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Analysis of the Effect of Source Capacitance and

Inductance on N -path Mixers and Filters
Shanthi Pavan, Senior Member, IEEE and Eric Klumperink, Senior Member, IEEE

Abstract—Switch-R-C passive N -path mixers and filters
enable interference-robust radio receivers with a flexibly pro-
grammable center frequency defined by a digital multi-phase
clock. The radio frequency (RF) range of these circuits is
limited by parasitic shunt capacitances, which introduce signal
loss and degrade noise figure. Moreover, the linear periodically
time varying (LPTV) nature of switch-R-C circuits results in
unwanted signal folding which needs to be suppressed by linear
time- invariant (LTI) pre-filtering by passive LC filters. This
paper analyzes the interaction between capacitive or inductive
LTI pre-filtering and an N -path mixer or filter, leveraging an
analysis technique based on the impulse response of the adjoint
network. Previously reported results for an inductive source
impedance are derived in a simpler fashion, while providing
circuit intuition. Moreover, new results for N -path receivers with
a shunt capacitor, and a combination of a series inductor and
shunt capacitor are derived, as well as design criteria to minimize
loss and frequency shifting in the peak response of these circuits.

I. INTRODUCTION

Reconfigurable radio receivers need tunable filters and

linear mixers with strong blocker handling capability [1].

Hard-switched passive mixers using triode-operated MOSFET

switches are instrumental in achieving high-linearity while

minimizing 1/f noise [2]–[4]. A low-noise transconductance

amplifier (LNTA) often precedes the passive mixer to min-

imize noise figure, realize impedance matching and reduce

LO-radiation. The mixer transfer function and noise in this

current-driven mode, where the RF-source can be represented

by a Norton equivalent, has been extensively analyzed in

the literature [5]–[10]. Simple analysis is possible if the

baseband impedance Zbb has both a resistive and capacitive

component, as shown in Fig. 1. The insight emerging from this

analysis is that of frequency-translated filtering: the low-pass

baseband impedance Zbb in a zero-IF receiver gets upconverted

(frequency translated) by the bi-directionally operating passive

mixer to a band-pass impedance at RF. This bandpass filtering

reduces the out-of-band signal swing at the LNTA-output,

improving linearity. Still, the active devices in the LNTA limit

the compression point to less that 0 dBm [3] and IIP3 to 10–

15 dBm [3], [4] in practice, especially due to process spread

[11].

Passive switch-RC mixer-first receivers with built-in or

explicit N -path filtering have recently been proposed [12]–

[17] to improve out-of-band linearity further. The upconverted

passive filter in Fig. 1 now filters the antenna signal directly

before any active amplification, resulting in reported blocker

compression points in excess of +10 dBm and IIP3 values

above +35 dBm [16], [18], [19].
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Fig. 1. Upconversion of the baseband impedance Zbb to fs through N -path
action.

Fig. 2(a) shows a 4-path filter/mixer with 4 capacitors

and switches driven by multi-phase non-overlapping digital

clocks with frequency fs, that defines the center-frequency of

the RF filter. Note that, in contrast to Fig. 1, there are no

baseband resistors – the signal source resistance R defines

the bandwidth instead1. The circuit operates as a mixer if

the capacitor voltages are used, or an N -path filter at the

shared RF-node vx. Essentially, the lowpass RC filter shape

is scaled and shifted to around fs. The resulting bandwidth

BW , defined by the RC time-constant and clock duty cycle,

can be as low as a typical communication bandwidth of a

few MHz. Since gigahertz clock frequencies (that determine

the filters center-frequency) are possible, Q = fs/BW can be

very high. As the linearity of passive mixers can be very good,

while the properties of switches and capacitors scale favorably

with the reduction in the feature size of CMOS technologies,

this explains the increased recent interest in N -path filters and

mixer-first receivers.

The attractive properties of N -path filters and mixers

bring along design challenges related to linear periodic time

variant (LPTV) circuit operation. Time-variance results in

signal folding, similar to aliasing in samplers, but with at-

tenuation due to the embedded low-pass filtering [20], [21].

By increasing the number of paths, folding products in a wider

signal band can be canceled, but there are practical speed

and power limits to multi-phase clock generation. Further,

errors in clock phase and capacitor mismatch also limit the

achievable cancellation. Hence, assistance by a linear time

invariant (LTI) pre-filter, typically a low-pass L-C filter (see

1A resistor is sometimes added to aid impedance matching, but its value
is usually significantly higher than R, and it plays a secondary role that we
neglect.
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Fig. 2. (a) The switch-RC N -path mixer/filter, with N = 4. (b) The kernel
used for analysis. (c) The 4-path mixer/filter with source inductance L and
parasitic capacitance Cs.

Fig. 2(c)), will be needed to achieve sufficient suppression

of high-frequency folding. Note that the switched capacitors

in Fig. 2(c) now interact with memory elements (L and Cs)

instead of a memoryless resistor. In this paper, we will analyze

this interaction and show how it can be exploited to the benefit

of N -path filter and mixer performance.

For a resistive signal source as in Fig. 2(a), the capacitors

do not interact as long as the clocks do not overlap. The circuit

can then be split into independent switch-RC kernels [22], as

shown in Fig. 2(b). Once the transfer functions and noise of the

kernel have been determined, those of the complete network

are easily obtained. Several works [21]–[24] have derived the

properties of the kernel. A key insight that emerges from these

papers is that the voltage sampled on the capacitor plays a

crucial role in determining the behavior of the network, not

only for discrete-time signal processing, but also when using

the time-continuous output of the mixer or N -path filter.

If we now add a parasitic capacitance Cs at the RF node

vx, as in Fig. 2(c), baseband capacitors start to interact via Cs.

It turns out that this degrades the gain, noise and selectivity

of the N -path structure. The kernel approach is no longer

applicable, since the filter capacitors C1,··· ,4 share charge with

each other through Cs. The network now consists of five

capacitors and four switches, and the methods of [25] becomes

algebraically involved.

It has been observed that adding a series inductor (a

nonzero L in Fig. 2(c)) can improve the filter transfer function

and reduce noise figure [15], [26], [27]. The inductor, like

Cs, introduces coupling between the four capacitors, again

rendering the kernel approach inapplicable. In [26], exact

equations for this case were derived for the network of

Fig. 2(c) (with Cs = 0) using the methods of [25] the resulting

frequency-domain analysis is seen to be very lengthy.

