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Analysis of the Dynamic Response of Multielement 
Semiconductor Lasers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract-We present a derivation of the dynamic response o fa  semi- 
conductor laser consisting of more than one active element. We show 
that the amplitude and phase of the modulated cavity adiabatically fol- 
lows the complex resonance of the composite cavity; and using this re- 
lation, plus linearized  carrier equations, we calculate the parameters 
characterizing the modulation response of the composite system. In the 
process, “effective” differential gain constants and linewidth enhance- 
ment factors  arise which take the place of the corresponding parame- 
ters in single-element lasers. In the case of a two-section laser, we show 
that frequency chirping under modulation is present except under spe- 
cial conditions; we identify those conditions and show  how chirping can 
be avoided. 

I. INTRODUCTION 

S INGLE-mode  semiconductor  lasers (SL’s) are desir- 
able  for use in fiber  optic  links  because  their  narrow 

frequency  spread  translates  into a  minimum  of  pulse 
spreading in a  dispersive  fiber. However, most  simple 
Fabry-Perot SL’s oscillate in a  number of longitudinal 
modes,  particularly  under  high-frequency  modulation. To 
provide  suppression of all  but  a  single mode,  more  com- 
plicated  resonator  structures have been  proposed  and 
demonstrated,  including  distributed  feedback  lasers [ I ] ,  
distributed  Bragg  reflectors 121, axially  coupled  cavity  las- 
ers (31, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA141, and  laterally coupled  cavity lasers [ S I .  

The analysis of such  structures is correspondingly  more 
difficult  than  that of a  simple  Fabry-Perot  cavity.  The 
steady-state  lasing  frequency  can be analyzed by perform- 
ing  a  roundtrip analysis of each  element of the  system in- 
cluding  intercavity  coupling [5]-[12]. The  result of such 
analyses  is  typically  a  nonlinear  equation which implicitly 
defines  the  lasing  frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo; the  equation  depends upon 
the  gain  and  refractive  indexes  (and  hence,  carrier  den- 
sity) of the  various  cavities,  and  the  requirement  that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw be 
real  (for  steady-state  operation)  imposes a constraint  on 
the  set of carrier  densities.  The  full  time evolution under 
large-signal  modulation  must  include  the  (also  nonlinear) 
carrier  rate  equations  for  the  different  active  elements  in 
the  system.  In  one  approach,  the  electric field in  each  sec- 
tion of the  laser is taken as a  dynamical  variable,  and rate 
equations  for  both  the  electric field and  carrier  densities 
are solved  for  a transient  excitation [6 ] ,  [9],  [12].  In  the 
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other  approach, a  single field equation is used  which 
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de- 
scribes  a  mode of the  composite  resonator [7]. The  latter 
treatment  has  the  advantage of including  fewer  dynamical 
variables.  In  either  case,  the  rate  equations  are  nonlinear, 
due  to  the nonlinear  dependence of characteristic  param- 
eters  (e.g.,  lasing  frequency,  photon  lifetime,  carrier  life- 
time) on the  dynamicaI  variables.  Generally,  the only way 
to solve them  is  numerically. 

Recently,  Agrawal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 121 presented  numerical  solutions 
from a  small-signal  analysis of a  two-active-element  laser 
in  which the  photon  density  and  carrier  densities of each 
cavity and  the  relative  phase  between  the two  cavities  were 
taken  as  the  dynamical  variables.  The  small-signal  mod- 
ulation  response, however, can  be solved analytically using 
the  modes of the  composite resonator.  Not  only does  this 
give  analytic  expressions  for the small-signal  modulation 
(useful  in  their  own  right), but it  enables  us  to  see  im- 
mediately  what physical quantities are important  and how 
they  affect  such  things as  the  relaxation  resonance  or 
linewidth  enhancement  factor.  Furthermore, while  a 
smooth,  chirpless  small-signal  response  does  not  guaran- 
tee  the  same  large-signal  response, a poor  small-signal  re- 
sponse  pretty much  rules  out  the possibility of a  reasonable 
large-signal  response.  Finally, pathologies in the  small- 
signal response  (e.g.,  singularities,  negative  differential 
gain)  can  indicate  the  presence of other  properties of in- 
terest  (e.g.,  bistability). 

