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Abstract

Linear theory is useful in determining small static and dynamic deflections. However, to charac-

terize large static and dynamic deflections, it is no longer useful or accurate, and more sophisticated

analysis methods are necessary. In the case of beam deflections, linear beam theory makes use of

an approximate curvature expression. Here, the exact curvature expression is used to derive the

governing partial differential equations that describe the in-plane equilibrium and dynamics of a

long, thin, inextensible beam, where the self-weight of the beam is included in the analysis. These

beam equations are expressed in terms of arclength, and the resulting equilibrium shape is called

the elastica. The analysis gives solutions that are accurate for any deflection size, and the method

can be used to characterize the behavior of many structural systems. Numerical and analytical

methods are used to solve or to approximate solutions to the governing equations. Both a shoot-

ing method and a finite difference, time-stepping algorithm are developed and implemented to find

numerical solutions and these solutions are compared with some analytical approximation method

results. The elastica equations are first used to determine both linear and nonlinear equilibrium

configurations for a number of boundary conditions and loading types. In the case of a beam with

a significant self-weight, the system can exhibit nonlinear static behavior even in the absence of

external loading, and the elastica equations are used to determine the weight corresponding to the

onset of instability (or self-weight buckling). The equations are also used to characterize linear and

nonlinear vibrations of some structural systems, and experimental tests are conducted to verify the

numerical results. The linear vibration analysis is applied to a vibration isolator system, where a

postbuckled clamped-clamped beam or otherwise highly-deformed structure is used (in place of a

conventional spring) to reduce system motion. The method is also used to characterize nonlinear

dynamic behavior, and the resulting frequency-response curves are compared with those in the lit-

erature. Finally, the method is used to investigate the dynamics of subsea risers, where the effects

of gravity, buoyancy, and the current velocity are considered.
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Chapter 1

Introduction

Linear theory is useful in determining small static and dynamic deflections. Here the assump-

tions made in linear theory are shown and an example is given of systems where the theory is

accurate. However, to characterize large static and dynamic deflections, linear theory is no longer

useful or accurate, and more exact analysis methods are necessary. In the case of beam deflec-

tions, linear beam theory makes use of an approximate curvature expression. Here, the limitations

of modeling using an Euler-Bernoulli (or linear) beam model are introduced, and in contrast, the

exact curvature expression is used to derive and solve the governing partial differential equations

that describe the equilibrium and dynamics of a long, thin, inextensible beam. The assumption of

no shear deformation is still made, as the beam is slender. The self-weight of the beam is included

in the analysis, permitting a study of its effects on the beam response. These beam equations are

expressed in terms of arclength, and the resulting equilibrium shape is called the elastica. The

analysis gives solutions that are accurate for any deflection size, and the method can be used to

characterize the behavior of many structural systems.

Next, the linear dynamics equations are presented and used to confirm familiar beam bending

vibration frequencies and mode shapes for a cantilever beam (where the self-weight is neglected).

Experiments are designed and conducted to verify static and dynamic results, using polycar-

bonate strips. The linear vibration frequencies are found, along with corresponding mode shapes.

Numerical and analytical methods are used to solve or to approximate solutions to the governing

equations. Both a shooting method and a finite difference, time-stepping algorithm are introduced

and used to find numerical solutions, and some analytical solution methods are compared with these

results.

Finally some previous work is presented. Numerical results are found for three systems (in-

cluding nonlinear static and linear dynamic results), and experiments are conducted to verify these

results.

1



1.1 Structural Behavior Analysis

The analysis of structural behavior (whether for static or dynamic response) can be categorized

in terms of linearity.

Figure 1.1: Structural Analysis in terms of linearity.

1.1.1 Statics

First, as illustrated in Figure 1.1, the linearity of the static problem is determined. In general,

the assumption of linearity is sufficient (in terms of accuracy) for the case of small static deflections,

and this assumption significantly simplifies the governing equations and solution process. In the case

of beam analysis, for example, Euler-Bernoulli beam theory assumes linearity and so is appropriate

for use in determining the static (or equilibrium) behavior of beams undergoing small deflections.

In this case, for a specific loading type, the weight of the beam itself is neglected, and the deflection

of the beam along its length can easily be found analytically by direct integration.

Of course for the case of large static deflections, the assumption of linearity is no longer valid.

The loaded beam, for example, behaves nonlinearly if the loading causes a lateral deflection with a

magnitude beyond some percentage of the beam length. In the case of a beam with a significant

self-weight, the system can exhibit nonlinear static behavior even in the absence of external loading.

Because linear beam theory results from an approximation of beam curvature, the exact equation

for curvature must be used for large deflections. Depending on the deflection size to be modeled,

this expression may be approximated by a truncated series (where use of the first term only is

equivalent to linear beam theory). The beam equations can be expressed in terms of arclength, and

the resulting equilibrium shape is called the elastica.

2



The exact expression for the curvature of a long, thin, inextensible beam is given by [1]

1

ρ
=

dθ

dS
(1.1)

where S and θ are the arclength of the beam and the angle formed by the beam with the X-axis,

respectively, as pictured for the case of the upright cantilever beam in Figure 1.2.

Figure 1.2: Upright vertical cantilever beam.

In Cartesian coordinates, the curvature is given by

1

ρ
=

dθ

dS
=

dθ

dX

dX

dS
=

d2Y
dX2

[1 + ( dY
dX )2]3/2

=
d2Y
dX2

1 + 3
2 ( dY

dX )2 + 3
8 ( dY

dX )4 + . . .
, (1.2)

where the denominator is expanded as a Taylor Series. If the slope of the beam, dY/dX , is small

along its entire length (as for linear beam theory), then its square and higher powers are negligible

and the curvature can be approximated using only the first series term, giving

d2Y

dX2
≈ 1

ρ
. (1.3)

Using the elastic flexure formula [2], the curvature can be expressed by

1

ρ
=

M

EI
, (1.4)

3



where M is the bending moment, and EI is the flexural rigidity (or bending stiffness). The exact

equation 1.1 is then written

dθ

dS
=

M

EI
. (1.5)

and the corresponding linear approximation for the curvature (equation 1.3) becomes

d2Y

dX2
≈ M

EI
. (1.6)

If the moment, M , can be expressed as an integrable function of the coordinate X , then the linear

approximation given by equation 1.6 can be used and integrated twice, using specified boundary

conditions. For the case of a cantilever, these conditions are

Y (0) = Y ′(0) = 0, Y ′′(L) = Y ′′′(L) = 0, (1.7)

where a prime denotes differentiation with respect to X . The resulting analytical displacement func-

tion, Y (X), gives the linear approximation for beam deflection under the given loading conditions.

If the self-weight of the cantilever is included in the analysis, however, the bending moment is in

the form of an integral, and so the linear equation 1.6 cannot be easily integrated to determine even

small-deflection behavior. Although the solution cannot be found analytically, some approximations

can be made from the assumption of small deflections, thereby simplifying the problem.

The term “heavy” is used to indicate that self-weight is included in the analysis, and the upright

heavy cantilever is shown in Figure 1.2. The beam has length L and weight per unit length W ≡ mg,

where m is the mass per unit length. The lateral deflection is given by Y . For a range of small self-

weight values, the beam remains in a straight, vertical configuration. But as the weight is increased,

the beam may undergo self-weight buckling (the trivial solution is still an equilibrium state, but

becomes unstable) [3]. The nonlinear governing equation for this case using the exact equation 1.5

is [4]

d2θ

dS2
=

−W (L − S) sin θ

EI
, (1.8)

and the corresponding Cartesian-coordinate equation (using equation 1.6) is given by [1]

d3Y

dX3
=

−W (L − X)

EI

dY

dX
. (1.9)

Equation 1.8 was first solved by Greenhill [3] using a Bessel function, and was used to determine

the critical buckling load (or self-weight) [1],

Wc ≈ 7.837EI/L3. (1.10)

4



Alternatively, an energy method may be used to determine the critical buckling load, where the

postbuckled beam deflection is assumed [1, 5].

The resulting non-trivial equilibrium configuration can be approximated with a number of meth-

ods. For postbuckled results near buckling (such that lateral beam deflections are small), a deflected

shape may be assumed and an energy method used to determine the weight-deflection relationship.

Virgin [5] used this method, where the deflected shape was assumed such that

Y (X) = Q [1 − cos (πX/2L)] , (1.11)

and the resulting load-deflection relationship was given by

W/Wc = 1 + 0.5186(Q/L)2. (1.12)

This expression is equivalent to

tan θL = (π/2)
√

(W/Wc − 1) /0.5186, (1.13)

where θL = θ(L) is the angle made by the tangent to the beam with the vertical at the free

end. Another method used in the literature is to make use of the exact curvature. Frisch-Fay [4]

approximated the solution using a Taylor Series, giving

θL − w sin θL/6 + w2 sin(2θL)/360 + w3 sin3 θL/5184− w3 cos θL sin 2θL/25920 = 0, (1.14)

where w = WL3/EI, and a small-angle approximation was used to determine initial postbuckling

behavior, giving

θL = 2.1
√

W/Wc − 1. (1.15)

Timoshenko and Gere [1] found the exact solution to equation 1.8 using elliptic integrals, which were

also used by Sinclair [6], where shear and longitudinal deformations are also considered. The three

results given by equations 1.13-1.15 are plotted in Figure 1.3, along with the exact solution. Each

of the methods gives an underestimate of beam deflection for a given self-weight and is accurate

only for a very small range of postcritical weight values. The most accurate approximation is given

by equation 1.14, but varies significantly from the exact solution even when the self-weight is only

10 percent above critical.

Even for a nonlinear governing beam-deflection equation, a linear approximation may be used to

generate deflection results that are accurate for a range of small deflections. Certainly the use of the

exact equation for curvature is necessary to accurately determine the behavior of highly-deflected
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Figure 1.3: Tip angle versus self-weight approximations for the postbuckled upright heavy can-
tilever. Solid curve: exact solution; dot-dashed curve: equation 1.14 [4]; dotted curve: equa-
tion 1.15 [4]; dashed curve: equation 1.13 [5].
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Figure 1.4: Equilibrium configurations of an upright heavy cantilever with nondimensional weight,
w = WL3/EI = 7.84, 8, 10, 15, 20, or normalized weights, W/Wc = 1.0004, 1.02, 1.28, 1.91, 2.55.
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beams. In addition, while they greatly simplify the analysis, no assumptions may be made in the

large-deflection case that limit the deflection size.

Figure 1.4 depicts the equilibrium configuration for the heavy, upright, postbuckled cantilever

for varying nondimensional self-weight values (where, as before, w = WL3/EI). These results were

found numerically (with the shooting method, shown in Section 1.3), using the exact curvature

equation 1.8, with no small-deflection assumptions.

The inclusion of self-weight in the analysis clearly makes a significant difference in the equilib-

rium shape, and can also lead to qualitative changes in the system dynamics.

1.1.2 Dynamics

Once the appropriateness of static linearity of the system is determined, a dynamic analysis

can be conducted, and this study can also be categorized in terms of linearity (Figure 1.1). So far,

it has been shown that the exact governing equations for the equilibrium configuration of a beam

with specific boundary conditions can be obtained. In addition, the exact curvature equation can be

used to determine highly-deflected static configurations. The dynamic behavior of the system can

also reveal significant information concerning stability, and so it is worth investigating as part of a

thorough system analysis. In cases where the buckling and vibration mode shapes of a beam are

identical, the relationship between the axial load and the square of the lowest natural frequency is

linear. Even in the cases where buckling and vibration mode shapes are not the same, the deviation

from linearity is often very small, and this property has been exploited for non-destructive testing

purposes [7, 8].

D’Alembert’s principle states that [9]

the virtual work performed by the effective forces through infinitesimal virtual dis-

placements compatible with the system constraints is zero, i.e.

N
∑

k=1

(

~Fk − mk ~̈rk

)

· δ ~rk = 0 (1.16)

where Fk is the applied force, and mk ~̈rk is the inertial force of the mass particle, mk.

Returning to the cantilever and neglecting self-weight, the principle can be used to derive the

governing partial differential equation for small-amplitude free beam bending vibration [9]

mŸ + EIY
′′′′

= 0, 0 ≤ X ≤ L, (1.17)
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where T is dimensional time, X is the longitudinal coordinate, m is the mass per unit length,

Ẏ ≡ ∂Y/∂T and Y ′ ≡ ∂Y/∂X , and damping is neglected. Note that the corresponding equations

for the static configuration, combined with the appropriate boundary conditions (equation 1.7), give

the trivial solution Y (X) = 0, as expected.