In this work, we determine the effect of shunt capacitance

and series inductance on the properties of N -path mixers

and filters. It turns out that, like in the case of Fig. 2(a),

the voltages sampled on the capacitors play a crucial role in

determining the properties of continuous-time output of the N-

path structure. As in [21], we exploit the adjoint network to

determine the transfer function of the equivalent LTI filter from

the input to sampled capacitor voltages in a simple manner.

For a derivation we refer to [21], [28], but the key properties

of sampled LPTV networks that we exploit are:

a. The samples of the output of an LPTV system varying at

the sampling frequency fs, can be thought of as being ob-

tained by sampling the output of an appropriately chosen

LTI filter with impulse response denoted by heq(t).
b. heq(t) can determined by exciting the adjoint of the

original network, as described using Fig. 3.
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Fig. 3. Determining the impulse response of the equivalent LTI filter
corresponding to an LPTV system with sampled outputs using the inter-
reciprocal (or adjoint) network. l is an integer.

When compared to frequency-domain methods, using

the adjoint impulse-response method turns out to be simpler,

since the impulse “dies” immediately after application (as

opposed to analysis with a sinusoidal excitation). We apply

this technique to N -path mixers and filters with parasitic shunt

capacitance and series inductance in the rest of the paper,

which is organized as follows. Section II derives the impulse

response of the equivalent LTI filter relating the input to the

voltage sampled on the capacitors, when the signal source

has a parasitic capacitance Cs. We show that Cs not only

reduces the peak gain around fs, but also causes the peak to

shift left. While this phenomenon has been recognized before

[20], our analysis quantifies the effect, and gives a fresh time-

domain perspective. In Section III, we derive a signal flow

graph relating the RF input to the output in the N -path filter

and passive-mixer modes. Section IV analyzes the case with

a series inductor. The intuition gained from Sections II and

IV are combined in Section V to show that an appropriately

chosen inductor can largely nullify the deleterious effects of

the shunt capacitor, by restoring the gain and reducing the

peak-shift of the filtering characteristic. Conclusions are given

in Section VI.
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II. ANALYSIS WITH THE SWITCH-RC N -PATH NETWORK

WITH PARASITIC SOURCE CAPACITANCE

The ideal switch-RC N -path structure is extended with

a parasitic source capacitance Cs, as shown in Fig. 4, since

the switching transistors will introduce parasitic capacitance

on the source side.
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0 Ts

τ

φ1
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φ4
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Fig. 4. N -path filter/passive-mixer core with a parasitic capacitance Cs, and
switch timing, for N = 4.

Each of the switches is on for τ = Ts/N , and only one

switch is on at any given time. Ideal switches (infinite off and

zero on resistance) are assumed. The capacitors are named

C1,··· ,4 in the figure to be able to uniquely identify them in

the discussion that follows; however, all of them are equal

to C. The sinusoidal input excitation is denoted by vi. The

voltage across C1,··· ,4 are denoted by v1,··· ,4(t) respectively.

Since the capacitors are equal, it is enough to determine v1(t)
– the others can be derived using symmetry. The voltage

sampled on C1 plays a crucial role in the determination of

the transfer functions of the N -path structure. Thus, as in our

analysis without parasitic capacitance [21], we first determine

the equivalent LTI transfer function (whose impulse response

is denoted by heq(t)) that relates vi to v1(t) at the falling

edges of φ1 i.e, v1[kTs]. As seen in Fig. 4, Cs introduces

coupling between the N capacitors, and the “independent

kernel” approach of [22] cannot be used. Without loss of

generality, we analyze the circuit for N = 4. The results are

readily extended to arbitrary N .

To determine heq(t), we form the adjoint network, as

shown in Fig. 5(a). Note that all the clock signals, denoted

by the hatted symbols, are time-reversed in the adjoint. The

voltages across the capacitors C1,··· ,4 are denoted by v̂1,··· ,4
respectively. v̂x denotes the voltage across Cs.2 Next, we

inject a current impulse into C1 at the rising edge of φ̂1.

From the theory of the adjoint network, the current waveform

through the resistor is the desired heq(t) [28]. Upon appli-

cation of the impulse, C1 and Cs are instantly charged to

v̂1(0+) = 1/(C + Cs). Thus, heq(t) is the current waveform

in R that results when C1 and Cs are charged to 1/(C+Cs)
at t = 0+.

When φ̂1 is high, v̂1 and v̂x are identical, and decay

exponentially with a time-constant R(C + Cs). At t = τ−,

v̂1(τ−) = v̂1(0+)e−τ/R(C+Cs) ≡ βv̂1(0+) (see the table

below Fig. 5(a)). If the voltage across the relevant capacitor

at the beginning of the “on” phase of the switch is known, v̂x
during the rest of the phase can be determined, since the initial

voltage decays exponentially with time-constant R(C + Cs).
To determine v̂x(t) (which equals heq(t)/R), therefore, it

2The hats remind us that we are dealing with quantities pertaining to the
adjoint network.

t/Ts

10 2
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Fig. 5. (a) The adjoint network, with voltages on the capacitors indicated
at the beginning of the first and second clock cycles. (b) A representative
v̂x waveform; the portion for 0 ≤ t < Ts is denoted by p(t). For practical
values of Cs, C and N , v̂x ≈ 0 at t = Ts−. Note that heq(t) = v̂x/R.

suffices to keep track of v̂1,··· ,4 at the beginning of the “on”

phase of every switch signal. Further, by exploiting symmetry

and linearity, only the samples of v̂1,··· ,4 at 4τ+ can be used

to determine heq(t) for all time, as shown later in this section.

We now proceed to determine v̂1,··· ,4(4τ+).