In this  paper,  we  derive for the  first  time  an  analytic 
solution  to  the  dynamic  response  for a general multiele- 
ment  semiconductor  laser. We show  that  the  dynamic be- 
havior of the  optical field can  be obtained  from  an  analytic 
continuation of the  steady-state  eigenvalue  equation  to 
complex  frequency,  and  that  the  relevant  parameters which 
characterize  the  modulation  can  be  written in terms of 
partial  derivatives of the  steady-state  equation.  This  equa- 
tion, plus linearized  carrier  equations, yield  complete 
expressions  for  the  amplitude  and  frequency  fluctuations 
under  current  modulation. We  apply the  formalism  to  the 
case of a  two-element  semiconductor  laser  and  explicitly 
calculate  the  modulation  response  as a  function of fre- 
quency in terms of the effective gain, a parameter,  and 
relaxation  resonance  frequency. We show  that  frequency 
modulation  (chirping)  is  generally  present  in  the  two-sec- 
tion laser  (and,  in  fact,  in any laser of more  than  two  sec- 
tions); however,  it  can be  eliminated if  the  operating point 
is chosen  such  that  the  effective a parameters of the  two 
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cavities  are  equal [13] or by appropriate  splitting of the 
modulation  current (141. 

11. OPTICAL FIELD 

The connection  between  the  time-varying  medium  (the 
modulated  laser  cavity)  and  the  time evolution of the  laser 
field is not  immediately  obvious, so we  begin by deriving 
it.  Maxwell's  equations for a charge-free  time-varying 
medium lead  to a wave equation  of  the  form 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa2 
at2 V2E(x,  t )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[p2(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ( x ,  t)] = 0 (1) 

where E (x, 8 is the  electric field and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp (x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf) is the  index 

of refraction  varying on a  time  scale f = E t ,  E << 1, i .e . ,  

much  more slowly  than  optical frequencies.  The  presence 
of gain  and loss can  be  accommodated by allowing  com- 
plex p if the loss  is  approximately  constant as a function 
of frequency. We shall  look  for  solutions of the  form 

E ( x ,  t )  = A ( x ,  1) , j$(f) (2) 

where A ( x ,  f) is a normalized,  also slowly varying field 

distribution,  and $( t )  is  complex to  accommodate both 
amplitude  and  frequency  fluctuations.  [The f dependence 

of A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, f) is included  because  the  amplitude  at  distinct 

points may vary;  the  average power  fluctuation is absorbed 
into  the  imaginary  part of $ (t).] Substitute (2)  into (1 j ,  

and  the  result,  to lowest order in E ,  is 

2 , -  

V2A(x ,  1) -t * - $1 A ( x ,  3) = 0 (3) 
C 

where a dot  indicates  time  differentiation. Now we can 
separate  the  equation  into  time-dependent  and  time-inde- 
pendent  parts: 

V2A(x,  3 )  -I- 2 w2(3 )  A(& i") = 0 
P2(& 1) 

(4) 

$ - j $  = w2(1). (5 )  

In (4), time  appears  only as a parameter. In fact, (4) is 
precisely  the  time-independent  Helmholtz  equation  one 
derives for a time-invariant  medium.  Consequently,  any 
calculation  of  the  spatial  modes  [i.e., A (x, t")] based on 

this  equation is valid to  the  same  order as this  equation- 
in particular,  the  steady-state  equation  for a lasing  eigen- 
frequency  is valid as an equation  for  the  instantaneous  fre- 
quency w (f). Equation ( 5 )  then  gives the  time evolution of 

the  optical field as a  function of the  instantaneous  eigen- 
frequency. We can  expand ( 5 )  in a series  in E as well,  elim- 
inating  the  nonlinearity  and  reducing  the  equation  to  the 
simple  (and  intuitive) 

C 

' 2  .. 