One solution method is known as the separation of variables, where it is assumed that Y (X, T )

is the product of two functions, one spatial and one temporal, such that [10]

Y (X, T ) = B(X)R(T ). (1.18)

The spatial function, B(X), then corresponds to the mode shape for a particular frequency [10].

This relationship and equation 1.17 lead to two ordinary differential equations from

−EIB
′′′′

mB
=

R̈

R
= C (1.19)

where C is a constant. Focusing only on the temporal function, it can be seen that R(T ) can be

written in the form

R(T ) = AeiωT , (1.20)

where C = −ω2. The qualitative dynamic behavior is then dependent on ω, which itself is dependent

on the spatial function and boundary conditions from

EIB
′′′′

= ω2mB. (1.21)

Solutions take the form

B(X) = a1 sin bX + a2 cos bX + a3 sinh bX + a4 cosh bX, (1.22)

where b4 = mω2/EI, and four of the five constants, ak and b, are determined using the boundary

conditions (equation 1.7). The remaining constant is arbitrary; it determines the magnitude of

vibration (and so must be small).

There are infinitely many values for ω2
j , corresponding to the natural frequencies (and modes)

of the system. The first natural frequency for the cantilever is given by ω1 ≈ 3.516
√

EI/mL4 and

the corresponding mode shape is described by

B(X) = cosh bX − cos bX − σ(sin bX − sinh bX), (1.23)

where σ ≈ 0.7341 [11].
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In general, if ω2
j > 0, the response, Rj(T ) is purely harmonic and can be expressed as a linear

combination of sinωjT and cosωjT , and the system is stable. If the smallest frequency squared,

ω2
1 , becomes negative, then the temporal solution, R1(T ) is expressed as a linear combination of

hyperbolic functions, sinhω1T and coshω1T that grow with time (i.e. the system is unstable). So

the conditions that yield ω1 = 0 correspond to the onset of instability.

Linear vibration frequencies and mode shapes can be found for the upright heavy prebuckled

cantilever, and this relationship between the first natural frequency and instability (or, in this case,

self-weight buckling) can be seen.

The governing equation for beam bending vibration of the heavy beam is given by

mŸ + EIY
′′′′

+ W [(L − X)Y ′]′ = 0. (1.24)

Note that, as before, it can be shown that the equilibrium solution (in the case of the heavy

pre-buckled cantilever) is Y (X) = 0. Because the equilibrium configuration is not one that is

highly-deflected and only small-amplitude (or linear) vibrations are of interest, accurate results can

be found using this Cartesian-coordinate equation.

Introducing the nondimensional quantities

w = WL3/EI, x = X/L, y = Y/L, t = (T/L2)
√

EIg/W, (1.25)

equation 1.24 can be rewritten

ÿ + y
′′′′

+ w[(1 − x)y
′

]′ = 0, (1.26)

where ẏ ≡ ∂y/∂t and y′ ≡ ∂y/∂x. Assuming harmonic motion and using Ω = ωL2
√

W/EIg (where

ω is a dimensional vibration frequency), or that the lateral motion is of the form

y(x, t) = ȳ(x) sin Ωt (1.27)

gives

ȳ
′′′′

+ w[(1 − x)ȳ
′

]
′ − Ω2ȳ = 0, (1.28)

The nondimensional boundary conditions are

ȳ(0) = ȳ′(0) = 0, ȳ′′(1) = ȳ′′′(1) = 0, (1.29)

and the equation may be solved numerically (as shown in Section 1.3) to determine the natural

frequencies and mode shapes of the system.
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For a self-weight value w = 0, the analysis gives

ωj = Ωj

√

EIg

WL4
, Ωj = 3.516(j = 1), 22.034(j = 2), 61.697(j = 3)...., (1.30)

consistent with those known for the free vibration of a cantilever where weight is neglected (and for

the weightless example above) [9].
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Figure 1.5: Self-weight versus frequency for the upright heavy prebuckled cantilever.

As w is increased, the first natural frequency decreases, as shown in Figure 1.5. The w-value

for which the frequency, Ω1, drops to zero is found to be w = 7.837, consistent with the critical

self-weight buckling value previously shown in the static heavy cantilever analysis [1, 3].

A similar analysis may be performed for the vertical, hanging, heavy cantilever (shown with the

upright case in Figure 1.6), where the nondimensional weight parameter, w, may now be negative

(corresponding to the hanging configuration). Note that, although the case of w = 0 corresponds

to a gravity-free system, in practice it can be considered equivalent to the case of a short horizontal

cantilever.

If the bending stiffness of the beam is negligible (for the hanging orientation), then the classic

hanging chain solution is obtained, where the first few natural frequencies are:

ωj = γj

√

g

L
, γj = 1.203(j = 1), 2.760(j = 2), 4.327(j = 3)...., (1.31)
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Figure 1.6: The heavy, vertical cantilever, (a) upright and (b) hanging configurations.

obtained numerically (for w → ∞) or with the use of Bessel functions [12]. The first four natural

frequencies for the upright and hanging configurations are shown in Figure 1.7.

Again, use of the exact-curvature equation was not necessary to determine the linear vibra-

tion frequencies for the vertical cantilever because the static configuration was not highly-deflected

and only small-amplitude vibrations were of interest. The exact-curvature equation is necessary,

however, for the analysis of linear vibrations about a nonlinear static configuration (the third cat-

egory from the left shown in the bottom row of Figure 1.1), but the assumption of small dynamic

deflections may be used to simplify the problem.

The case of nonlinear vibrations about a nonlinear equilibrium configuration (the rightmost

category in Figure 1.1) is the most involved, in terms of solution approximation, but can be mod-

eled using analytical or numerical methods. For linear dynamic systems, the natural frequency is

not amplitude-dependent; the frequency is assumed to be constant regardless of the magnitude of

motion. However, in the case of a nonlinear dynamic system, the natural frequency may vary as

a function of motion amplitude. This amplitude-dependent frequency may increase (for a “hard-

ening” system) or decrease (for a “softening” system) with the magnitude of motion [13]. The

resulting “backbone” curves for the prebuckled, heavy, upright cantilever (Figure 1.2) are plotted

in Figure 1.8, where, for each self-weight value, the nonlinear frequency, ΩN1, is normalized by the

11



10
0

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

35

40

W2

|w|
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Figure 1.8: Backbone curves for the nonlinear vibration of the upright heavy cantilever, for nondi-
mensional weights (from left to right) w = 0, 1.655, 2.989, 5.859.
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corresponding linear natural frequency, Ω1 (shown in Figure 1.5). It can be seen that an increase

in self-weight yields an increasingly hardening system.

Solution methods for each of the cases shown in Figure 1.1 are shown in the Sections to follow.

1.2 The Elastica

Use of the exact expression for curvature (equation 1.5) yields an exact solution, and the equation

can be written in first-order form (including the equations that give resulting Cartesian coordinates)

using Figure 1.9. The resulting equilibrium shape is called the elastica, and the governing equations

Figure 1.9: Arclength segment of the elastica.

for the inextensible, slender, heavy beam of fixed length are [1]

dX/dS = cos θ, dY/dS = sin θ,

dθ/dS = M/EI, dM/dS = Q cos θ − P sin θ,

dP/dS = −W sin β, dQ/dS = −W cosβ,

(1.32)

where P and Q are the internal forces parallel to the X and Y axes, respectively, and β is the angle

made by the X-axis with the horizontal. The strip is assumed to be thin, flexible, inextensible,

unshearable, and unstrained when straight [14].

If dynamics are included in the analysis, each variable becomes a function of both arclength, S,
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and time, T . The governing partial differential elastica equations become [15]

∂X/∂S = cos θ,

∂Y/∂S = sin θ,

∂θ/∂S = M/EI,

∂M/∂S = Q cos θ − P sin θ,

∂P/∂S = −W sin β − (W/g)∂2X/∂T 2 − C∂X/∂T,

∂Q/∂S = −Wcosβ − (W/g)∂2Y/∂T 2 − C∂Y/∂T,

(1.33)

where C is the damping coefficient.

In addition to the nondimensional variables given in equation 1.25, the following nondimensional

quantities are defined:

s = S/L, p = PL2/EI, q = QL2/EI,

m = ML/EI, c = CL2
√

g/WEI, Ω = ωL2
√

W/EIg
(1.34)

where ω is a dimensional vibration frequency. In nondimensional terms, equations (1.33) become

∂x/∂s = cos θ, ∂y/∂s = sin θ,

∂θ/∂s = m, ∂m/∂s = q cos θ − p sin θ,

∂p/∂s = −w sin β − ∂2x/∂t2 − c∂x/∂t, ∂q/∂s = −w cosβ − ∂2y/∂t2 − c∂y/∂t.

(1.35)

Assuming small-amplitude vibrations about the equilibrium configuration and that damping is

negligible (c = 0), the variables may be written in the form

x(s, t) = xe(s) + xd(s) sin Ωt, y(s, t) = ye(s) + yd(s) sin Ωt,

θ(s, t) = θe(s) + θd(s) sin Ωt, m(s, t) = me(s) + md(s) sin Ωt,

p(s, t) = pe(s) + pd(s) sin Ωt, q(s, t) = qe(s) + qd(s) sin Ωt

(1.36)

where subscripts e and d denote equilibrium and dynamic quantities, respectively. At equilibrium,

the equations are given by

x′

e = cos θe, y′

e = sin θe,

θ′e = me, m′

e = qe cos θe − pe sin θe,

p′e = −w sin β, q′e = −w cosβ,

(1.37)

where the internal forces can be written as

pe(s) = po − sw sin β, qe(s) = qo − sw cosβ (1.38)

with p0 and q0 representing values at s = 0.
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Equations 1.36 are substituted into equations 1.35, and equations 1.37 are utilized. The resulting

linear equations in the dynamic variables are

x′

d = −θd sin θe, y′

d = θd cos θe,

θ′d = md, m′

d = (qd − peθd) cos θe − (pd + qeθd) sin θe,

p′d = Ω2xd, q′d = Ω2yd.

(1.39)

There is extensive work on the elastica in the literature. Early work was conducted by Tim-

oshenko and Gere [1], Wang [15], and Frisch-Fay [16], and later work is outlined by Stolte and

Benson [17].

1.3 Numerical Techniques

The elastica equations (along with appropriate boundary conditions) may be solved numerically.

Some numerical techniques for similar problems are outlined by Hermann and Kaiser [18]. Presented

here are the shooting method and the finite difference method.

1.3.1 The Shooting Method

The shooting method is used to solve a boundary value problem by treating it as an initial value

problem. An nth-order boundary value problem

d~u
dx = ~g(~u), ~u(x0) = ~u0, ~u(x1) = ~u1 (1.40)

can often be solved numerically (using a Runge Kutta method) if the value of ~u(x0) is known and

if use of this known value, upon solving, satisfies ~u(x1) = ~u1. For each unknown initial value, a

shooting parameter (or set of parameters) is used as a guess and the differential equation is solved

numerically. The known end conditions, ~u(x1), can then be compared to the value resulting from

the guess, and the shooting parameter is then adjusted until the error at x1 is sufficiently small.

The differential equations herein are solved using the routines NDSolve in Mathematica and

ode45 in MATLAB. More information concerning the shooting method is given by Burden and

Faires [19].

1.3.2 Single Parameter Shooting

Suppose that, for a second-order differential equation given by

d~u
dx = ~g(~u), ~u =

(

u(x)
v(x)

)

, (1.41)
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the boundary conditions known are

u(0) = u0, u(1) = u1. (1.42)

Assigning a value, α, to the unknown v(0) creates a numerically-solvable initial value problem given

by

d~u
dx = ~g(~u), u(0) = u0, v(0) = α. (1.43)

The system can be solved numerically, and the resulting value of u(1) is compared to the desired

value, u1.

An objective function, f(α), can then be defined so that it gives the difference between the

resulting function value (from a chosen α) and the known boundary value, i.e.

f(α) = u(1, α) − u1. (1.44)

The objective function, then, gives the error of the solution as a function of the shooting parameter,

α, so the exact boundary condition, v(0) = α⋆ satisfies

u(1, α⋆) = u1 ⇔ f(α⋆) = 0. (1.45)

It is important to note that, for certain cases, the objective function may have more than one

root. Some reasonable estimate for the value of the desired α⋆ is necessary in these cases. This

exact value, α⋆, can be found within any desired error (limited, of course, by machine precision)

using, for example, a binary search method or the more efficient Newton’s Method that iteratively

defines the more accurate αk+1 by

αk+1 = αk − f(αk)

f ′(αk)
. (1.46)

The derivative, f ′(αk) ≡ ∂f
∂α (αk), can be estimated using finite differences or by introducing a new

variable vector. Because it is the technique that is used in the present study for multiparameter

shooting, the latter choice is introduced.