At t = τ−, C1 is disconnected from the network and

C2, which was initially discharged, is connected to Cs. The

voltage across C1 is thus held at βv̂1(0+) for the remainder

of the clock cycle. Due to charge sharing, the voltage across

C2 at t = τ+ is

v̂2(τ+) = βv̂1(0+)
︸ ︷︷ ︸

v̂1(τ−)

Cs

(C + Cs)
︸ ︷︷ ︸

α

= αβv̂1(0+) (1)

where α = Cs/(C + Cs) and β = e−τ/R(C+Cs). In a similar

fashion, exponential decay and charge sharing with C3 and C4

occur when φ̂3 and φ̂4 are high respectively, and we have

v̂3(2τ+) = v̂x(2τ+) = (αβ)2v̂1(0+)

v̂4(3τ+) = v̂x(3τ+) = (αβ)3v̂1(0+). (2)

The table in Fig. 5(a) shows v̂1,··· ,4 normalized to

v̂1(0+), at the beginning of integer multiples of τ+. Let

us now examine the voltages across the capacitors at t =
4τ+ = Ts+. When φ̂1 goes high at 4τ+, the voltage

across C1, which was βv̂1, is now reduced by a factor

C/(C + Cs) = (1− α) due to charge sharing with Cs, which

had a voltage βv̂4(3τ+) = α3β4v̂1(0+) at t = 4τ−. Thus, at

t = Ts+,

v̂1(4τ+) =
C

C + Cs
v̂1(τ−) +

Cs

C + Cs
v̂4(4τ−)

= (β(1− α) + α4β4)v̂1(0+). (3)
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This result makes intuitive sense as the first term relates to

charge stored on C1(= C) which is shared with Cs, while the

second relates to charge on Cs shared with C1.

Having determined the voltages on the capacitors at

t = 4τ+ = Ts+, we are now in a position to determine heq(t).
Recall that heq(t) is the current through the resistor due to

an initial voltage of v̂1(0+) on C1 and Cs, with all other

capacitor voltages being zero. Let us denote the waveform

heq(t) for 0 ≤ t < Ts by p(t), as shown in red in

Fig. 5(b). The voltages across C1,··· ,4 at t = 4τ+ = Ts+ are

shown in grey in the table of Fig. 5(a). Their contributions

to heq(t) can be evaluated using superposition by consid-

ering them one at a time (i.e., all other capacitor voltages

being zero). At t = 4τ+ = Ts+, C1 and Cs have a voltage

(β(1− α) + (αβ)4)v̂1(0+). Due to linearity and the LPTV

nature of the network, the contribution of this voltage to

heq(t) can be written as (β(1− α) + (αβ)4)heq(t− Ts). In

a similar fashion, using symmetry, the contributions of the

voltages across C2,3,4 can be expressed in terms of heq(t),
with appropriate scaling factors and delays. Hence, heq(t)
consists of five contributions: p(t), that describes heq(t) in

the initial clock cycle, followed by contributions from each of

the four capacitors. heq(t) can thus be recursively written as

follows.

heq(t) = p(t)
︸︷︷︸

heq(t) for 0 ≤ t < Ts

+

(β(1− α) + (αβ)4)heq(t− Ts)
︸ ︷︷ ︸

heq(t) for t > Ts due to v̂1(4τ+)

+ α(1− α)β2heq(t− Ts − τ)
︸ ︷︷ ︸

heq(t) for t > Ts due to charge on C2

+α2(1− α)β3heq(t− Ts − 2τ)
︸ ︷︷ ︸

heq(t) for t > Ts due to charge on C3

+α3(1− α)β4heq(t− Ts − 3τ).
︸ ︷︷ ︸

heq(t) for t > Ts due to charge on C4

Note that the (1 − α) terms appear due to attenuation when

the capacitors share charge with Cs. Applying the Fourier

transform to both sides of the equation above, we have

Heq(f) =
P (f)

[
1− (β(1− α) + (αβ)4)z−4 − α(1− α)β2z−5

− α2(1− α)β3z−6 − α3(1− α)β4z−7

] .

(4)
where

• P (f) is the Fourier transform of heq(t) for 0 ≤ t < Ts.

• α = Cs/(Cs + C), β = exp (−τ/(R(C + Cs))) and

• z = exp(j2πfτ).

Note that Heq(f) is the transfer function of a continuous-time

filter, and z is short hand for exp(j2πfτ). The astute reader

might wonder why z = ej2πfτ is used (as opposed to ej2πfTs ).

There are two reasons for this choice.

a. Though the clock period is Ts, the input is sampled on

to one of the capacitors every τ seconds, making the

effective sampling rate 1/τ . Thus, using z = ej2πfτ

makes sense.

b. On the practical front, choosing z = ej2πfτ results in

integer powers of z in the expressions for Heq(f). If

z was chosen to be z = ej2πfTs the fractional powers

of z that would appear in our expressions could lead to

computation errors unless great care is exercised. Integer

powers of z avoid this problem.

To determine P (f), we note that p(t) for 0 ≤ t < τ is an

exponentially decaying pulse given by

p(t) =
1

R(C + Cs)
e−

t
R(C+Cs)u(t) , 0 ≤ t < τ. (5)

where u(t) is the unit-step function. The Fourier

transform of this part of p(t) is given by

(1− βe−j2πfτ )/(1 + j2πfR(C + Cs)). For τ ≤ t < 2τ , the

shape of p(t) is the same, but has a peak value of αβv̂1(0+).
Reasoning similarly for 2τ ≤ t < 3τ and 3τ ≤ t < 4τ , and

using the table in Fig. 5(a), we have

P (f) =

(1− βe−j2πfτ )(1 + αβz−1 + (αβ)2z−2

+ (αβ)3z−3)

1 + j2πfR(C + Cs)

=
(1− βe−j2πfτ )

1 + j2πfR(C + Cs)

1− (αβz−1)4

1− αβz−1
. (6)

(4), along with (6), yields Heq(f) for arbitrary Cs.

As a sanity check, when Cs = 0 and α = 0,

Heq(f) =
1

1 + j2πfRC

1− βe−jπfτ

1− βe−j2πfTs
(7)

where β = exp (−τ/RC). This is consistent with the results

of [21]–[23].
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Fig. 6. Comparison of analytical and simulated |Heq(f)|, for Cs = 5 pF
(α = 0.1) and Cs = 50 pF (α = 1). N = 4, C = 50 pF, R=50Ω and
fs = 1GHz.

Fig. 6 compares the analytically determined |Heq(f)|
with that obtained from simulations3, for α = 0.1 and

α = 1. Excellent agreement is seen. For α = 1, Cs = C, a

situation that will probably not occur in practice; the purpose

of illustration is to demonstrate the accuracy of our analysis

even for very large Cs.

As mentioned in the introduction, and seen in [21],

[23], the sampled capacitor voltage plays a crucial role in

the performance of the switched-RC circuit. The presence of

Cs does not alter this fact, as we will show in Section III.

