with three tunable elements (Fig. 1) are presented

for the first time. It has been found that the boundary of

the coverage area consists of up to sixteen arcs. Analytical

formulas for the radii and centers of these arcs have been

derived. These formulas are suitable for CAD tools and the

same analysis method presented here can be used for networks

with more or less tunable components. Therefore, this analysis

provides a convenient tool to design and optimize tunable

matching networks.
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Fig. 1. Schematic of the tunable matching network analyzed in this work.

II. DERIVATION OF THE BOUNDARY CIRCLES

In [4] it was found that as one tunable parameter of the

matching network is varied between its limits while all the

others are kept constant, the locus of the matched impedance

follows an arc on the impedance plane. Since the relation

between the complex impedance plane and the Γ plane is

a bilinear transformation, circles on the complex plane are

mapped into circles on the Γ-plane [7]. Therefore, the coverage

area of any matching network is bounded by circles in the

Smith chart. If the centers and radii of these circles are

calculated, the boundary can be defined. A typical boundary

for the network of Fig. 1 is illustrated in Fig. 3-a & b.

Three main cases can be considered for the circuit of Fig. 1

by sweeping each of the tunable capacitors while keeping the

other two at constant values (minimum (m) or maximum (x)).

From each case four circles are obtained for the combinations

of the maximum and minimum of the two constant capacitors

(mm, mx, xm, and xx) resulting in a total of twelve circles.

Moreover, if C2, C3, and L are in resonance, the coverage area

might be extended by up to four additional circles, which are

referred to here as auxiliary circles. All of the sixteen circles

are tangential to the circle of |Γ|=1. If the tangent point is

denoted A(xA,yA) and point B(xB ,yB) is any other point, the

center (xc, yc) and radius (Rc) can be calculated by:

xc =
xA

(

x2

B − x2

A + y2B − y2A
)

2 (−x2

A − y2A + xAxB + yAyB)
, (1a)

yc =
yA

(

x2

B − x2

A + y2B − y2A
)

2 (−x2

A − y2A + xAxB + yAyB)
and (1b)

Rc =
√

(xc − xA)2 + (yc − yB)2, (1c)



respectively. These equations are used in the following sections

to define the circles of the boundary.

A. C1 variable, C2 and C3 are fixed

In the first case C2 and C3 are fixed at either their minimum

(Ci,min, i=2,3) or maximum (Ci,max, i=2,3) while C1 is varied

between its limits. For the sake of mathematical convenience,

C3 will be allowed to take negative as well as positive values.

The tangent point can be found by assigning infinity to C1,

which results in a short at the input of the matching network;

therefore, the coordinates of the reflection coefficient are given

by:

xA1 = −1 and (2a)

yA1 = 0. (2b)

For the other point C1 can be assigned a value of zero and

the real and imaginary parts of the input admittance Yin can

be calculated as:

ℜ{Yin} =

(

1

ωL
− ωC2

) [

Y0ωC3 − Y0

(

ω (C3 + C2)−
1

ωL

)]

Y 2

0
+
(

ω (C3 + C2)−
1

ωL

)2

(3a)

and

ℑ{Yin} =

(

ωC2 −
1

ωL

) [

Y 2

0
+ ωC3

(

ω (C3 + C2)−
1

ωL

)]

Y 2

0
+
(

ω (C3 + C2)−
1

ωL

)2
,

(3b)

from which the real and imaginary values of Γin are:

xB1 =
− (ℜ{Yin})

2
+ Y 2

0
− (ℑ{Yin})

2

(ℜ{Yin}+ Y0)
2
+ (ℑ{Yin})

2
and (4a)

yB1 =
−2Y0ℑ{Yin}

(ℜ{Yin}+ Y0)
2
+ (ℑ{Yin})

2
, (4b)

respectively. The results of (2), (3) and (4) can be used with

(1) to calculate the circle parameters for this case.

B. C2 variable, C1 and C3 are fixed

In this case C1 and C3 are fixed at either their minimum

(Ci,min, i=1,3) or maximum (Ci,max, i=1,3) while C2 is

varied between its limits. The tangent point occurs when

C2 = 1/(ω2L) and its coordinates are given by

xA2 =
Y 2

0
− (ωC3)

2

Y 2

0
+ (ωC3)

2
(5a)

and

yA2 =
−2Y0ωC3

Y 2

0
+ (ωC3)

2
. (5b)

The second point is calculated by assigning infinity to C2 and

calculating the real and imaginary parts of Yin as

ℜ{Yin} = 0 and (6a)

ℑ{Yin} = ω (C1 + C3) , (6b)

respectively. Equations (5), (6) and (4) can be used with (1)

to calculate the boundary circles for this case.