The vector function, ~b =

(

b(x)
c(x)

)

, is defined such that

~b(x) =
∂~u

∂α
, (1.47)

16



and the original differential equation (1.41) is used to show

d~b

dx
=

d

dx
(
∂~u

∂α
) =

∂

∂α
(
d~u

dx
) =

∂

∂α
~g(~u) =

d~g

d~u

∂~u

∂α
=

d~g

d~u
~b. (1.48)

The new, fourth-order differential equation

d~u
dx = ~g(~u), d~b

dx = d~g
d~u

~b, (1.49)

has initial values

u(0) = u0, v(0) = α,

b(0) = ∂u(0)
∂α = ∂u0

∂α = 0, c(0) = ∂v(0)
∂α = ∂α

∂α = 1. (1.50)

Using equation (1.44), the value of f ′(αk) needed for the Newton iterations is now given by

f ′(αk) =
∂

∂α
u(1, αk) = c(1), (1.51)

found by having numerically solved the fourth-order differential equation using α = αk.

For the case of the upright, prebuckled, heavy cantilever, β = π/2, and the boundary conditions

are given by

x(0) = y(0) = θ(0) = 0, m(1) = p(1) = q(1) = 0. (1.52)

The resulting equilibrium elastica equations become

dx/ds = cos θ, dy/ds = sin θ,

dθ/ds = m, dm/ds = −w(1 − s) sin θ,
(1.53)

where p(s) = w(1 − s) and q(s) = 0.

The exact solution curve pictured in Figure 1.3 can be found using equations 1.53 and the bound-

ary conditions given in equation 1.52. Because the variables x(s) and y(s) are strictly dependent

on the variable θ(s), it is sufficient to solve the boundary value problem of first-order equations

θ′ = m, m′ = −w(1 − s) sin θ, θ(0) = m(1) = 0, (1.54)

and to then use the known initial values x(0) = y(0) = 0 and the solution θ(s) to find the Cartesian

deflection coordinates. The shooting parameter is assigned such that m(0) = α.

To simplify notation, the vector ~u is written so that

~u =

(

u1
u2
u3

)

=

(

θ(s)
m(s)

s

)

, (1.55)
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giving the differential equation, ~g(~u), and its partial derivatives

~g =

(

u2

−w(1 − u3) sin u1
1

)

, d~g
d~u =

(

0 1 0
−w(1 − u3) cosu1 0 w sin u1

0 0 1

)

. (1.56)

The new vector ~b is introduced such that

~b =
∂~u

∂α
=

(

b1
b2
b3

)

, (1.57)

yielding the new initial value problem

d~b
ds = d~g

d~u
~b =

(

b2

−wb1(1 − u3) cosu1 + wb3 sin u1
b3

)

, ~b(0) =

(

0
1
0

)

. (1.58)

Letting b1 = u4, b2 = u5, and b3 = u6 gives the sixth-order initial value problem

d~u
ds =













u2

−w(1 − u3) sin u1
1
u5

−wu4(1 − u3) cos u1 + wu6 sin u1
u6













, ~u(0) =













0
α
0
0
1
0













. (1.59)

The objective function and its derivative are then

f(α) = u2(1, α), df
dα = u5(1). (1.60)

A specific self-weight, w, must be chosen, and then the system can be solved numerically, using

Newton’s method (equation 1.46). This single-parameter shooting method was used to find the

exact relationship between the cantilever tip angle and the self-weight seen in Figure 1.3. Using

the initial value m(0) = α found for a specific weight, equations 1.53 may be solved as an initial

value problem using numerical integration to determine the exact deformation along the length of

the beam (as pictured in Figure 1.4).

1.3.3 Multi-parameter Shooting

Suppose that, for an nth-order system of differential equations

d~u

dx
= ~g(~u), (1.61)
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there exist r < n known boundary conditions at x0 and n − r known boundary conditions at x1.

As in single-parameter shooting, values α are assigned to the unknown boundary values at

x0, and, because there can be more than one unknown value, the scalar α now becomes an n − r

component vector, ~α. The vector-valued objective function, ~f(~α), is constructed using the n − r

known boundary values at x1.

Just as for the single-parameter shooting method, new vectors are defined that correspond to

each αj such that

~bj = ∂~u
∂αj

,
d~bj

dx = d~g
d~u

~bj, j = 1, 2, . . . , n − r, (1.62)

yielding a system of differential equations of order (n − r + 1)n. The vector equivalent form of the

Newton iteration equation is given by

~αk+1 = ~αk − J−1
~αk

~f(~αk), J~αk
=
[

∂fi

∂αj

]

~αk

, (1.63)

where the matrix components of the Jacobian are found in the solutions, ~bj(x1). The exact boundary

conditions, ~α⋆, can now be found within any desired error, |~f |.

For the case of small-amplitude beam bending vibrations, the governing equations 1.39 and

appropriate boundary conditions may be solved using the multi-parameter shooting method. For

the vibration of the upright, heavy, prebuckled cantilever, the trivial equilibrium solution is given

by

xe(s) = s, ye(s) = θe(s) = me(s) = qe(s) = 0, pe(s) = w(1 − s), (1.64)

and the simplified dynamic variable equations are

y′

d = θd, θ′d = md,

m′

d = (qd − w(1 − s)θd), q′d = Ω2yd,
(1.65)

where xd(s) = pd(s) = 0. The known boundary conditions are yd(0) = θd(0) = md(1) = qd(1) = 0

and md(0) = m̄d, where m̄d is arbitrary (yet small), because it determines only the magnitude of

vibration. The shooting parameter vector and objective function are

~α =

(

qd(0)
Ω2

)

, ~f(~α) =

(

md(1, ~α)
qd(1, ~α)

)

, (1.66)

respectively. Because the square of the natural frequency, Ω2, has infinitely many values (corre-

sponding to each mode), an initial guess for its value must be made according to the desired mode.

19



Shooting method results for the frequencies as functions of self-weight are shown in Figures 1.5 and

1.7. The mode shape resulting from this method (with w = 0) is compared with the analytical

mode shape (given by equation 1.23) in Figure 1.10.
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Figure 1.10: Numerical and analytical mode shape for vibration of the cantilever in the first mode
(with w = 0): solid curve: analytical; data points: numerical (using the shooting method); dashed
curve: equilibrium.

While the shooting method is useful in determining unknown initial conditions for a boundary

value problem, it becomes more involved as the number of shooting parameters (or the size of ~α)

is increased. Another numerical method that may be used in these cases is the finite difference

method.

1.3.4 Finite Differences

For a single-variable function, y(x), the Taylor Series about some point, xo, is given by

y(xo + h) = y(xo) + y′(xo)h +
y′′(xo)

2!
h2 +

y′′′(xo)

3!
h3 + . . . , (1.67)

and can be used to approximate the function value, y(xo + h), with increasing accuracy as more

terms in the series are used. This approximation technique is the basis for the finite difference

method, and the equation

y(xo + h) − y(xo)

h
= ȳ′(x0) ≈ y′(xo) (1.68)
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is the familiar Euler difference scheme, where ȳ′(x0) is the resulting derivative approximation.

Comparing this scheme to a rewritten Taylor Series given by

y(xo + h) − y(xo)

h
= y′(xo) +

y′′(xo)

2!
h +

y′′′(xo)

3!
h2 + . . . , (1.69)

and subtracting equation 1.68 from equation 1.69 shows that the approximation has error, |ȳ ′(x0)−

y′(x0)|, of order h. An approximation for the first derivative, y′(xo), with 2nd-order accuracy can

be found by using the function values at xo − h and xo + h. That is, the coefficients, ck, may be

found such that

c1y(xo − h) + c2y(xo + h) = y′(xo) + O(h2). (1.70)

Expanding each term on the left hand side of equation 1.70 using a Taylor Series about xo gives

y(xo + h) = y(xo) + y′(xo)h + y′′(xo)
2! h2 + y′′′(xo)

3! h3 + . . . ,

y(xo − h) = y(xo) − y′(xo)h + y′′(xo)
2! h2 − y′′′(xo)

3! h3 + . . . ,
(1.71)

To satisfy equation 1.70, the coefficients of y(xo) and y′(xo) (where equations 1.71 are substituted

into equation 1.70) must satisfy

c2 + c1 = 0, (c2 − c1)h = 1, (1.72)

giving c1 = −1/2h and c2 = 1/2h. The simplified Taylor Series expansion resulting from this linear

combination gives

y(xo + h) − y(xo − h)

2h
= y′(xo) +

2y′′′(xo)

3!
h2 + . . . , (1.73)

indicating that this centered difference scheme

y(xo + h) − y(xo − h)

2h
≈ y′(xo) (1.74)

is 2nd-order accurate. Other difference schemes have been derived for higher-order derivatives and

for higher orders of accuracy [20].

The centered difference scheme may be used to find the numerical solution to the boundary

value problem given by equation 1.54. First, the equations are rewritten

θ′ − m = 0, m′ + w(1 − s) sin θ = 0. (1.75)

The values θ(s) and m(s) may be discretized along the arclength, s, so that

θk = θ(sk), mk = m(sk), sk = (k − 1)∆s, k = 1, 2, . . . n + 1, (1.76)
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where n = 1/∆s, and n + 1 is the number of points (or nodes) along the length. A vector, ~u, of

node values is created so that

~u =











u1
u2
...

u2n+1
u2n+2











=











θ1
m1
...

θn+1
mn+1











(1.77)

Using the centered difference scheme given by equation 1.74, where 2h = ∆s, the derivatives

between each node may be approximated. Because the right hand sides of equations 1.75 are zero,

the values found by the approximations

θk+1−θk

∆s − mk+mk+1

2 , mk+1−mk

∆s + w(1 − sk+1/2) sin
(

θk+θk+1

2

)

(1.78)

give the approximation error, where sk+1/2 = (sk + sk+1)/2, and k = 1, 2, . . . , n. This method

generates 2n equations, but because there are 2(n + 1) unknown values, two more equations are

necessary to find all of the node values. These remaining equations enforce the boundary conditions

θ(0) = u1 = m(1) = u2n+2 = 0. These error equations, along with the finite difference errors, may

be written as a vector function, ~f(~u), where

f1 = u1 − 0,

f2k = u2k+1−u2k−1

∆s − u2k+u2k+2

2 ,

f2k+1 = u2k+2−u2k

∆s + w(1 − (k − 1/2)∆s) sin
(

u2k−1+u2k+1

2

)

,

f2n+2 = u2n+2 − 0,

(1.79)

and k = 1, 2, . . . , n. To compute these error vector values, initial values ~uo are necessary for all

n + 1 nodes along the length. Once ~f(~uo) is computed, the Newton-Raphson method (as shown in

equation 1.63) may be used to find the variable values that minimize the error, | ~f |. Because the
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error function, ~f(~u), is a vector, the Jacobian matrix must be computed. This matrix is given by

J = ∂fi/∂uj =









































1 0 0 0 0 0 · · · 0

− 1
∆s − 1

2
1

∆s − 1
2 0 0 · · · 0

d1 − 1
∆s d1

1
∆s 0 0 · · · 0

0 0 − 1
∆s − 1

2
1

∆s − 1
2

. . . 0

0 0 d2 − 1
∆s d2

1
∆s

. . . 0

...
...

...
. . .

. . .
. . .

. . . 0

0 0 0 · · · − 1
∆s − 1

2
1

∆s − 1
2

0 0 0 · · · dn − 1
∆s dn

1
∆s

0 0 0 · · · 0 0 0 1









































, (1.80)

where

dj = 1
2w
[

1 −
(

j − 1
2

)

∆s
]

cos
(

u2j−1+u2j+1

2

)

, j = 1, 2, · · · , n. (1.81)

The matrix is banded, and so sparse matrix algorithms may be used to reduce computation time [21].

The resulting vector, ~u (for which |~f(~u)| is minimized), gives converged values for θk and mk at

n + 1 nodes along the length 0 ≤ s ≤ 1.

As with the shooting method, a converged solution may be used as an initial guess for the

problem with a slightly different parameter value. This method is useful when the relationship

between equilibrium behavior and a parameter value is desired. In this case, using a solution vector

for a given self-weight as the initial guess vector where the self-weight is slightly different may be

used to determine the effect of self-weight, w (as shown in Figure 1.3 where the self-weight is plotted

against the tip angle, θ(1) = θn+1 = u2n+1). More on this continuation method is given by Allgower

and Georg [22].