Anticipating this, we now examine the behaviour of Heq(f).
It turns out that this gives valuable insights into the operation

of the network as a passive mixer or N -path filter.

Fig. 7(a) shows |Heq(f)| for different values of Cs (where

α ranges from 0− 0.2), for N = 4, C = 50 pF, R =50Ω and

3Heq(f) can be obtained from simulations using the sampled-PXF analysis.
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Fig. 7. |Heq(f)| for Cs = 0, 2.5, 5, 7.5 and 10 pF. N = 4, C = 50 pF,
R=50Ω and fs = 1GHz.

fs = 1GHz. Figs. 7(b) and (c) are zooms of |Heq(f)| around

f = fs and f = 3 fs respectively. We see that increasing

Cs reduces the gain of |Heq(f)| at fs, but also results in a

less selective response. We see that Cs causes the peak of the

responses to shift. Interestingly, for frequencies around fs, the

peaks shift left, for those around 2fs, the peaks do not shift,

while they shift right for f ≈ 3fs. We now give more intuition

for each of these effects.

In a well-designed practical N -path structure, α will

be small (typically less than 0.1) to avoid the reduction in

gain and selectivity. (4) and (6) can then be approximated by

neglecting terms containing α2 and higher powers of α. We

then have

Heq(f) ≈
P (f)

1− β(1− α)z−4 − α(1− α)β2z−5
(8)

P (f) ≈
(1− βe−j2πfτ )

(1 + j2πfR(C + Cs))(1− αβz−1)
.

The equations above have a form similar to that when

Cs = 0 (where α = 0), except for a z−5 and z−1 terms in

the denominators of Heq(f) and P (f) respectively. Looking

back at our derivation, we see that these terms are due to the

coupling between C1 and C2, introduced by Cs. From these

equations, therefore, it is seen that for all practical purposes,

the coupling between C1 and C3,4 are not important; it is the

interaction between C1 and C2 (which is the capacitor that is

switched in next) that matters.

0 1 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

t/Ts

h
e
q
(t
)(
T
s
/R

C
)

Cs = 0

Cs = 5pF

Fig. 8. heq(t) for Cs = 0 and Cs = 5 pF. N = 4, C = 50 pF, R=50Ω and
fs = 1GHz.

A. Gain and Q Reduction

Fig. 8 shows the impulse responses of the equivalent LTI

filters relating vi to the voltage sampled on C1, for α = 0
and α = 0.1. We notice two differences with a non-zero Cs.

First the peak value is reduced with respect to when Cs = 0.

Next, the response decays much faster – as anticipated from

the smaller coefficient of the z−4 term in the denominator of

(8). We skip the details here, but calculations show that for

small α, the reduction in the peak gain due to a non-zero Cs,

for f ≈ fs is approximately (1− β)/(1− β(1− α)).

B. Peak Shift

The shift in the peaks of the transfer function around

f = fs can be understood by evaluating the denominator of

Heq(f) in (8) for z = ej2πTs(fs+∆f)/4.

Heq(fs +∆f) =
P (fs +∆f)

1− β(1− α)e−j2π∆fTs

+ jα(1− α)β2e−j2.5π∆fTs

. (9)

Since ∆f ≪ fs and α ≪ 1, using e−j2π∆fTs ≈ 1−j2π∆fTs

and e−j2.5π∆fTs ≈ 1, this can be approximated as

Heq(fs+∆f) ≈
P (fs)

1− β(1− α) + jβ(1− α)(2π∆fTs + αβ)
.

(10)

The magnitude of Heq will attain its maximum at that fre-

quency where the magnitude of its denominator is minimum.

This occurs when the last term of the denominator becomes

zero, which corresponds to

∆f

fs
= −

αβ

2π
. (11)

Thus, the peak in the response occurs at a frequency less than

fs. For the response around 3fs, Heq(f) can be approximated

as

Heq(3fs+∆f) ≈
P (3fs)

1− β(1− α) + jβ(1− α)(2π∆fTs − αβ)
.

(12)

Thus, around 3fs, the peak is shifted to the right by

fsαβ/(2π). Similar analysis leads us to conclude that there

should be no peak shift for frequencies around 2fs. The

analytical and simulated peak frequency deviations around fs,

for varying Cs, are shown in Fig. 9. As seen in the analysis
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Fig. 9. Deviation of the peak frequency from fs as a function of Cs. C =
50 pF, R = 50Ω, fs = 1GHz and N = 4.

above, peak-frequency shift is due to the z−5 term in the

denominator of Heq(f), the root cause of which is the coupling

between C1 and C2 through Cs.

III. COMPLETE OUTPUT WAVEFORM: N -PATH AND

PASSIVE-MIXER MODE OF OPERATION

kTs (k + 1)Ts

v1k

v1(k+1)

1

0

(b)

τ

w(t)

off on

α = Cs

C+Cs 0 Ts

φ1

τ = Ts

N

C1C2C3C4

vxR

Cs
τ

vi

(a)

heq(t)

∑

k

δ(t− kTs)

vi

h(t)

∑

k

v1kδ(t− kTs)

(Ts − τ)

w(t)

1
R(C+Cs)

h(t)vi

∑

delay

v1,on(t)

∑

k

δ(t− kTs + τ)

∑

k

v2kδ(t− kTs + τ)

∑

k

v1kδ(t− kTs)

∑

k

v2kδ(t− kTs + τ)

(1− α)

α

(c)

vi heq(t)

∑

k

δ(t− kTs)

ZOH

Ts(d)

φ2φ3φ4

C1,··· ,4 = C

2⃝

1⃝

v1(t)

Fig. 10. (a) N -path circuit with parasitic capacitance, driven by a sinusoidal
input vi(t). (b) v1(t) and w(t) as defined in [21]. (c) Signal-flow graph
relating v1,on(t) to vi, needed for N -path operation. (d) Approximation to
v1(t) in the passive-mixer mode of operation.