* = w(3j .  (6) 

We are now done with the  perturbation  expansions in E ,  

and so for the  remainder of the  analysis, we will  not  make 

a  distinction  between t and f. 
Of  course, a solution  for $ requires an expression  for 

the  steady-state w ,  and as mentioned  previously,  for mul- 

tielement SL's, w is generally  defined  implicitly in a non- 
linear  equation of the  form. 

F ( w ,  n l ,  * * - q V )  = 0 (7) 

for an N-active-element  laser with carrier  densities {n i }  . 
(Note  that  the  number of "elements" in this  analysis  re- 
fers  to  the  number of active  elements. The  presence of 
passive sections of the  laser  complicates  the  resonance 
function F ,  but does not increase  the  number of dynamical 
variables.  Thus,  an  external-cavity  laser  is a one-active- 
element  laser; a c3 laser is a two-active-element  laser.)  It 
is not the point of this  paper to derive  the  steady-state 
equation;  that  has  been  done  in  numerous works  for  var- 
ious  structures,  including two-element  axially  coupled 
lasers [7]-[ 121, multielement  axially  coupled  lasers [6], 
and  two-element  laterally  coupled  lasers 151. We note, 
however, that  such  an  equation,  although solved for a fixed, 
real w ,  is  formally  equivalent  to a solution of (4) for  the 
instantaneous  frequency w(t") ;  consequently, we need not 

return to  first  principles to find the  dynamic  response of a 
multielement  device. We may simply analytically  continue 
the  dc  resonance  equation  to complex w and  use  (7) as an 
instantaneous  definition of w ( f )  in terms of the  indepen- 

dent  variables { n j }  . 
We shall  also  require  a  set of fill factors, defined by 

Pi ' k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Pkvk 

ri = ~ (8) 

k 

where p k  is the  photon  density  in  the kth cavity  and V, is 
the  volume of the kth cavity;  the  summation  includes both 
active  and  passive  elements.  In  general, ri # 1 (as noted 
by [6]), and in fact, ri can  (and  does)  vary  under  modu- 
lation. We note  that while the r ' s  so defined  will  depend 
explicitly  upon  both w and  the {n i l ,  w is  already  defined 
in terms of the  independent {n i l  by (7). 

We now have all of the  machinery  to  carry  out  the  small- 
signal  analysis of the  optical field. We linearize (6) and  (7) 
about a steady-state  operating point 

+ = w0 + Aw(t) - jb(t) 

(9) 

Divide by aFlaw and  take  real  and  imaginary  parts  to  get 

p 1 &! lcf tvi ,  = - C rnieffvi (10) 
1 I 

where 

We call gi',ff and n ~ / , , - ~  the effective  differential gain and 
index  constants, respectively. It is clear  from  the  above 
relations  that  they  have the  correct  units; it  remains to be 
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shown  that they, in  fact, play the  same role as  the  corre- 1 1 
sponding  parameters in single-cavity lasers. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- _ -  = + glrip, Uieff E 2gJ'ipgkf, aieff  E m:efdghf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

111. CARRIER  DYNAMICS :i> d r i  

dnk Each  section of the  laser  can  be  treated  as  an  indepen- 
dent  carrier  pool,  described by a  volume-averaged rate 
eauation  With  these  definitions, (14) and (15) can  be  put  into  matrix 

di = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj n  + - , Ci,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApg, -. 

form: 

I 

\ gNeff 

where J i  is the  ith,pump  current  density, q is the  charge 
on a  single carrier, d is  the  active  layer  thickness, 7, is the 
spontaneous  lifetime, g j  is the  gain  constant, ri is  the fill 
factor  mentioned  above,  and p is  the  average  power  den- 
sity (so that p is  proportional  to I exp j$l 2 ) .  We linearize 
this  set of equations in the  same way we did in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9): 

J i  = Jio + qd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe,(t) 

where gi is the  material  (as  opposed to  the effective) dif- 
ferential  gain  constant,  and  the  total derivatives of ri are 
given by 

The distinction  between  Re(w)  and  Im(w)  must  be  made 
here  because  the fill factor is not an  analytic  function of 
w.  We have also  made  use of the relations 

aW aRew aw aImw 

an, ank ' an, an, ' 