1.3.5 Finite Difference Time-Stepping

The finite difference method may also be used in the context of large-amplitude motion of the

elastica. In equations 1.36, the variables are separated into equilibrium and dynamic components,

damping is neglected, and the dynamic components are also assumed to be the product of spatial

and temporal functions. These assumptions, along with that of small-amplitude motion, greatly

simplify the equations and allow for a reduction to ordinary differential equations 1.37 and 1.39.

By solving the original partial differential equations 1.35, without assuming the form or size of

the variables, the behavior may be found without any limits on the magnitude of static or dynamic

deflection.

23



As before, the equations are rewritten

∂x/∂s− cos θ = 0, ∂y/∂s− sin θ = 0,

∂θ/∂s− m = 0, ∂m/∂s− q cos θ + p sin θ = 0,

∂p/∂s + w sin β + ∂2x/∂t2 + c∂x/∂t = 0, ∂q/∂s + w cosβ + ∂2y/∂t2 + c∂y/∂t = 0.

(1.82)

The variables can then be discretized along the arclength, s, and in time, t, such that

xj
k = x(sk, tj), yj

k = y(sk, tj), θj
k = θ(sk, tj),

mj
k = m(sk, tj), pj

k = p(sk, tj), qj
k = q(sk, tj),

(1.83)

where tj = j∆t, sk = k∆s, ∆s = 1/n, and n + 1 is the number of arclength nodes.

Finite difference approximations can then be used to rewrite equations 1.82 that give the ap-

proximation error at the kth node and jth time step. To do this, the centered difference scheme may

be used for spatial derivative approximations, but another method is needed to approximate the

time derivatives. A centered difference scheme would not be useful, since a solution is found at each

consecutive time step and only the variable values at previous time steps are known. The necessary

second-order difference scheme for the acceleration term is found by finding the constants, ci, such

that

c1z(xo) + c2z(to − h) + c3z(to − 2h) + c4z(to − 3h) = z′′(to) + O(h2). (1.84)

These values are found by expanding each term using a Taylor Series about to and combining the

coefficients of ho, h1, h2, and h3. The resulting coefficients are

c1 = 2/h2, c2 = −5/h2, c3 = 4/h2, c4 = −1/h2, (1.85)

giving a second-order-accurate backward difference scheme. Similarly, the appropriate coefficients

may be found for the second order accurate approximations of the velocity expressions. Then at a

given time step, tj , and between nodes k and k + 1, the finite difference approximations of the left

hand sides of equations 1.82 are given by

xj
k+1

−xj
k

∆s − cos θj
k+1/2,

yj
k+1

−yj
k

∆s − sin θj
k+1/2,

θj
k+1

−θj
k

∆s − mj
k+1/2,

mj
k+1

−mj
k

∆s − qj
k+1/2 cos θj

k+1/2 + pj
k+1/2 sin θj

k+1/2,

pj
k+1

−pj
k

∆s + w sin β +
2xj

k+1/2
−5xj−1

k+1/2
+4xj−2

k+1/2
−xj−3

k+1/2

∆t2 +
c(3xj

k+1/2
−4xj−1

k+1/2
+xj−2

k+1/2
)

2∆t ,

qj
k+1

−qj
k

∆s + w cosβ +
2yj

k+1/2
−5yj−1

k+1/2
+4yj−2

k+1/2
−yj−3

k+1/2

∆t2 +
c(3yj

k+1/2
−4yj−1

k+1/2
+yj−2

k+1/2
)

2∆t ,

(1.86)
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where the variable values at node k + 1/2 are given by the average of the values at nodes k and

k + 1. The variable values at time steps tj−3, tj−2, and tj−1 are known from previous, converged

solutions. To initialize the algorithm, the values for these previous time steps may be set to create

an initial acceleration, velocity, or displacement. Alternatively, the system may undergo forcing;

this case may be modeled by enforcing time-varying boundary conditions.

Each expression, applied between every node along the length, gives an approximation error

and can be arranged as an error vector, ~f . This vector has length 6n, and the remaining 6 equations

are comprised of the boundary conditions, giving 6n + 6 difference equations to be solved for 6n + 6

unknown variable values. In the case of the upright heavy cantilever, the boundary conditions

x1 = y1 = θ1 = mn+1 = pn+1 = qn+1 = 0, are used to create the remaining components of the error

vector.

Because the difference equations 1.86 make no assumptions as to the static or dynamic deflection

size, they can be used to characterize large-amplitude dynamic behavior about a highly deflected

equilibrium configuration. However, they also give accurate results for linear vibration behavior.

The equations are used to create a time series for the linear, undamped vibration of a “weight-

less” cantilever (w = 0). A linear mode shape is used to initialize the variable values, and the

resulting time series is shown in Figure 1.11(a), where the tip angle, θ(1, t), is plotted as a function

of nondimensional time, t. Values of ∆t = 0.002 and ∆s = 0.02 are used to generate results. The

average period of vibration in nondimensional time is 1.787, giving Ω1 ≈ 3.516, the known linear

vibration frequency coefficient (as in equation 1.30).

To confirm that the motion is harmonic and to find the frequency of motion, a “fast Fourier

Transform” may be performed on the time series. The discrete Fourier transform of a set of discrete

function values f(tj) over N time steps (j = 1, 2, . . . , N) is given by [21]

Pr =

N
∑

j=1

f(tj)
(

e−2πi/N
)(j−1)(r−1)

, (1.87)

giving the Fourier coefficients of the time series at discrete frequency values,

fr = (1/∆t)(r − 1)/N, (1.88)

for r = 1, 2, · · · , N/2. It is expected, then, that the peaks in magnitude of the Fourier Transform of

the free vibration time series correspond to natural frequencies.

The resulting tip-angle magnitude of motion as a function of nondimensional frequency, Ω, is

shown in Figure 1.11(b), resulting from a time series using N = 50,000. The magnitude of the
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Figure 1.11: (a) Tip angle, θ(s = 1, t), as a function of nondimensional time, t, found using a
finite difference, time-stepping method for small-amplitude vibration of a cantilever (with w = 0)
(b) Fourier transform of the tip angle magnitude of vibration of a cantilever (with w = 0)

Fourier Transform of the tip angle, θn+1, is largest at Ω = 3.5186. Because the magnitude is given

only at discrete frequency values, a weighted average of the frequencies corresponding to the two

largest magnitude values, Pa and Pb, is given by

Ωavg =
PaΩa + PbΩb

Pa + Pb
, (1.89)

and gives a more accurate peak frequency estimate. In this case, a weighted average gives an

accurate value, Ωavg ≈ 3.5163. Two other frequency peaks of much smaller magnitudes can be

seen in Figure 1.11(b), occurring near the second and third linear natural frequencies (given in

equation 1.30). While the motion is expected to be in exclusively the first mode (because the initial

configuration was given by the mode shape corresponding to the first natural frequency), the higher

modes appear because of the inherent error in finite difference schemes. However, these magnitudes,

as can be seen in the Fourier Transform plot, are significantly smaller than that of the first mode,

and so the motion is approximated as being purely in the first linear vibration mode. Additionally,

the finite width of the funamental frequency peak indicates that there is some very light numerical

damping resulting from the finite difference scheme.

If the initial configuration is one that is slightly deflected from equilibrium, but not in a single

mode, the resulting Fourier Transform gives frequency peaks at each of the linear vibration fre-

quencies, as shown in Figure 1.12, where frequency peaks are found at weighted average values of
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Figure 1.12: (a) Tip angle, θ(s = 1, t), as a function of nondimensional time, t, for small-amplitude,
free vibration of a cantilever (with w = 0) (b) Fourier transform of the time series.

Ω1 = 3.516, 22.048, and 61.541 (compared with the known linear frequency values given in equa-

tion 1.30). It is clear in the corresponding time series that more than one frequency is present. The

mode shapes for each natural frequency can be approximated using the discrete Fourier Transform

values. The zero frequency value, P1, gives the equilibrium configuration, and the coefficient Pr

corresponding to a natural frequency fr gives the magnitude of response. Using this method, the

first two mode shapes for the cantilever are constructed and shown in Figure 1.13, where they are

compared to the analytical mode shapes given by equation 1.23. For each analytical mode, the

known values b = 1.875 and σ = 0.7341 (for the first mode) and b = 4.694 and σ = 1.0185 (for the

second mode) are used [11].
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Figure 1.13: Numerical and analytical linear vibration mode shapes for the cantilever with w = 0
for the first two linear vibration frequencies, solid curve: analytical mode shape, data points: nu-
merical mode shape.
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So far it has been shown that the finite difference, time-stepping method gives accurate linear

vibration results for a beam. However, the primary motivation for using the method is to model

large-amplitude, nonlinear vibrations of a system (about linear or nonlinear equilibrium configu-

rations). To find nonlinear frequencies and mode shapes, the amplitude of motion is gradually

increased and resulting times series and Fourier Transforms are used to determine frequencies.

To execute the finite difference algorithm, the values xj−1
k , xj−2

k , xj−3
k , yj−1

k , yj−2
k , yj−3

k for

all the nodes, k = 1, 2, . . . , n + 1, must be specified. So far, these values have been used to give

an initial deflection with no initial velocity (i.e. xj−1
k = xj−2

k = xj−3
k ). Another way to begin the

solution method is to specify an initial velocity, where the initial deflection is at equilibrium. This

method may be used to find mode shapes (and frequencies) with increasingly larger amplitudes. The

variable values are recorded for small-amplitude motion as the system passes through equilibrium,

and the values are altered slightly to generate a larger initial velocity. These values are then used

to initialize the time-stepping method. The Fourier Transform of the resulting time series indicates

whether or not the motion was purely in the desired mode, and the resulting coefficients give a

corrected mode shape for the desired amplitude. It is important to note that, for large-amplitude

motion, the motion is not a pure sine wave of a single natural frequency, and so Fourier coefficients of

higher harmonics must be used in determining the mode shape. The new mode shape approximation

may be used as an initial condition to give an accurate, single-mode time series, and this time series

is used to find an average vibration period and corresponding frequency. This numerical method for

finding “nonlinear normal modes” is similar to that proposed by Slater [23], who also outlines other

analytical methods in the literature. Some resulting nonlinear normal mode shapes for the upright

cantilever are shown in Figure 1.14, where the corresponding frequencies are given by ΩN1 ≈ 3.516,

3.519, 3.551, 3.627, and 3.656. For the three pictured mode shapes with the smallest deflections

from equilibrium, the horizontal tip deflection, y(s = 1), increases with deflection size. But for the

remaining mode shapes, the value of y(s = 1) decreases; there is some maximum possible amplitude

of horizontal tip deflection, and, for large deflections, the value decreases with deflection. This

effect can be seen in the free vibration time series shown in Figure 1.15, where it is clear that the

horizontal motion of the cantilever is not accurately described by a single sine wave.

The resulting backbone curve for the first vibration mode of the cantilever is shown in Fig-

ure 1.16, where it is seen that the amplitude of horizontal tip deflection motion reaches a maximum

(at |y(1, t)| ≈ 0.832) and then decreases.

This method of gradually increasing the amplitude of motion in a mode can be used to generate
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Figure 1.14: Nonlinear vibration mode shapes for an upright cantilever with w = 0. Corresponding
frequencies for each mode shape (from left to right) are ΩN1 = 3.516, 3.519, 3.551, 3.627, 3.656.
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Figure 1.15: Nonlinear vibration time series for an upright cantilever with w = 0, solid curve:
y(1, t), the lateral tip motion; dotted curve: θ(1, t), the tip angle.
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Figure 1.16: Backbone curve for the first vibration mode of a cantilever with w = 0 using a finite
difference, time-stepping method.

backbone curves for vibration modes of a system. However, the method is not as efficient as other

analytical approximation methods that produce accurate (but limited) results for vibrations of

moderate amplitude sizes. These methods are presented in Section 1.4.

1.4 Analytical Methods

It has been shown that, for the linear, undamped vibration analysis of the elastica, the partial

differential equations 1.35 may be simplified by assuming that the variables are of the form given

in equation 1.36. The assumption results in linear ordinary differential equations in the dynamic

variables that are easily solved and give accurate linear vibration results.

However, for nonlinear vibrations, the assumption of pure harmonic (or sinusoidal) motion is

not valid. To simplify the equations, then, to ordinary differential equations, other assumptions

of the variable form may be made. Two such methods, the Galerkin method and a perturbation

method, are described here.