So far, we determined the impulse response (heq(t)) of

the equivalent LTI filter that would produce the same samples

as v1(t) (sampled at the falling edge of φ1) in the N -path

structure of Fig. 4. This is all that would be needed if we

processed the samples, as in a switched-capacitor filter or

A/D converter. The output of an N -path filter or a mixer-first

switch-RC receiver (with implicit N -path filtering), however,

is often used in a time-continuous way. In such circuits,

therefore, it is necessary to know the entire output voltage

across the capacitors. Fortunately, it is adequate to determine

the voltage across one of the capacitors; the others can be

found by symmetry. In the discussion that follows, therefore,

we focus on v1(t), which the voltage on C1 in response to an

excitation vi(t) (see Fig. 10(a)).

v1(t) is seen to be comprised of two waveforms, v1,on(t)
that is non-zero when φ1 is high, and v1,off (t), which is

non-zero when φ1 is low, as shown in red and blue in

Fig. 10(b) respectively. v1,on(t) is of interest when the circuit

of Fig. 10(a) is operated as an N -path filter, since the output

is vx, which is the sum of the ‘on’ portions of the waveforms

v1,··· ,4(t). v1,off (t) for kTs < t < (k + 1)Ts − τ is simply a

zero-order-hold (ZOH) version of v1[kTs] ≡ v1k.

The signal-flow graph for the v1(t) can be developed as

described in [21], with additional branches needed to account

for charge-sharing. The details are omitted here due to space

constraints. It turns out that the flow-graph reduces that of

Fig. 22 in [21] when α = 0. We discuss below the relevant

aspects of the the signal-flow graph during the N -path filter

and passive-mixer modes of operation.

A. Operation as an N-Path Filter

The signal-flow graph that relates vin(t) to v1,on(t) is

shown in Fig. 10(c), where h(t) = e−t/(R(C+Cs)). Since

the voltages across C1 and C2 are coupled through Cs, it

is necessary to keep track of the samples of v2, denoted by

v2k. A non-zero α has the following effects:

a. extra loss in path 1⃝, as charge sharing with Cs result is

extra loss, and is modeled by the factor (1− α).
b. v2k contributes to the output through the factor α due to

charge-sharing.

c. the time-constant of the exponential decay is R(C +Cs)
instead of RC.

When vi = ej2πft, the component of v1,on(t) at the frequency

f , is the sum of contributions from paths 1⃝ and 2⃝, which

are seen to be

Path 1⃝ →

−
Heq(f)

Ts
︸ ︷︷ ︸

F(heq(t))
and sampling

R(C + Cs)

1 + j2πfR(C + Cs)
︸ ︷︷ ︸

F(h(t))

(1− e−j2πf(Ts−τ))(1− α)

Path 2⃝ →
τ

Ts
︸︷︷︸

dc component
of w(t)

·
1

1 + j2πfR(C + Cs)
︸ ︷︷ ︸

F(h(t)/R(C+Cs))

. (13)
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Thus, X0(f), the zeroth-order harmonic transfer function of

the N -path filter, given by N · V1,on(f)/e
j2πft, and using

Nτ = Ts, is seen to be

X0(f) =
1

(1 + j2πfR(C + Cs))

[

1−

R(C + Cs)

τ
Heq(f)(1− α)

{

1− e−j2πf(Ts−τ)
}]

. (14)

0.5 1 1.5 2 2.5 3 3.5-50
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f/fs

|X
0
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)|

(d
B

)

Analytical

Spectre

Fig. 11. Analytical versus spectre PAC simulations in the N -path filter mode.
R = 50Ω, C = 50pF, Cs = 5pF, fs = 1GHz.

Fig. 11 compares |X0(f)| determined analytically with

that obtained from a periodic-AC simulation, for fs = 1GHz,

C = 50 pF, R = 50Ω and α = 1/11. Excellent agreement is

seen.

Higher order harmonic transfer functions can similarly

be determined from the signal-flow graph of Fig. 10(d). Space

constraints prevent us from going into a detailed discussion

here, but the conclusion is that higher-order harmonic transfer

functions are (also) largely determined by the behavior of

Heq(f).

B. Passive-Mixer Mode of Operation

When operated as a passive mixer, the complete voltage

waveforms across the capacitors are relevant. The input fre-

quency is very high compared to the bandwidth of the RC
network. Further, RC ≫ τ , which means that β is close to

unity. As we have already discussed, v1,off (t) is simply v1k
held for a duration of (Ts−τ). When φ1 goes high, C1 shares

charge with Cs, attenuating its voltage by a factor (1 − α).
If α is small, this can be neglected. Further, since RC ≫ τ ,

v1,on(t) can be approximated to v1k held for a duration τ .

Thus, as in the case with Cs = 0, the output in the passive

mixer mode can be thought of as the sampled version of the

voltage across C1, held for a whole clock period. The signal-

flow graph relating vi(t) to v1(t) in the passive-mixer mode

can therefore be approximated as shown in Fig. 10(d).

Fig. 12 compares the results of our analysis with peri-

odic transfer function (PXF) simulations from Spectre. Since

the PXF analysis considers the entire waveform across the

capacitor, the good agreement with our approximate analysis

confirms that the sampled output of the capacitor is almost all

that matters in the mixer region, as far as the loss and shape

around the peaks is concerned. |Heq| when Cs = 0 is also

shown for comparison – we see significant drop in the gain

0.5 1 1.5 2 2.5 3 3.5
−40

−30

−20

−10

0

f/fs

|H
e
q
|,
P
X
F
(d
B
)

Analytical, α = 1/11

Spectre PXF

α = 0

Fig. 12. Analytical versus spectre PXF simulations: for the passive-mixer
mode, with R = 50Ω, C = 50pF, Cs = 5pF(α = 1/11), fs = 1GHz.
The response for Cs = 0 is also shown for reference.

at fs. From the analysis in Section II.B, this gain should drop

by about (1−β)/(1−β(1−α)) = 5.8 dB, as confirmed from

Fig. 12.

Far-out maximum filter attenuation is not accurately

predicted by the signal-flow graph of Fig. 10(d), but this is

often limited in practice by other effects that are not modeled

here, e.g. switch resistance. The aim of this work is the first-

order modeling of the key filter parameters: insertion-loss and

close-in filter roll-off.

IV. ANALYSIS WITH SOURCE INDUCTANCE

vi

R

φ1

C1C2C3C4

L

τ =
Ts

N

0 Ts

τ

φ1

φ2

φ3

φ4

C1,2,3,4 = C

φ4 φ3 φ2

Fig. 13. N -path switching mixer with an inductive source impedance, with
N = 4.