Re- = - Im- = - 

We now Fourier  transform (10) and (13). The  operator 
a/ a t  becomes  a  factor JQ, and  the  equations  become 

jn2p = gleff Pi, A S  = - m,!eff Si (14) 
I I 

jQ  Fi = di - [1/r, + g;rip] vi - 2gir ipp 

where  a  tilde  indicates a transformed  variable.  It is con- 
venient to  make  some  definitions of parameters: 

This  matrix  system  can  be solved by Cramer's  rule  to yield 

0 -.g;eff * . . -S,beff 

e"{ C \ l  + dl * * 

/ I  I 

CNN + 

A& (Q) 
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In many  cases,  the  optical  power  density  in  an  individual 
element  is  desired (e.g.,  the power emitted  from  one of 
the exit facets); in this  case,  the  photon  density in the ith 
cavity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi is  given by (8) to  be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Pi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArip (19) 

which yields the  modulation  response 

where  the  total  derivatives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd r j / d n k  are defined by (13). 

IV. APPLICATIONS 

We shall  first  check  the  formalism by applying  it to the 
well-known'  case of a  single-cavity,  simple  Fabry-Perot 
resonator.  In  this  case, ell  can  be  absorbed  into  the  term 
1 / ~ ~  (in practice,  it  can  be  neglected  entirely)  and (18) be- 
comes 

SLff 

to  (22), we find 

which we  recognize as  being  precisely  the  material differ- 
ential  gain  constant,  differential  index,  and  linewidth  en- 
hancement  factor.  Similarly, w:eff is the  relaxation  reso- 
nance  familiar  from  McCumber's  theory [ 161. 

Thus  reassured, we now turn  to  uncharted  territory  and 
analyze  the  response of a  two-element  laser. We shall not 
calculate  here  the effective  modulation  quantities;  the  al- 
gebra is straightforward  given F ( w ,  n I  , n2), but the  exact 
form of F depends  on  the  particular  configuration  chosen. 
As above,  the  diagonal  elements cii can  be  absorbed  into 
the  term 1 / ~ ~  of (16), i.e., 

1 1  d r i  - _ -  
Ti 7, 

= + g;rip + g,p - . 
dn, 

&eff 

Equation (21) is exactly the  frequency  response  one  de- 
rives from  the  more  familiar  theory  [15], exhibiting  a  re- 

Then,  evaluating (18) for  a  two-active  element laser yields 

laxation  resonance  at  frequency wleff  and  residual  phase c2 I 

modulation  that  goes  to  zero  at  zero  frequency.  Further- g l e f f  - s;,{{ $2 . + 1/71 

more, we can  check  the  values of siefi., wleff, and alef f  by 
direct  calculation  from  the simple  eigenvalue  equation  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( Q )  = zl (Q)  
the  lasing  frequency: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw I eff 

j? + 117, 

j Q  + jQ + 1/TI j Q  + 1/r2 

2 2 
+ W2eff 

2 j w  h ) L ]  - = (22) 

c12 
- &,ff - 8 L f f  . 

j Q  + 1/72 
c 

j Q  + ihl 

wieff 
where r ( n l )  is  the power  gain per unit length, yo is  the + Z2(Q) 2 (24) 
loss, L is  the  length of the  laser, p ( n l )  is  the index of j S  + 
refraction,  and R is  the m'irror  reflectivity.  Applying (10) 

7 

+ 
j n  + 1 / ~ ~  jQ  + 117, 

W2eff 
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The expressions for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvi(a) are Obtainable (and  ulation disappears.  Alternatively, it may be nulled out by 
equally  formidable);  however,  the  relations  simplify  some- splitting the  current modulation such that 
what if c ; ; ~ ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< 1 for  all  off-diagonal  elements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcii (which 
has  been"'suggested,  for  example,  for  the laterally coupled 
cavity laser [ 5 ] ) .  In  this  case,  there is no  difference  be- 
tween zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( Q )  and p i ( Q ) ,  and (24) and (25) reduce  to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