1.4.1 The Galerkin Method

One method for approximating the solution (without assuming a sinusoidal dynamic component

of the variables) is the Galerkin Method [24]. To employ this method, the form of each of the

30



variables is assumed such that

x(s, t) = xe(s) +
n
∑

j=1

aj(t)xj(s),

y(s, t) = ye(s) +

n
∑

j=1

bj(t)yj(s),

θ(s, t) = θe(s, t) +

n
∑

j=1

cj(t)θj(s),

p(s, t) = pe(s) +

n
∑

j=1

dj(t)pj(s),

q(s, t) = qe(s) +

n
∑

j=1

ej(t)qj(s),

(1.90)

where, as before, the subscript e denotes the equilibrium solutions (found by solving the boundary

value problem defined by the ordinary differential equations 1.37 and the appropriate boundary

conditions). The spatial functions, xj(s), are chosen as the linear mode shapes (found numerically,

as shown in Section 1.3). The unknown temporal functions are found using the dynamic elastica

equations and an orthogonalization procedure involving numerical integration over arclength of each

dynamic equation after multiplication by one of the spatial function or its first derivative.

First, equations 1.90 are substituted into the elastica equations 1.35. For example, the first

equation becomes

x′

e(s) +
n
∑

j=1

aj(t)x
′

j(s) = cos



θe(s, t) +
n
∑

j=1

cj(t)θj(s)



, (1.91)

where a prime denotes differentiation with respect to arclength, s. The equations of motion 1.35

and the equilibrium equations 1.37 are used to obtain the equations involving the dynamic variables,
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giving

n
∑

j=1

ajx
′

j = cos θe



cos





n
∑

j=1

cjθj



− 1



− sin θe sin





n
∑

j=1

cjθj



,

n
∑

j=1

bjy
′

j = sin θe



cos





n
∑

j=1

cjθj



− 1



− cos θe sin





n
∑

j=1

cjθj



,

n
∑

j=1

cjθ
′′

j =



qe +
n
∑

j=1

ejqj







cos θe cos





n
∑

j=1

cjθj



− sin θe sin





n
∑

j=1

cjθj









−



pe +
n
∑

j=1

djpj







sin θe cos





n
∑

j=1

cjθj



+ cos θe sin





n
∑

j=1

cjθj







− qe cos θe + pe sin θe,

n
∑

j=1

djp
′

j = −
n
∑

j=1

äjxj − c

n
∑

j=1

ȧjxj ,

n
∑

j=1

ejq
′

j = −
n
∑

j=1

b̈jyj − c
n
∑

j=1

ḃjyj .

(1.92)

An approximation using series representations of the trigonometric functions may be used to simplify

the equations. For example, the first two terms of the series expansions may be used to give the

approximations

cos





n
∑

j=1

cjθj



 ≈ 1 − 1
2





n
∑

j=1

cjθj





2

, sin





n
∑

j=1

cjθj



 ≈
n
∑

j=1

cjθj −
1

6





n
∑

j=1

cjθj





3

, (1.93)

which are used to simplify the dynamic equations 1.92. The first equation, for example, becomes

n
∑

j=1

ajx
′

j = − sin θe





n
∑

j=1

cjθj



− 1

2
cos θe





n
∑

j=1

cjθj





2

+
1

6
sin θe





n
∑

j=1

cjθj





3

. (1.94)

If two mode shape functions are used, so that n = 2, equation 1.94 can be written

a1x
′

1 + a2x
′

2 = − sin θe (c1θ1 + c2θ2) −
1

2
cos θe (c1θ1 + c2θ2)

2 +
1

6
sin θe (c1θ1 + c2θ2)

3 . (1.95)

In the standard Galerkin method, equation 1.95 would be multiplied by xj and then integrated over

arclength for j = 1 and j = 2. However, the integrals of xjx
′

j over the arclength could be zero. In

order to ensure that these terms are nonzero, the equation is multiplied by x
′

j , yielding nonzero,

32



positive integrals of x
′2
j . Multiplying the equation by x′

1 and integrating along arclength from s = 0

to 1 gives

u1a1 + u2a2 = u3c
3
1 + u4c

2
1c2 + u5c

2
1 + u6c1c

2
2 + u7c1c2 + u8c1 + u9c

3
2 + u10c

2
2 + u11c2, (1.96)

where the constants uk, defined by

u1 =
∫ 1

0
x

′2
1 ds, u2 =

∫ 1

0
x

′

1x
′

2ds, u3 = 1
6

∫ 1

0
(sin θe) θ3

1x
′

1ds,

u4 = 1
2

∫ 1

0
(sin θe) θ2

1θ2x
′

1ds, u5 = − 1
2

∫ 1

0
(cos θe) θ2

1x
′

1ds, u6 = 1
2

∫ 1

0
(sin θe) θ1θ

2
2x

′

1ds,

u7 = −
∫ 1

0
(cos θe) θ1θ2x

′

1ds, u8 = −
∫ 1

0
(sin θe) θ1x

′

1ds, u9 = 1
6

∫ 1

0
(sin θe) θ3

2x
′

1ds,

u10 = − 1
2

∫ 1

0
(cos θe) θ2

2x
′

1ds, u11 = −
∫ 1

0
(sin θe) θ2x

′

1ds,

(1.97)

are found using numerical integration (and the numerical solutions for the equilibrium variables and

linear mode shapes). Similarly, equation 1.95 may be multiplied by x′

2, and the two equations are

used to find

a1 = w1c
3
1 + w2c

2
1c2 + w3c

2
1 + w4c1c

2
2 + w5c1c2 + w6c1 + w7c

3
2 + w8c

2
2 + w9c2,

a2 = z1c
3
1 + z2c

2
1c2 + z3c

2
1 + z4c1c

2
2 + z5c1c2 + z6c1 + z7c

3
2 + z8c

2
2 + z9c2,

(1.98)

where wk and zk are constants found using uk and the corresponding constants found using mul-

tiplication by x′

2. Differentiating these two equations with respect to t gives expressions for ȧ1(t),

ä1(t), ȧ2(t), and ä2(t) as functions of cj(t) and their time derivatives.

In a similar manner, the remaining equations (in equation 1.92) may be multiplied by the spatial

function derivatives (y
′

j , p
′

j , and q
′

j) to find equations that give bj(t), dj(t), and ej(t) and their first

and second time derivatives as functions of cj and the first and second time derivatives of cj . These

functions may be used to find the constants in the polynomial functions, g1 and g2, where

c̈1 = g1(c1, c2, ċ1, ċ2, c̈1, c̈2), c̈2 = g2(c1, c2, ċ1, ċ2, c̈1, c̈2). (1.99)

For a given set of initial conditions cj(0) and ċj(0), these resulting equations may be numerically

integrated in time, t.

As an example, this method may be used on the problem of the vibration of a cantilever with

self-weight, w = 0. Using the initial conditions c1(0) = 1 and c2(0) = ċ1(0) = ċ2(0) = 0 and

damping, c = 0, gives a sinusoidal time series with a cycle period that corresponds to the first linear

natural frequency. This result confirms linear vibration for small amplitudes of motion with the

expected vibration frequency (given in equation 1.30).
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To find results for larger amplitudes, the initial deflection in the first mode may be changed by

varying c1(0). The resulting initial lateral deflection may then be found by solving the equation

b1 = f(c1, c2). The resulting frequency, ΩN1, increases with initial deflection, as expected, but the

beam arclength of the initial deflection configuration also increases with c1(0). The relationship

between initial lateral tip deflection, y(s = 1, t = 0) and the resulting arclength ratio of the beam

to the initial length, L/Lo, is shown in Figure 1.17. Because the desired model is of an inextensible

beam, this method is only valid for very small dynamic deflections, and so another method to model

moderate-to-large deflections is needed.
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Figure 1.17: Initial deflected configuration arclength as a function of lateral, first-mode, tip de-
flection of a cantilever with w = 0 using the Galerkin method.

1.4.2 A Perturbation Method

The perturbation method makes use of a power series of functions as the assumed solution form.

In addition, if the solution has components that occur at different time scales, the perturbation

method of multiple scales may be used [25].

As an example, vibrations of the prebuckled, upright, heavy cantilever are analyzed. For the
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dynamic elastica equations 1.35, the solution forms of the variables are assumed such that

x(s, t) = xe(s) +
n
∑

j=1

ǫjxj(s, to, t1, t2),

y(s, t) = ye(s) +

n
∑

j=1

ǫjyj(s, to, t1, t2),

θ(s, t) = θe(s) +

n
∑

j=1

ǫjθj(s, to, t1, t2),

p(s, t) = pe(s) +
n
∑

j=1

ǫjpj(s, to, t1, t2),

q(s, t) = qe(s) +

n
∑

j=1

ǫjqj(s, to, t1, t2),

(1.100)

where ǫ is a small scalar parameter, to = t, t1 = ǫt, t2 = ǫ2t, and, as before, the subscript e denotes

equilbrium solutions. These equilibrium solutions, for the cantilever, are given in equation 1.64.

The solution forms, along with the series approximations

cos





n
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 ≈ 1 − 1
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∑
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2

+ 1
24





n
∑
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ǫjθj





4

,

sin





n
∑

j=1

ǫjθj



 ≈
n
∑

j=1

ǫjθj −
1

6





n
∑

j=1

ǫjθj





3

+
1

120





n
∑

j=1

ǫjθj





5

,

(1.101)

are substituted into equations 1.35. The derivatives with respect to time, written in terms of the

three time scales, are given by [26]

∂
∂t = ∂

∂to
+ ǫ ∂

∂t1
+ ǫ2 ∂

∂t2
,

∂2

∂t2 = ∂2

∂t2o
+ 2ǫ ∂

∂to

∂
∂t1

+ ǫ2
(

∂2

∂t2
1

+ 2 ∂
∂to

∂
∂t2

)

+ 2ǫ3 ∂
∂t1

∂
∂t2

+ ǫ4 ∂2

∂t2
2

.
(1.102)

If damping is neglected (c = 0), the terms of order ǫ1, when combined, give

x
′

1 = −θ1 sin θe = 0, y
′

1 = θ1 cos θe = θ1, p
′

1 = −
(

∂2x1/∂t2
)

,

q
′

1 = −
(

∂2y1/∂t2
)

, θ
′′

1 = (q1 − peθ1) cos θe − (p1 + qeθ1) sin θe = q1 − peθ1,
(1.103)

where a prime denotes differentiation with respect to arclength, s. These equations are similar

to the linear vibration equations 1.39 (where equations 1.64 have been applied for the equilibrium

variables). This result is expected, because they correspond to amplitudes that are small enough
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so that higher-order terms can be neglected. Applying the boundary conditions x(s = 0, t) = 0 and

p(s = 1, t) = 0, the solutions

x1(s, t, t1, t2) = 0, p1(s, t, t1, t2) = 0 (1.104)

are determined. Equations 1.103 may be arranged to obtain

y
′′′′

1 + w(1 − s)y
′′

1 − wy
′

1 +
(

∂2y1/∂t2
)

= 0. (1.105)

This equation is equivalent to equation 1.26, giving small-amplitude vibrations of the cantilever.

The solution is assumed here to take the form [26]

y1(s, t, t1, t2) = An(t1, t2)φn(s)eiΩnt + Bn(t1, t2)φn(s)e−iΩnt (1.106)

where n indicates the mode of vibration, φn is the nth linear mode shape, and Bn(t1, t2) is the

complex conjugate of An(t1, t2). The component An(t1, t2) gives the effects of motion at slower

time scales on the solution. The combined terms of order ǫ2 give

x′

2 = − 1
2θ2

1,

y′

2 = θ2,

p
′

2 = −
(

∂2x2/∂t2
)

− 2
(

∂2x1/∂t1∂t
)

= −
(

∂2x2/∂t2
)

,

q
′

2 = −
(

∂2y2/∂t2
)

− 2
(

∂2y1/∂t1∂t
)

,

θ
′′

2 = −peθ2 − 1
2qeθ

2
1 − p1θ1 + q2 = −w(1 − s)θ2 + q2.