In this section, we analyze the N -path passive mixer

with an inductive source impedance, as shown in Fig. 13. We

assume instantaneous switching as in [26], so that the inductor

immediately connects from one capacitor to another. Like the

case with the parasitic capacitor, the inductor introduces cou-

pling between the four paths, complicating analysis. Further,

we assume the practical situation, where RC ≫ L/R. To find

the impulse response of the equivalent LTI filter relating vi to

the sampled voltage across C1, we form the adjoint network as

shown in Fig. 14(a). We excite C1 with an impulsive current

at t = 0, resulting in a voltage v̂x(0+) = 1/C. Thanks to

the inductor, the current through the resistor is smaller than

what it would have otherwise been, as shown in Fig. 14(b).

Thus, after a time τ , the capacitor voltage is larger than what it

would have been, had L been 0. Intuitively, therefore, we must

expect the waveforms to “last” for a much larger time when

compared to the case without the inductor. This means that the

Q of the resulting filter should be higher. When the inductor

is switched to C2 (which was initially uncharged), the îL(t),
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−

v̂3(t)
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−

v̂2(t)
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2τ+ αhL(τ) 0 0 LCh2
L
(τ) β

3τ+ α2hL(τ) 0 αLCh2
L
(τ) LCh2

L
(τ) β

4τ+ α
3
hL(τ) α2LCh2

L
(τ) αLCh2

L
(τ) LCh2

L
(τ) β

L = 0

L = 0

Fig. 14. (a) The adjoint network. (b) Representative inductor current and v̂x
waveforms. The corresponding waveforms when L = 0 are shown in grey.

which was established in the previous clock phase, continues

to flow in the same direction, thereby causing v̂x to become

negative in the second phase, as shown in Fig. 14(b). This trend

continues in the third and fourth intervals. For practical values

of L, the inductor is virtually “disfluxed” at t = 4τ− = Ts−,

since L/R ≪ Ts. We assume that îL(Ts) = 0.

+ −

R

C1

v̂x

0

h(t)

îL(t)

v̂x(0+) = 1

C

(a) (b)

L

îL(t)

t/Ts

0

v̂x(t)

δ(t)

Ts

Tsτ

h(τ)

v̂x(0+) βv̂x(0+)

R

C2

v̂x
L

îL(t)

LîL(τ)δ(t− τ)(c)

Fig. 15. (a) Equivalent circuit for the duration 0 ≤ t < τ . (b) îL(t) in
response to an impulse current injected into the capacitor is denoted by hL(t).
The capacitor voltage at t = τ− is βv̂x(0). (c) Calculating the effect of the
inductor current on the capacitor voltage during τ ≤ t < 2τ .

Fig. 15(a) shows the equivalent circuit for the duration

0 ≤ t < τ . In the analysis that follows, we denote the impulse

response from the current injected into the capacitor to the

inductor current îL(t) by hL(t). In the Laplace domain, the

transfer function can be seen to be

ÎL(s)

Îin(s)
= L(hL(t))

=
1

1 + sCR+ s2LC
≡

1

(1 + sτ1)(1 + sτ2)
.

Expressing the denominator polynomial as a product of two

real poles is justified in the passive-mixer mode4, where

RC ≫ L/R. Without loss of generality, we assume that

τ2 > τ1. With this assumption, to first-order, τ1 ≈ L/R
and τ2 ≈ RC. It turns out that the following are better

approximations.

τ1 ≈
L

R

(

1 +
L

CR2

)

, τ2 ≈ RC

(

1−
L

CR2

)

. (15)

hL(t) is seen to be

hL(t) =
1

τ2 − τ1

(

e−
t
τ2 − e−

t
τ1

)

u(t). (16)

The inductor current at t = τ is îL(τ) = hL(τ). The

voltage across the capacitor at t = τ is given by

v̂x(τ) =
1

C

[

1−

∫ τ

0

hL(t) dt

]

=
1

C

(τ2e
− τ

τ2 − τ1e
− τ

τ1 )

(τ2 − τ1)
︸ ︷︷ ︸

β

≡ βv̂x(0+). (17)

In practice, β will be slightly smaller than one. At t = τ ,

the inductor is abruptly switched to C2, which is uncharged.

The inductor current îL(τ) can be modeled as a voltage

impulse LîL(τ)δ(t−τ) in an initially relaxed RLC network, as

shown in Fig. 15(c). We can exploit reciprocity to determine

the effect of this voltage impulse on v̂x at t = 2τ as

follows. Recall that a current impulse across the capacitor

at t = 0 results in an inductor current hL(τ) at t = τ .

Invoking reciprocity, a voltage impulse of amplitude LhL(τ)
at t = τ in series with the inductor should result in a

capacitor voltage −LhL(τ) · hL(τ) = −Lh2
L(τ) at t = 2τ .

Using v̂x(0+) = 1/C, this can be equivalently expressed

as −LCh2
L(τ)v̂x(0+). We determine îL(2τ) next. Referring

to Fig. 15(c), we see that the impulse response relating the

voltage in series with the inductor (and capacitor) to îL(t) is

Ch′
L(t). Since the magnitude of the impulse voltage is LîL(τ)

and it occurs at t = τ , it follows that

îL(2τ) = −LîL(τ)C
dhL(t)

dt

∣
∣
∣
∣
t=τ

(18)

= îL(τ)
︸ ︷︷ ︸

hL(τ)

(τ1e
− τ

τ2 − τ2e
− τ

τ1 )

(τ2 − τ1)
︸ ︷︷ ︸

α

≡ αhL(τ).

4Note that the quality factor of this RLC network is smaller than 1 even
for inductors as large as several nH, due to the series resistance ( typically
50Ω) and the multi-pF C values needed to achieve N -path filter bandwidths
in the order of a few MHz targeted at channel selection.
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In practice, since L/R < Ts, it will follow that α will be a

small number.

At t = 2τ , the inductor is switched to C3. Using the same

line of arguments as above, it is easy to see that

v̂x(3τ) = −Lαh2(τ) , v̂x(4τ) = −Lα2h2(τ) (19)

and

îL(3τ) = α2hL(τ) , îL(4τ) = α3hL(τ). (20)

The table of Fig. 14(a) gives the inductor current and

capacitor voltages at integer multiples of τ . The last row is of

particular interest, as it allows us to write a recursive relation

for îL(t). Since α ≪ 1 for practical values of L, we assume

that îL(4τ) = îL(Ts−) = 0. Like we did when we analyzed

the structure with a parasitic source capacitance, we can write

îL(t) = p(t) + βîL(t− Ts)− LCh2
L(τ )̂iL(t− Ts − τ)

−αLCh2
L(τ )̂iL(t− Ts − 2τ) (21)

−α2LCh2
L(τ )̂iL(t− Ts − 3τ)

where p(t) denotes îL(t) for 0 ≤ t < Ts.