e"l e", 
girl g2r2 

- 

In  Figs. 1 and 2, we  have  plotted 6 (Q) and A&@) as a 
function of frequency  for  a  particular  set of effective  mod- 
ulation  constants  with  the c , ~  taken to  be  zero.  The first 
feature  to  note is the  presence of two  resonance  terms in 
the  denominators.  They  combine  to  give a  single  reso- 
nance  at  the  Pythagorean  sum of the  two  resonance  fre- 
quencies  (as  can be seen  from  Figs. 1 and 2). The  reso- 
nant  frequencies  are  proportional to g:eff; consequently,  any 
increase in g;cff over the  material g,! will  result in an en- 
hanced  modulation  bandwidth.  Such  behavior  has  been 
demonstrated in passive-active  coupled  cavities [ 131. 

Another  feature of interest  is  the  fact  that  the  frequency 
modulation  does not go to  zero  as Q -+ 0. In fact, while 
the  first  term in the  square  brackets in (27) is simply the 
residual FM found in any  single-cavity  semiconductor  laser 
which disappears at zero  frequency,  the  second  term 
causes  the  frequency  response  to level off at low frequen- 
cies (in fact, it can be seen  from  (27)  that if the  difference 
in the effective a parameters  is of order 1, the  frequency 
response is flat  up to  the  relaxation  resonance).  This  re- 
sults in an  undesirable FM response  under  modulation.  It 
should  be  noted  that  for  multielement  lasers,  the effective 
linewidth  enhancement  factor is generally  not  equal  to  the 
material  enhancement  factor  (the  corresponding  quantity 
for  the  single-element laser)-it depends  strongly  on  the 
particular  operating  point  selected. So, if an  operating 
point is chosen  such  that  the  effective a parameters for the 
two lasers  are  exactly  equal,  the low-frequency FM mod- 

(27) 

as was done in [4].  (It  is  also equally possible to null out 
the  AM  response  to  obtain a  purely FM laser,  although 
the  regime of linear  operation  (and  hence validity of the 
small-signal  response) is rather  small [ 171 .) It  is  clear  from 
(27) that for structures  with  more  than  two  elements,  there 
will  generally be  some  frequency  modulation.  While in 
some  structures  the  elements of the ( c ~ }  matrix  are  neg- 
ligible (e.g.,  the  aforementioned  laterally coupled laser), 
in many  they are not (e.g., a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC3 laser);  for  such  geome- 
tries, (20), (24),  and  (25) must be used  and  the  structure 
of the  response  is  somewhat  more  complicated  than  that 
displayed  in Figs. 1 and 2. 

In  summary, we have presented for the  first  time  ana- 
lytic  expressions  for  the  dynamic  response of multielement 
semiconductor  lasers.  In  the  process, we  derive  effective 
differential  gains,  indexes,  and a parameters which play 
the role of the  corresponding  material  quantities  in single- 
element  semiconductor  lasers. We have  verified the  gen- 
eral  formalism in the single-element case  and  applied it  to 
a special  case of a  two-element  semiconductor  laser. We 
have shown  that  frequency  chirping is generally  present, 
even at  zero  frequency  in  two-element  lasers, yet it  can  be 
avoided either by modulating at  an  operating point  where 
the effective a parameters for the  two  cavities  are equal 
or, alternatively, by driving  the  currents  to both  cavities 
in  a fixed relationship. 
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:::I I , I , I , , I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, y  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-60 

loo lo1 10‘ lo3 io4 lo5 lo6 io7 lo8 109 IOIO loll 10’‘ 

R / ~ T  (Hz) 

Fig. 1. Amplitude  modulation  response  for  parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmiel f  = 6. . IO9 rad/ 
s, uzef = 1. . lo9 radis, r1 = s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr2 = 5 . lO-’s, giCff = 1.2 . 

cm’/s, g;,,, = 3.0 . cm3/s, alcn = 5.01, azef = 5.00. (a) 
Amplitude  modulation  response  (arbitrary  zero)  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtZ = 0. (b)  Ampli- 
tude  modulation  response  (same  zero)  for &, = 0. 
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