(1.107)

These equations are combined, giving

y
′′′′

2 + w(1 − s)y
′′

2 − wy
′

2 +
(

∂y2/∂t2
)

= −2
(

∂2y1/∂t1∂t
)

. (1.108)

This equation is equivalent to the differential equation for y1 (equation 1.105) with the exception

of the right hand side “forcing” term. The homogeneous solution, then, of y2 may take the same

form as that of y1 (given in equation 1.106). For bounded solutions, no terms of the form eiΩnt

may appear in the forcing term; these terms are called “secular” [25]. The term containing this

exponential term is given by

iΩnφn∂An/∂t1, (1.109)

and, to be eliminated, gives ∂An/∂t1 = 0. This result implies that the solution given in equa-

tion 1.106 has no t1-dependence. The solution may be rewritten

y1(s, t, t2) = An(t2)φn(s)eiΩnt + Bn(t2)φn(s)e−iΩnt. (1.110)
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The second time derivative (in equation 1.102) is now given by

∂2

∂t2
=

∂2

∂t2o
+ 2ǫ2

∂

∂to

∂

∂t2
+ ǫ4

∂2

∂t22
, (1.111)

and the terms of order ǫ3 give

x
′

3 = −θ1θ2,

y
′

3 = θ3 − 1
6θ3

1 ,

p
′

3 = −
(

∂2x3/∂t2
)

,

q
′

3 = −
(

∂2y3/∂t2
)

− 2
(

∂2y1/∂t2∂t
)

,

θ
′′

3 = −peθ3 + 1
6peθ

3
1 − p2θ1 − 1

2q1θ
2
1 + q3.

(1.112)

These equations may again be used, along with equations 1.103 and 1.107 and the solutions

x2 =
∫

− 1
2y

′2
1 ds, p2 =

∫ (

−∂2x2/∂t2
)

ds + po, q1 =
∫ (

−∂2y1/∂t2
)

ds + qo (1.113)

(where po and qo satisfy p2(s = 1, t) = q1(s = 1, t) = 0), to generate a differential equation for y3.

The homogeneous part of this equation takes the same form as that of equation 1.105. To eliminate

the secular terms, they are multiplied by φn, integrated from s = 0 to s = 1, and the result is set

equal to zero, giving

2iΩn
dAn

dt2

∫ 1

0

φ2
nds + A2

nBn

∫ 1

0

φnγnds = 0 (1.114)

where

γn = 3
2Ω2

nφnφ
′2
n + 3Ω2

nqoφ
′

nφ
′′

n + 3Ω2
nφ

′

nφ
′′

n

∫ 1

0
φnds + 3φ

′′3
n + 9φ

′

nφ
′′

nφ
′′′

n

+ 3
2φ

′2
n φ

′′′′

n − 2Ω2
nφ

′

n

∫ 1

0
φ

′2
n ds − 2Ω2

nφ
′′

n

∫ 1

0

∫ s

0
φ

′2
n dsds − 2Ω2

npoφ
′′

n.
(1.115)

The form of An(t2) may be assumed such that [26]

An(t2) =
1

2
an(t2)e

iαn(t2), (1.116)

where an(t2) and αn(t2) give the response amplitude and phase angle. Substituting this expression

into equation 1.114 and separating the real and imaginary parts gives

ȧnΩneiαn(t2)
∫ 1

0
φ2

nds = 0, α̇n = 1
8a2

nλn (1.117)
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where

λn =

∫ 1

0 φnγnds

Ωn

∫ 1

0 φ2
nds

, (1.118)

and ȧn = dan/dt2 and α̇n = dαn/dt2. The value of λn for a given mode number may be found by

numerical integration using the known linear natural frequency, Ωn, mode shape, φn, and initial

values, po and qo. Because αn is the phase angle of motion, the derivative α̇n gives the angular

frequency. The response given in equation 1.106 can then be rewritten

y1(s, t, t2) =
1

2
anφn(s)ei(α̇nt2+Ωnt) +

1

2
ānφn(s)e−i(α̇nt2+Ωnt), (1.119)

where the coefficient of it in the exponent gives a nonlinear frequency estimate of

ΩN ≈ Ωn +
1

8
a2

nλn. (1.120)
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Figure 1.18: Backbone curves for a cantilever beam (with w = 0) using finite difference and
perturbation methods, solid curve: perturbation method, data points: finite difference method.

The variation in frequency from the linear-vibration frequency is then given by the sign of λn.

If λn < 0, the frequency decreases with the amplitude of motion (i.e., the response in mode n of

the system is softening), and for λn > 0, the frequency increases (i.e., the response in mode n is

hardening).
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This perturbation method was used to find the heavy cantilever vibration results shown in

Figure 1.8 where, for each self-weight value, |y1(s = 1, t, t2)| = a1|φ1(1)| is plotted against ΩN1/Ωn.

The backbone curves found using this method and the finite difference method (with w = 0) are

shown in Figure 1.18 and are seen to agree closely up to a lateral dynamic deflection of about 40

percent of the beam length.

Equation 1.120 may be used to find backbone curves for higher vibration modes of the upright

heavy cantilever. In addition, this equation and equation 1.115 may be used to find the variation in

frequencies of vibration of an upright heavy beam with any boundary conditions if the vibrations

are about the trivial equilibrium configuration. For these cases the corresponding linear mode shape

φ(s) must be found and po and qo must be chosen such that the boundary conditions are satisfied.

Clearly, the quadratic formula for the backbone curve (equation 1.120) is limiting. To find a

more accurate solution, the series approximation shown in equations 1.101 may be expanded to

include more terms or the terms of order ǫ4 and ǫ5 may be used to find a higher-order frequency-

amplitude relationship. But because the method gives frequency, ΩN , as a function of the magnitude

of An(t2) (i.e., ΩN = f(|An|)), the method will only give results up to the maximum lateral deflection

(|y(s = 1, t)| ≈ 0.832).

1.5 Experimental Methods

The theoretical frequency results in Figure 1.7 can be verified experimentally. A point-to-point

laser vibrometer (Ometron VH300+) is used to measure the velocity at certain points along a sys-

tem for small-amplitude vibration experiments. The system can be excited manually at different

locations (and in different directions) or through forced excitation, using a shaker (MB Dynamics

PM50A Vibration Exciter). For both cases, the resulting velocity data can then be interpreted

using Brüel & Kjær’s PULSE analyzer software. This software calculates the autospectrum Gxx(k),

defined as the average of the magnitude of the Fourier spectrum squared. Because the instrumen-

tation collects velocity data at discrete time steps, a discrete Fourier transform is performed (given

in equations 1.87 and 1.88).

A frequency span and increment can be specified, along with a windowing type. For the experi-

ments herein, the Hanning window is used [11]. The resulting data can be analyzed and frequencies

corresponding to autospectrum peaks are identified. In the case that the peak frequency is esti-

mated to lie between two consecutive sampling frequencies, a weighted average method is again used

(shown in equation 1.89).
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Figure 1.19: Autospectrum for the hanging cantilever with nondimensional weight w = 4.534.
The weighted average peak frequency is 2.028 Hz, Ω = 4.542.
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Figure 1.20: Experimental and theoretical results for the first frequency of the heavy, vertical
cantilever, (a) nondimensional weight vs frequency squared, (b) dimensional plot of the same ex-
perimental and theoretical data. Open circles and solid curve: upright cantilever; closed circles
and dashed curve: hanging cantilever; dotted line: frequencies found by neglecting self-weight using
equations 1.30 and 1.10.
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Thin polycarbonate strips are used in the experiments. The specific weight is 11.2 kN/m3

and Young’s modulus is 2.4 GPa. An autospectrum for the cantilever is shown in Figure 1.19 and

experimental data for the upright and hanging cantilever are shown in Figure 1.20. In Figure 1.20(b),

the data are plotted with dimensional values, where L/Lc is the beam length (normalized by the

critical length) and the middle, dotted curve is found analytically using equations 1.30 and 1.10.

An experimental modal analysis can also be performed. Me’Scope VES (Vibrant Technology,

Inc.) interprets incoming signals from the laser vibrometer, and a modal impact hammer (Endevco

2302-50 ) is used to excite the system in a specified direction and at several specified locations. Each

resulting autospectrum is normalized with respect to the input force, and the software creates curve

fits of each resulting frequency response function. Each point on the system can then be animated

with the peak frequencies and calculated amplitudes.

1.6 Preliminary Work

The discussed numerical and experimental methods have been used to study some systems with

both linear and nonlinear static configurations, along with the linear vibrations about those static

configurations. Here, the analysis is used to characterize the effect of gravity on the linear vibrations

of vertical cantilevers. In addition, the equilibria and linear vibrations of a clamped-clamped heavy

beam and a highly deformed beam configuration are studied.

1.6.1 Mode-Splitting in the Heavy Vertical Cantilever

There are many examples of “mode-splitting” in the literature. This occurs when a symmetry

in the system is broken, and is often due to a slight difference in geometry, e.g., a beam whose cross

section is not quite square. In this study, this frequency detuning effect is caused by gravity (or by

the beam orientation and the resulting effect of gravity on the system) [27].

The upright and hanging cantilevers are depicted in Figure 1.6, and, here, the effect of orientation

on the dynamic behavior is studied. Assuming harmonic motion, the nondimensional governing

equation of motion (for the prebuckled upright or hanging cantilever) is given in equation 1.28,

where the variables have been nondimensionalized as shown in equation 1.25 and again damping

(which is on the order of 0.5% in experiments) is neglected in the analysis. As before, the sign of the

weight parameter, w, gives the beam orientation; for w > 0, the beam is upright, and for w < 0, the

beam is in a hanging orientation. The case w = 0 corresponds to a short cantilever in a horizontal
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orientation.

The upright and hanging systems have identical dynamic behavior if weight (and hence gravity)

is ignored, resulting in the natural frequencies given in equation 1.30. In effect, this expression

implies that the restoring force due to elastic bending is much greater than the restoring force due

to gravity. The case corresponding to the other extreme (where the bending stiffness of the beam

is negligible) results in the frequencies shown in equation 1.31 for the hanging orientation.

For experimental verification, a number of thin polycarbonate strips are fabricated such that

frequencies for a range of the nondimensional parameter w can be examined. The base (where the

beam is clamped) is attached to an electro-magnetic shaker and the system subject to a broadband,

random excitation. A laser vibrometer can then be used to acquire velocity data from discrete

locations along both beams, and subsequent signal processing used to obtain frequency response

data. The cross-sectional dimensions of the strips are fixed at 25.4 mm × 0.508 mm. For example,

a length of 0.166 m gives w values of +1, -1, and 0 for the upward, downward, and “horizontal” con-

figurations, respectively. For the horizontal (w = 0) case the fundamental frequency was measured

at 4.113 Hz, which compares to a value of 4.3 Hz obtained via equation 1.30.

If the same system is rotated 90 degrees in either direction (to create either the upright or hang-

ing configuration), the frequency separation (mode splitting) is seen (as shown in Figure 1.21(a)).

Now there are two adjacent peaks with dimensional fundamental frequencies of 3.962 Hz (w = 1, or

upright) and 4.488 Hz (w = −1, or hanging). Figure 1.21(b) shows a similar result when |w| = 4

with an underlying dimensional horizontal frequency of 1.625 Hz, in which all the parameters are

kept the same as in Figure 1.21(a) other than a length increase to 0.264 m.

Because the upright cantilever undergoes buckling when w = 7.837, the trivial equilibrium loses

its stability at this self-weight value [3]. Thus, the results shown in Figure 1.21(a) (for which w = 1)

correspond to a cantilever whose length is (1/7.837)1/3 = 50% of its buckling length, and 80% for

the cantilever corresponding to the results shown in Figure 1.21(b).

Experiments are conducted for a range of different lengths, and hence, w-values, and the results

are shown graphically (along with the numerical results shown in Figure 1.7) in Figure 1.22. For a

given w, ∆Ω gives the difference between the nondimensional frequencies of the hanging and upright

configurations. Finally, the splitting of the fundamental frequencies as a function of w is shown in

Figure 1.23(a), with the equivalent scaled results for the first four frequencies shown in part (b),

where, for a given self-weight, w,

∆Ω

Ωc
=

Ωw<0 − Ωw>0

Ωc
, (1.121)
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Figure 1.21: Experimental frequency response spectrum for a cantilever in a gravitational field,
(a) |w| = 1.0, (b) |w| = 4.0. Data was acquired from six measurement points along the complete
length.

and, for each mode, Ωc is the natural frequency in that mode corresponding to w = 0.

The natural frequencies of very slender vertical cantilevers are affected by their orientation due

to gravity. The important parameter is w = ±mgL3/EI which reflects both the orientation (in

terms of its sign) and the influence of bending versus gravity (in terms of its magnitude). If the

orientation is purely vertical, then the equilibrium configuration is trivial, but the dynamic response

is different according to whether the beam is held upright or suspended downwards. In the former

case the frequencies are reduced due to the compressive nature of the self-weight loading (with the

possibility of buckling). For the same beam, the latter case displays higher natural frequencies due

to the stiffening effect of the beam weight, and as w → −∞ the system approaches the behavior of

a hanging chain.