Since Heq(f) is the Fourier transform of îL(t), we have

Heq(f) =
P (f)

[
1− βz−4 + LCh2

L(τ)z
−5

+ αLCh2
L(τ)z

−6 + α2LCh2
L(τ)z

−7

] (22)

where z ≡ ej2πfτ . A few observations are in order.

a. Adding the inductor results in a β that is closer to unity

than when L = 0. While this can be deduced from (17),

this makes intuitive sense due to the following. Adding

the inductor reduces current drawn from C1, causing a

larger fraction of its charge to remain on it at t = τ . Thus,

we should expect that the addition of the series inductor

increases the magnitude of Heq(f) around multiples of

fs.

b. The sign of the coefficient of z−5 in the denominator of

(22) is positive, unlike in the case of a parasitic source

capacitor. Thus, we should expect that the peak of the

response around fs shifts to the right, while that around

3fs shifts towards the left. The peak around 2fs does

not shift. From (22), it is easy to see that the peak shift

around fs is given by

∆f

fs
≈

LCh2(τ)

2πβ
. (23)

c. In our analysis, we expressed the transfer function of the

RLC circuit as the product of two first-order systems with

time-constants τ1 and τ2. This is justified in practice,

since RC ≫ L/R.

d. When considering analysis with a parasitic source ca-

pacitance Cs, or series inductance L, β represents the

fractional loss of charge on the filter capacitor in a time-

interval τ . α represents the coupling from one filter

capacitor to the next, induced by Cs or L.

A question that remains is “how do we determine p(t)?”.

Recall that p(t) is îL(t) in the interval 0 ≤ t < Ts when

a current impulse δ(t) is injected into C1 in the circuit of

Fig. 14(a). Due to the action of the switches, the v̂x goes to

R

C

v̂x

(a)

L

îL(t)

δ(t)− βδ(t− τ)+

LCh2(τ)δ(t− 2τ) + · · ·

1

1+sτ1

1

1+sτ2
≈ 1− β exp(−j2πfτ))δ(t)

(b)

τ0

1

τ2 β/τ2

p(t)

t
0 t

1

τ1

τ1 ≈ L/R τ2 ≈ RC − τ1

Fig. 16. (a) Approach to determine p(t). (b) The inductor effectively pre-
filters the input with an RL lowpass filter.

zero at t = τ+, 2τ+ and 3τ+. p(t) can be thought of as

the current that results by exciting the capacitor of an LTI

RLC circuit with a impulse current sequence as shown in

Fig. 16(a). The sequence is chosen so that v̂x(t) goes to zero

at t = τ, 2τ, 3τ , like in the N -path circuit of Fig. 14(a). Since

we know v̂x at τ ,2τ and 3τ is given by β/C, −Lh2
L(τ) and

−αLh2
L(τ) respectively, it is seen that î(t) in Fig. 16(a) should

be

î(t) = δ(t)− βδ(t− τ) + LCh2
L(τ)δ(t− 2τ)

+αLCh2
L(τ)δ(t− 3τ). (24)

Since hL(t) denotes the inductor current in response to a

current impulse injected into the capacitor, it follows that p(t),
which is îL(t) in response to i(t) above, is given by

p(t) = hL(t)− βhL(t− τ) + LCh2
L(τ)hL(t− 2τ)

+αLCh2
L(τ)h(t− 3τ). (25)

In the frequency domain, this corresponds to

P (f) = H(f)
(
1− βz−1 + LCh2

L(τ)z
−2 + αLCh2

L(τ)z
−3

)
.

Simplifying P (f) above results in an intuitively appealing

result, developed below. Neglecting the z−2 and z−3 terms

(since they are much smaller than β), we can express P (f) as

P (f) ≈ H(f)(1− βz−1) =
1− βz−1

(1 + j2πfτ1)(1 + j2πfτ2)
(26)

which when drawn in block diagram form, is as shown

in Fig. 16(b). It is instructive to determine the impulse

response of the second and third blocks in cascade. Since

τ2(≈ RC) ≫ Ts, the impulse response of the cascade is an

exponentially decaying pulse that lasts for a duration of τ .

This is the shape of p(t) that would be seen, had L been

zero. However, this is pre-filtered by a first order transfer

function with time-constant τ1 ≈ L/R, caused by the low-

pass action of the RL-series network. As a result, p(t) is

much “smoother” that it would otherwise be, resulting in a

better attenuation at high frequencies. Further, the reasoning
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above suggests that the 3-dB bandwidth of the RL low-pass

filter, namely R/(2πL), should be chosen to be higher than the

input frequency ≈ fs, to prevent the desired input from being

filtered out. This is consistent with the heuristic reasoning in

[26]. To summarize,

a. Introducing the series inductor increases the gain of

Heq(f) around fs, thanks to a β which is closer to one

(when compared to β without the inductor). This results

in a higher peak gain around multiples of fs, as well as

a higher Q, since the impulse response lasts longer.

b. The inductor acts as a pre-filter, by introducing an RL
lowpass filter into Heq(f). This is beneficial, since fre-

quencies at higher multiples of fs are better attenuated

before downconversion. The bandwidth of this low-pass

filter must be chosen so as to let through the desired

signal (with frequency ≈ fs).

c. The peak of Heq(f) around fs is shifted to the right,

i.e., a frequency greater than fs, by an amount given

by (23). The root cause for the frequency shift, as seen

from (22), is largely the voltage created on C2 due to

the coupling introduced by the inductor.

d. The model for the total voltage across the capacitor

in the passive-mixer mode can be thought of as zero-

order-holding the sampled voltage on the capacitor for

a complete clock period, as in Fig. 10(e).
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Fig. 17. Simulated |Heq(f)| compared with analytical results for N = 4,
fs = 1GHz, C = 50 pF, R = 50Ω and L = 10 nH. The periodic transfer
function of the entire voltage waveform across C1 is also shown.