C. C3 variable, C1 and C2 are fixed

In this case C1 and C2 are fixed at either their minimum

(Ci,min, i=1,2) or maximum (Ci,max, i=1,2) while C3 is varied

between its limits. The tangent point occurs when C3 is

assigned a value of infinity to give real and imaginary values

of Yin as

ℜ{Yin} = 0 and (7a)

ℑ{Yin} = ω (C2 + C1) +
1

ωL
, (7b)

respectively. The second point is calculated by assigning zero

to C3 and calculating the real and imaginary parts of Yin as

ℜ{Yin} =
Y0

(

ωC2 −
1

ωL

)2

Y 2

0
+

(

ωC2 −
1

ωL

)2
and (8a)

ℑ{Yin} = ωC1 +
Y 2

0

(

ωC2 −
1

ωL

)

Y 2

0
+
(

ωC2 −
1

ωL

)2
, (8b)

respectively. Equations (7) and (8) can be used with (4) to

calculate the coordinates of the two points, which can be used

with (1) to calculate the boundary circles.

D. The auxiliary circles

As discussed previously, up to four auxiliary circles might

be part of the boundary. These circles result from a resonance

condition of C2, C3 and L. Therefore, they define maximum

and/or minimum input conductances and they do not depend

on C1. They can be plotted using the relations derived for

variable C1 in section II-A with appropriate values of C2 and

C3 obtained by evaluating the maximum and minimum of the

input conductance. For simplicity, the combination of C2 and

L can be considered as a variable inductor with inductance of

L/(1−ω2LC2). The first derivative technique can be used to

obtain the condition for maximum/minimum criteria as:

mmm xmm

xxm

xxx

xmxmmx

mxx

mxm

Fig. 2. Illustration of the twelve arcs of the boundary area. The two ends
and any third point are sufficient to plot the arcs. The auxiliary arcs are not
included.

C ′

2
+ C ′

3
=

1

ω2L
, (9)

where C′

2
and C′

3
are the critical values of C2 and C3 at

which resonance occurs. From this condition, up to four circles

can be plotted by assigning the maximum and minimum

capacitance to C′

2
and evaluate C′

3
from (9). Two circles can be

plotted using these values with the variable C1 circles derived

previously. The other two circles can be plotted by reversing

the assignment of C′

2
and C′

3
. If either of the evaluated values
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Simulations C1,mm C2,xm C3,xx

C2,xx C1,xm C2,mx C3,xm

C2,mm C3,mx C1,xx C1,mx

C3,mm C1,mC′

3
C1,C′

2
m

Fig. 3. Theoretical analysis and circuit simulation of the network of Fig. 1
at 2 GHz (a) and 3 GHz (b). Each arc is denoted by Ci,jk to represent a
variable Ci while the other two capacitors have constant values of j and k.
i ∈ {1, 2, 3}, j&k ∈ {m,x}, where m represents the minimum value and
x represents the maximum value. The values used in the theory are: L=3nH,
Cmin=0.2 pF, and Cmax=5 pF.

of C′

2
and C′

3
fall outside the range of Cmin-Cmax, the

associated circle is not part of the boundary. Therefore, part

or all of the auxiliary circles might not be necessary to define

the boundary.

E. Connecting the Boundary Area

Formulas for the centers and radii of the sixteen different

circles of the boundary have been derived in the previous

sections. Many of these circles intersect at multiple points,

therefore a systematic method to identify and connect the

different arcs is described in this section. In Fig. 2 eight

different points are presented for all the combinations of the

maximum and minimum values of the three capacitors. These

points are denoted ijk where i, j & k ∈ {m,x} and m,x
represent the minimum and maximum values, respectively. The

boundary is defined by connecting these lines with twelve arcs

each of which represent the variation of only one capacitor. To

plot each arc the starting and ending points are first calculated

from the constant values of the capacitors. Since the arcs can

not be completely defined by their start and end points, a third

point between these two points is also calculated. The arc can

be plotted from these three points and the center and radius

calculated in the previous section in a strait forward manner. If

necessary, the auxiliary arcs can be plotted in a similar manner.

The calculated boundary is illustrated in Fig. 3 (a) and (b)

for frequencies of 2 GHz and 3 GHz, respectively.

III. MEASUREMENT RESULTS

A prototype has been fabricated and measured to verify

the theoretical formulas derived in the previous section. A

commercially available varactor (BB388 from Infineon) has

been use as a variable capacitor. A photo of the fabricated

prototype is shown in the inset of Fig. 4. The connectors and

feed lines have been de-embedded and the final results are

compared to the theory in Fig. 4. A good agreement between

the simulation and measurement can be observed, which

verifies the theoretical analysis. The discrepancies are mainly

due to the package parasitics of the lumped components and

de-embedding errors.

Measured C1,mm C2,xm

C3,xx C2,xx C1,mx

C2,mx C3,mx C2,mm

C3,xm C1,xx C1,xm

C3,mm

Fig. 4. Measured coverage area compared to the theory for a frequency of
1 GHz and with L=1.3 nH, Cmin=1pF, and Cmax= 10 pF. A photograph of
the fabricated prototype is included in the inset.

IV. CONCLUSION

In this work, a method for the analysis of tunable matching

networks is presented. Formulas for the coverage of a three-

element matching network has been derived as proof of

concept. It has been found that up to sixteen circles are

needed to completely define the boundary area. The formulas

are simple and can be used with CAD tools to analyze and

optimize tunable matching networks.
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