1.6.2 The Heavy Beam and Pinched Loop

A slender, straight beam resting on a flat, rigid foundation does not buckle when subjected to

a compressive load, since the load cannot overcome the effect of the beam’s weight. However, it

buckles if its ends are moved toward each other. Postbuckling of such a beam is examined, both

theoretically and experimentally, for horizontal and inclined foundations. The beam is modeled as

an elastica, and equilibrium states with large deflections are computed, including cases in which
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and dashed curve: hanging configuration, squares: w = 0, or experimental, horizontal configuration
results.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

7

8

DW
1

|w|

(a)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

DW /W
c

|w|

(b)

Figure 1.23: The split in the natural frequencies due to orientation as a function of |w|, experiment
and analysis: (a) mode 1, (b) from left to right: modes 4, 3, 2, 1.
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self-contact occurs. Frequencies and mode shapes for small vibrations about equilibrium are also

determined. In addition, the case of self-contact is examined by clamping the two ends together

to form a teardrop shape. The clamped end is held at various angles with the loop either upright,

horizontal, downward, or halfway between these positions. The length of the loop is increased, and,

again, the resulting equilibrium shapes, as well as small in-plane vibrations about equilibrium, are

investigated analytically and experimentally.

The heavy beam may rest on a foundation that is horizontal or inclined. The inclined clamped-

clamped heavy beam is depicted in Figure 1.24(a). The ends of the beam are moved toward each

other (yielding an end-shortening, ∆).

In addition to the nondimensionalizations given in equations 1.25 and 1.34, the nondimensional

end-shortening parameter, δ, is defined such that

δ = ∆/L. (1.122)

The resulting equilibrium equations are given in equation 1.37. The shooting method is used to

satisfy the boundary conditions xe(0) = ye(0) = θe(0) = ye(1) = θe(1) = 0 and xe(1) = 1 − δ.

Some resulting static deflection shapes of the beam with w = 125 are shown in Figure 1.24(b),

which also relates the vertical midpoint beam deflection (for the case of the initially horizontal

beam) to the end-shortening. The dotted line and upper solid line correspond to the case of a

rigid foundation lying beneath the beam, while the remaining curves and deflection shapes are some

possible results for the case of no supporting foundation. The dashed and solid curves correspond

to unstable and stable solutions, respectively.

For w = 0, the beam buckles at po = 39.478 ≈ 4π2, the well-established nondimensional critical

buckling load for a clamped-clamped beam [1]. An analysis was also performed for several values

of weight, w > 0. With β = 0, and in the presence of a horizontal foundation, the ends of the strip

are moved together and:

• the strip initially has some finite length lying flat against the foundation (the strip is called

“long” for this case and corresponds to the dotted line in Figure 1.24(b) [15]),

• if the weight is not too large, the strip becomes “short” (the strip does not touch the foun-

dation between its ends) for some end-shortening value [15],

• for small weights, two sides of the strip contact each other, forming a bulb shape, at some

end-shortening value,
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Figure 1.24: (a) Schematic of heavy inclined strip. (b) Midpoint deflection of the horizontal strip
as a function of end-shortening, and corresponding equilibrium shapes for w = 125 and β = 0.

• for large weight values, the buckled segment tilts at a certain value of end-shortening, then

self-contact occurs, and then the segment continues tilting until it contacts the foundation

[28],

• for very large w-values, the strip is always long, up to self-contact.

For inclination angles, 0 < β < π/2,

• as the higher end is initially moved downward toward the lower end, a flat segment exists

adjacent to the higher end but not the lower end, and the strip is termed “short-long”,

• self-contact occurs for some end-shortening value.

For β = π/2, the strip is vertical and corresponds to the case of the heavy column with fixed

ends. The strip is always short and the foundation is irrelevant.

To isolate the case of clamped heavy beam self-contact, the ends of a straight, thin, uniform,

flexible strip are bent until they meet, and are clamped together [29]. The strip then forms a

teardrop shape, as shown in Figure 1.25(a), and is called a pinched loop. To put the analysis in

nondimensional terms without involving the length L (since this is a convenient parameter to vary

in experiments), the nondimensional parameters are defined such that

a = (EI/W )
1/3

, l = L/a, x = X/a, y = Y/a,

s = S/a, p = Pa2/EI, q = Qa2/EI, m = Ma/EI,
(1.123)
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a function of length. Continuous line, analytical; •, experimental.

This nondimensionalization is then valid for any nonzero weight per unit length, W . The resulting

equilibrium elastica equations are

∂xe/∂s = cos θe, ∂ye/∂s = sin θe,

∂θe/∂s = me, ∂me/∂s = qe cos θe − pe sin θe,

∂pe/∂s = − sinβ, ∂qe/∂s = − cosβ.

(1.124)

The weight per unit length of the loop does not appear explicitly in these equations, and the

nondimensional length, l, of the loop and orientation angle, β, are varied. The equations are

numerically integrated along 0 ≤ s ≤ l using the shooting method to satisfy the boundary conditions

xe(0) = ye(0) = θe(0) = xe(l) = ye(l) = 0 and θe(l) = −π.

As the length, l, is increased:

• in-plane buckling occurs at a critical length, l = 4.5, for the upright loop (β = π/2), and a

supercritical pitchfork bifurcation is observed (the horizontal midpoint deflection as a function

of length, l, is shown in Figure 1.25(b)),

• for other orientations, except the hanging one (β = −π/2), deflections also become large as

the length is increased, and no buckling occurs,

• for the hanging loop, the equilibrium configuration remains symmetric, and the shape be-

comes slightly thinner and longer.

A linear dynamic analysis can be used to determine stability of equilibrium states (as in Fig-

ure 1.24(b)) and to predict buckling [8]. The linear vibration elastica equations for the heavy beam

47



are given in equation 1.39. These equations are used to obtain natural frequencies and correspond-

ing mode shapes of the system. A similar derivation and analysis can be performed for the pinched

loop.

For the heavy, horizontal, clamped beam, the natural frequencies can be found for strips that

are short. The fundamental frequency is zero when the strip becomes short, increases with end-

shortening, then decreases up to self-contact. For the inclined strip, the frequency is zero at the

long-short transition, and corresponding mode shapes can be found.

For the case of the upright pinched loop

• as the length of the loop is increased, the fundamental frequency decreases until it is zero at

the critical length l = 4.50.

• as the length is increased further and the loop droops (postbuckling deformation), the fun-

damental frequency increases.

For other orientation angles (−π/2 ≤ β < π/2)

• the fundamental frequency decreases continuously for increasing length,

• if angles very close to β = π/2 were considered and l were increased, the corresponding funda-

mental frequency would decrease until l approached 4.50 and then would increase (similarly

to the typical behavior of a slightly imperfect system),

• the differences between the fundamental frequencies for the different orientation angles are

small if the length of the loop is either sufficiently small or sufficiently large (i.e., the funda-

mental frequency becomes almost independent of the orientation).

The first four mode shapes for the upright loop (experimental and analytical) are shown in Fig-

ure 1.26. The first vibration mode corresponds to a horizontal rocking about the equilibrium con-

figuration, essentially pivoting about the clamped end. The second and fourth mode shapes are

symmetric with respect to the vertical.

These linear and nonlinear static analyses and linear vibrations studies are the foundation

for further applications of the elastica equations to other problems, including the study of highly-

deformed structures as vibration isolators, and the study of the nonlinear dynamics of flexible beams.

In addition to these specific applications, the equation formulation and numerical, analytical, and

experimental methods described here are useful for the analysis of a diverse set of structural behavior

systems.
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Figure 1.26: First four mode shapes for upright loop. Dashed curve, equilibrium (analytical);
continuous curve, mode (analytical); •, equilibrium (experimental); ◦, mode (experimental).
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Chapter 2

Vibration Isolation

2.1 Introduction and Background

There are many practical systems that require vibration isolation, where the reduction of vi-

bration is desired in a system with a vibrating, or dynamically excited, component. A vibration

isolator is placed between the vibration source and a mass to minimize the mass motion. For ex-

ample, a control system that monitors the engine and other components of a car may be mounted

in the vehicle, but vibrations may damage or shorten the lifespan of the system [11]. The control

system must then be attached to the automobile with a vibration isolator. Minimization of the mo-

tion transmitted to the vehicle passengers is also desirable and can be accomplished with isolators.

Equipment mounted in spacecraft and aircraft may also require protection from the unavoidable

vibrations that the vessels undergo when in use [30]. Isolators may be made of “highly-damped

materials” that change the system stiffness, including rubber, cork, or springs that are placed at

one or more locations on the system [11].

Figure 2.1: Spring-mass-damper system with base excitation, y(t).

A simple isolator often may be modeled by a spring-mass-damper system with base excitation,

as shown in Figure 2.1. The system consists of a spring with stiffness, k, that supports a mass, m,

and a small amount of linear viscous damping is assumed. The mass displacement is x(t) and the
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base excitation is y(t). The equation of motion, found by balancing forces, is given by

mẍ + c(ẋ − ẏ) + k(x − y) = 0, (2.1)

If the base excitation, y(t), is sinusoidal, such that y(t) = A sin ωt, the equation may be rearranged

to give

mẍ + cẋ + kx = cAω cosωt + kA sinωt. (2.2)

The particular solution, xp(t), is found by solving for the constants, C1 and C2, where

x(t) = C1 cosωt + C2 sin ωt, (2.3)

that satisfy the differential equation. The ratio of the magnitude of the particular solution to the

base excitation (or input) magnitude, A, is then the “displacement transmissibility,” and this ratio

is the value to be minimized in vibration isolation. In this case, the transmissibility is given by

Tr =
|xp(t)|

A
=

√

1 + (2ζω/ωn)2

[1 − (ω/ωn)2]2 + (2ζω/ωn)2
, (2.4)

where the damping ratio is ζ = c/2mωn and the natural frequency is ωn =
√

k/m, found by setting

A = 0 and finding the homogeneous solution, xh(t). It is clear by examining equation 2.4 that for

small damping coefficient (or ζ) values, the transmissibility is largest for forcing frequencies, ω, near

the natural frequency, ωn. This transmissibility is plotted in Figure 2.2, as a function of the forcing

frequency ratio, ω/ωn, for various damping ratios. The magnitude of mass motion is equal to the

forcing magnitude (or the transmissibility, |x(t)|/A = 1) for ω/ωn = 0 and
√

2, regardless of the

damping ratio. For forcing frequencies between these values, the transmissibility is always greater

than unity; the transmitted motion is greater than the forcing amplitude, and the mass motion

is amplified. For damping ratios ω/ωn >
√

2, the transmissibility is less than one, and isolation

occurs. Because the desired transmissibility occurs for forcing frequencies that are greater than the

natural frequency of the system, generally an isolator with a small fundamental frequency is desired

for effective isolation [31].

An effective isolator, then, can be created with a linear spring that has a small stiffness, k. But

for the system depicted in Figure 2.1, the stiffness has an effect on both the natural frequency and

the static deflection of the mass. The stiffness of a linear spring is the proportionality constant

relating the displacement, x, to the applied force, F , or F = kx (i.e., the force-deflection curve is

linear). The static displacement that occurs by placing the mass on the spring is then xo, where

mg = kxo. (2.5)
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Figure 2.2: Transmissibility plot for a linear spring-mass-damper system for damping ratios
ζ = 10−6 (uppermost curve), 0.1, 0.2, 0.5, 0.75.

Because the natural frequency of the system is ωn =
√

k/m, it can be given in terms of the static

displacement (using equation 2.5) by

ωn =

√

g

xo
. (2.6)

Because the static deflection, xo, and natural frequency, ωn, are related by equation 2.6, a

decrease in one causes an increase in the other, making evident the limitations of this linear spring

isolator. An ideal isolator, then, has a stiffness, k, that is not constant, giving a force-deflection

curve that is nonlinear [32]. An example is illustrated in Figure 2.3. The static deflection is small

(meaning that, for a range of force values, F < mg, the stiffness, or force-deflection curve slope, is

large), and the local stiffness (or slope) is small (as in Figure 2.3(c)).

The use of some nonlinear structures as vibration isolators has been studied in the literature.