Fig. 17 compares the simulated |Heq(f)| with our ana-

lytical results. Similar curves were generated for different L
values up to 10 nH, where the maximum model deviation was

found to be less than 0.5 dB for the L = 10 nH case. The

mixer used N = 4, fs = 1GHz, C = 50 pF, R = 50Ω
and L = 10 nH. The inductance chosen is somewhat large,

since the 3-dB bandwidth of the LR lowpass filter is only

R/(2πL) = 800MHz. The peak gain around f = 3fs
determined using (22) deviates from the simulated value by

about 0.4 dB. This is because at this value of L, îL(Ts) is not

negligible when compared to îL(τ) . The simulated |Heq(f)|
matches well with the response obtained from periodic transfer

function (PXF) simulations of the entire waveform (not just

the sampled output). This indicates that the sampled voltage on

C1,2,3,4 plays the most crucial role in determining the eventual

output of the mixer (which will be generated by harmonic

combination of the waveforms across C1,2,3,4.)

V. PEAK-SHIFT FREE PASSIVE MIXERS

In the preceding sections, we saw that for N = 4, a

parasitic source capacitance causes the peaks of the magnitude

response around fs to shift left, while adding an inductor

in series causes the peak frequency to shift right. We saw

that the root cause of this was the voltage sampled on the

second capacitor due to the coupling effect of the inductor

and parasitic source capacitor. Further we saw that the signs

of the voltages induced on to the second capacitor are opposite

for the inductive and capacitive cases. This suggests that

using an inductor and appropriately chosen capacitor should

result in a cancellation of these effects, thereby resulting in

a negligible peak-shift. As shown below, this is indeed the

case. Fig. 18 shows the adjoint network for the case of the

δ(t)

v̂x(0+) = 1

C

0 Ts

τ

φ̂1

C1C2C3C4

L

v̂x

Cs

îL(t)

R

Fig. 18. Adjoint network for a 4-path system with series inductance and
parasitic capacitance. Cs can be chosen to ensure gain peaking at multiples
of fs.

inductor and parasitic capacitance both being present. Clearly,

v̂x(0+) = 1/(C + Cs). At t = τ−, v̂x(τ−) = βv̂x(0+), and

îL(τ) = hL(τ). Note that β and hL(τ) must be determined

using (17) and (16) using (C + Cs) in place of C. When

C2 is switched, charge sharing occurs, resulting in v̂x(τ+)
dropping to v̂x(τ−)Cs/(C + Cs). Using superposition and

the arguments preceding (22) we see that v̂x(2τ−) (which is

the voltage stored on C2) is given by

v̂x(2τ−) = βv̂x(τ+)−Lh2(τ) =
β2Cs

(C + Cs)2
−Lh2(τ). (27)

This will be zero if β2Cs = (C+Cs)
2Lh2(τ). Using this, (17)

and (16), and approximating τ2 ≈ R(C +Cs) and τ1 ≈ L/R,

we have

L

Cs
≈

β2

h2(τ)(C + Cs)2
≈ R2 1

[

1− e

(

τ
τ2

− τ
τ1

)
] . (28)

From the expression above, it is seen that the characteristic

impedance
√

L/Cs should be chosen so that it is somewhat

higher than R.
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Fig. 19. v̂x(t) for different choices of L and Cs. N = 4, fs = 1GHz, C =
50pF, R = 50Ω.
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Fig. 20. Zoomed-in portions of the simulated |Heq(f)| around fs and 3fs for
different choices of L and Cs. N = 4, fs = 1GHz, C = 50pF, R = 50Ω.

Figs. 19 and 20 confirm the intuition above. Fig. 19

shows v̂x(t) (scaled by the numerical value of C) during

the first clock cycle. With an inductive source impedance and

Cs = 0, we see that v̂x goes negative when C2 is switched,

so that v̂x(2τ−) is negative. On the other hand, when L = 0
and Cs = 2 pF, v̂x(2τ−) is positive due to charge sharing.

Further, v̂x(0+) is smaller than in the inductor-only case.

With both the inductor and (appropriately chosen) capacitor

in place, we see that their effects largely cancel each other,

and v̂x(2τ−) ≈ 0. Thus, we should expect that the response

now peaks approximately at fs, 3fs etc. Fig. 20 shows the

zoomed-in portions of the magnitude response around fs and

3fs for different choices of L and Cs. Using a 10 nH inductor

alone not only results in a higher peak gain around fs, but a

peak that is shifted right. Cs = 2 pF with L = 0 results in a

lower peak gain, as well as a peak that is shifted left. When

L = 10 nH and C = 2 pF, we see (as we expected) that the

peaks in the responses occur approximately at fs and 3fs.

A. Effect of center-frequency tuning:

Fig. 21 shows the simulated |Heq(f)| around fs, as fs
is swept from 250 MHz to 1 GHz. Note that the x-axis is

normalized to fs. When L and Cs are zero, we see that
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Fig. 21. Simulated effect of frequency variation on |Heq(f)| as fs is tuned
from 250 MHz to 1 GHz. The x-axis is normalized to fs.

the peak location and gain at fs remain virtually unchanged

with tuning. With Cs = 2 pF, we see degradation in the

gain and selectivity, as well as a peak shift. When the series

inductor L is added to compensate for the effect of Cs, this

benefits gain and selectivity. The gain for low fs is enhanced

(from what one would have obtained without L and Cs), and

gradually decreases as fs increases. The bandwidth of the

LCsR network is about 1 GHz, so increasing fs beyond 1 GHz

yields no benefit.

VI. CONCLUSIONS

We analyzed the effect of source capacitance and in-

ductance on the performance of N -path structures using the

adjoint-network approach of [21]. The use of the adjoint

network not only simplified the algebra (when compared with

conventional analysis based on [25]), but also gave useful

insights on the influence of these “extra” elements on circuit

performance. We showed that source inductance/capacitance

introduce coupling between the capacitors of the N -path

circuit. Parasitic capacitance degrades gain around fs, and

shifts the peak-gain frequency to the left of fs. Source

inductance, on the other hand, increases the gain around fs,

while shifting the peak-gain frequency to the right of fs. Our

analysis yielded simple expressions for the peak shift in terms

of circuit parameters. Finally, we showed that an appropriate

choice of inductance and capacitance can restore the peak-

frequency to fs, increase selectivity and reduce the gain of the

N -path structure at higher multiples of fs. Simulation results

confirmed the validity of our analysis.
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