Ellison, Ahmadi, and Kehoe [30] investigated the use of circular steel rings to isolate both horizontal

and vertical motion. Vibrations were studied analytically and experimentally. Plaut, Alloway, and

Virgin [33] studied two rigid bars, hinged to one another (where a rotational spring and damper

are also located at the hinge) that act as a vertical isolator . Both linear and nonlinear responses

were investigated and chaotic responses were found. Virgin and Davis [34] investigated the use of

a pinned-pinned, postbuckled column isolator . Force-deflection curves were found experimentally
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Figure 2.3: Example of a nonlinear spring with varying stiffness, k = dF/dx.

and analytically, and the transmissibility beyond resonance (as a function of ω/ωn) was found using

experimental data. Bonello [35] studied a pinned-pinned beam isolator, where the nonlinear stiffness

of the beam was exploited by creating an adaptive system that changes the beam curvature (and

hence the stiffness).

Vertical isolators comprised of buckled clamped-clamped beams were introduced and investi-

gated by Winterflood et al [36–38]. Analysis of these isolators using the elastica equations was

also performed [31, 39, 40], where the case of pre-bent columns was also studied (the columns are

deflected in the first buckling mode before undergoing static mass loading).

Here, the use of a clamped-clamped beam as a vertical or horizontal motion isolator is studied.

Numerical methods are used to confirm the system transmissibility for various parameter values. In

addition, another isolator in the form of a highly-deformed structure is investigated. This structure

gives a considerable range of stiffness control; system parameters may easily be adjusted to reach

the desired natural frequency, and so a system with a frequency range of effective isolation may

be created. The elastica equations are used to model the system, and experimental results are

compared with the numerical analysis.

2.2 Buckled Strut Isolator

2.2.1 Vertical System

The vertical isolator system is shown in Figure 2.4. The experimental system is comprised of

four buckled polycarbonate struts with the upper ends attached to a plate (or plates) having mass,

M . The mass motion is given by X(S = L, T ), and the lower end of each strut is attached to a shaker

that provides a vertical base excitation, U(T ). The motion of the mass is constrained (as shown in
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Figure 2.4: Shematic diagram and experimental configuration of buckled strut(s) used as a spring
with base excitation, U(T ).

the schematic) such that it is purely vertical. This constraint is enforced in the experimental system

by placing a rod through the center of the mass.

The nonlinear elastica equations (given in equations 1.35) may be used to investigate this isolator

system’s behavior, where the nondimensional parameters are given by equations 1.25, 1.34, and

1.122. The end-shortening, δ = ∆/L, resulting from the static mass load, M , is the static deflection

(xo, in the previous section). The nondimensionalized mass load is given by

f = MgL2/EI. (2.7)

It is important to note that, if more than one strut is used in the isolator system (as in the ex-

perimental system shown in Figure 2.4), the mass load, f , gives the applied force per column, so

that

ftotal = nf, (2.8)

where n is the number of struts in the system, and each strut in the system deflects identically (in

equilibrium and dynamic behavior). The length and stiffness, then, in equation 2.7 are those of a

single strut. Under this assumption, it is sufficient to study the static and dynamic deflection of

only one strut in the analysis. The boundary conditions to be satisfied are given by [31]

x(0, t) = u(t), y(0, t) = y(1, t) = θ(0, t) = θ(1, t) = 0, p(1, t) = f + f
∂2x(1, t)

∂t2
, (2.9)
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where the final equation is found by summing the forces at s = 1. The equilibrium solution for

the strut may be found by numerically integrating equation 1.37. The shooting method is used,

with β = π/2, to satisfy the boundary conditions xe(0) = ye(0) = θe(0) = ye(1) = θe(1) = 0 and

pe(1) = f for varying self-weight values, w. The resulting force-deflection curves are plotted in

Figure 2.5 for w = 0, 5, 10, and 25, along with some static configuration plots for varying f -values

and w = 0. The advantage of using this structure as an isolator is evident: a large axial load results

in a small static deflection and the initial postbuckling force-deflection slope (or stiffness) is also

small.

Some system disadvantages can also be seen, however, by examining the force-deflection plot.

For a fixed w-value, an increase in the mass load (or in the nondimensional load, f) results in a

stiffness increase. Clearly this increase results from a change in the dimensional mass value, M ,

and so such a change increases both terms (the stiffness, k, and the mass, M) in the approximation

of linear vibrations about the static equilibrium (given by ω =
√

k/M where k is the slope of the

dimensional force-deflection curve). A different isolator system that allows a change in stiffness

without a consequential change in the mass load may be preferable for this reason. There is also a

system limitation on the mass load; the struts in the system must be buckled and, because the mass

load is used to cause buckling, there is a minimum mass load, f , (for given w and n values) that

may be isolated using this vertical system. To avoid self-contact, however, there is also a maximum

mass load that may be isolated.
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Figure 2.5: (a) Force-deflection curves for w = 0 (uppermost curve), 5, 10, 25, 50. (b) Vertical
clamped-clamped beam isolator static configurations for f = 40.5, 41.6, 46.6, 53.3, and 62.5, with
w = 0.

Experimental force-deflection data are shown in Figure 2.6 along with numerical results. The

55



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

δ

f

Figure 2.6: Force-deflection curve for vertical isolator: experiment and analysis, with w = 1.23
and pc = 38.86. Continuous curve: numerical results, data points: experimental data (closed circles:
outward deflection, open circles: inward deflection).

strut has a cross-sectional area of 0.787mm × 76.2 mm and length, L = 0.2334 m, resulting in

w = 1.23. The nondimensional critical buckling load for this w-value is pc = 38.86. The closed

circles and open circles indicate opposite buckling directions. The data points for small static

deflection values and their variation from the numerical data show that the strut is geometrically

imperfect.

Equations 1.39 are used to find free vibration results for the system, using the boundary con-

ditions xd(0) = yd(0) = θd(0) = yd(0) = θd(0) = 0 and p1(1) = −fΩ2x1(1). In Figure 2.7, the

fundamental system frequency is plotted as a function of mass load, f , for w = 0. If a change in

the mass load value, f , affected only the dimensional mass term, M , in the linear natural frequency

expression (ω =
√

k/M), the relationship between the frequency and mass load would be given by

Ω ∝ 1/
√

f (i.e., the frequency would decrease with an increase in mass), but again, a change in

the mass load also results in a stiffness change. Instead, the frequency of the curve increases for all

values of f beyond the critical buckling load, fc = 4π2, where the slope of the curve is large for

mass loads near fc. The first three mode shapes are shown in Figure 2.8 for f = 40 and w = 0,

and the dashed curve and open circle give the equilibrium configuration (and position of the mass).

The solid curves and closed circles represent the mode shapes. These mode shapes correspond to
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natural frequencies Ω1 = 0.698, Ω2 = 44.73, and Ω3 = 75.26.
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Figure 2.7: Nondimensional frequency, Ω, as a function of nondimensional mass load, f , for the
vertical clamped-clamped beam isolator with w = 0.

In equations 1.36 and 1.39, damping is neglected (c = 0). Here, damping is a parameter of

interest and significantly affects system dynamics. Linear vibrations may still be assumed in this

analysis, because small-amplitude vibrations at forcing frequencies beyond resonance are of interest.

An appropriate solution form for the variables is then given by

x(s, t) = xe(s) + xa(s) sin Ωt + xb(s) cos Ωt, y(s, t) = ye(s) + ya(s) sin Ωt + yb(s) cos Ωt,
θ(s, t) = θe(s) + θa(s) sin Ωt + θb(s) cosΩt, m(s, t) = me(s) + ma(s) sin Ωt + mb(s) cosΩt,
p(s, t) = pe(s) + pa(s) sin Ωt + pb(s) cosΩt, q(s, t) = qe(s) + qa(s) sin Ωt + qb(s) cosΩt,

(2.10)

where the subscripts a and b denote the dynamic variable solutions. Expressing the forms in this

way is equivalent to assuming, for each variable, x(s, t) = xe(s) + xd(s)eiΩt [40]. Substituting

these equations into equations 1.35 and using equilibrium equations 1.37 gives the linear dynamics

equations

x
′

a = −θa sin θe, x
′

b = −θb sin θe,

y
′

a = θa cos θe, y
′

b = θb cos θe,

θ
′

a = ma, θ
′

b = mb,

m
′

a = (qa − peθa) cos θe − (pa + qeθa) sin θe, m
′

b = (qb − peθb) cos θe − (pb + qeθb) sin θe,

p
′

a = Ω2xa + cΩxb, p
′

b = Ω2xb − cΩxa,

q
′

a = Ω2ya + cΩyb, q
′

b = Ω2yb − cΩya.

(2.11)
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Figure 2.8: Vertical clamped-clamped beam mode shapes for w = 0, Ω1 = 0.698 (leftmost plot),
Ω2 = 44.26, and Ω3 = 75.28. Dashed line and open circle: equilibrium configuration, solid line and
closed circle: mode shape.

The form of base excitation, u(t), is assumed to be sinusoidal and is given by

u(t) = uo sin Ωt. (2.12)

The nondimensional forcing amplitude, uo, is defined as uo = Uo/L, where Uo is the dimensional

excitation amplitude. Using the converged equilibrium solution, equations 2.11 may be integrated

numerically using the shooting method to satisfy the boundary conditions

xa(0) = uo,

xb(0) = ya(0) = yb(0) = θa(0) = θb(0) = 0,

ya(1) = yb(1) = θa(1) = θb(1) = 0,

pa(1) = −fΩ2xa(1), pb(1) = −fΩ2xb(1),

(2.13)

for specified values of self-weight, w, and forcing amplitude and frequency, uo and Ω.

The transmissibility for this system is given by

Tr =

√

xa(1)2 + xb(1)2

uo
, (2.14)

which is equivalent to the ratio of the Fourier Transform (or autospectrum) magnitude of the mass

motion to that of the base excitation. Numerical transmissibility results are shown in Figure 2.9

using the parameter values w = 0, f = 40, and c = 1 and 5. These results are in agreement with

Plaut et al. [39]. As expected, the first three transmissibility peaks occur at forcing frequency values
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Ω = 0.69, 44.7, and 75.3 that are near the first three natural frequencies (given in Figure 2.8). It

can be seen that forcing near the third natural frequency of the system gives a transmissibility just

above unity for light damping (c = 1). A larger damping value results in effective isolation for

forcing frequencies above the fundamental frequency. Typically, however, the amount of damping

in a system is not easy to change.

For systems such as this one, where multiple transmissibility peaks are present (corresponding

to the natural frequencies of the system), there may be a forcing frequency between consecutive

peaks where the contributions by the natural frequencies to the steady-state vibration effectively

cancel each other. At this forcing frequency, an “anti-resonance” is present, and can be seen in the

tranmissibility plot in Figure 2.9 at Ω = 4.13 and Ω = 103.81 [41].
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Figure 2.9: Transmissibility curve for vertical clamped-clamped beam isolator with w = 0, f = 40,
and c = 1 (solid curve) and 5 (dotted curve).

Experimental transmissibility data may be found by fixing the forcing frequency and amplitude

and measuring the response amplitude (or amplitude of mass motion). The frequency and ampli-

tudes are recorded and the measurement is repeated for a range of forcing frequency values. A plate

mass of M = 2.537 kg gives a nondimensional mass load per strut of f = 50.25 (where n = 4). The

numerical analysis for the system with these parameter values (where w = 1.23, as above) gives an

undamped natural frequency of 0.851 Hz. Resulting experimental transmissibility data are plotted

in Figure 2.10, along with numerical results for varying nondimensional damping coefficient values,
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Figure 2.10: Experimental and numerical transmissibility curves for the vertical isolator system,
w = 1.23, f = 50.2534. Dotted curves: c = 5 (upper curve), 25, solid curve: c = 15, data points:
experimental data.

c = 5, 15, and 25. Experimental resonance occurs at 0.925 Hz. The nondimensional damping value

that gives a peak frequency transmissibility value of the same order as the experimental results is

c = 15 (giving a numerical damped natural frequency of 0.797 Hz).

The significant disagreement between the experimental and numerical data may be due to a

number of factors. In the analysis, it is assumed that the struts are ideal (i.e., straight when there

is no axial load) and each of the four struts behaves identically (i.e., each strut supports a quarter

of the total mass load and deflects by the same end-shortening, δ). It can be seen in Figure 2.7 that

a small change in the mass load for the initially postbuckled beam results in a significant change

in the natural frequency. It is likely, for this reason, that even a slight difference in the initial

imperfections of the struts causes a significant variation in their dynamic behavior, and coupling of

the individual natural frequencies of the four struts may occur, altering the dynamic behavior of

the system as a whole. This system asymmetry may also cause slight static or dynamic rotation of

the mass plate, resulting in significant friction along the central rod.

The main disadvantages of this vertical isolator then are an inherent system asymmetry and a

lack of stiffness control. Two other isolator systems that address these problems are investigated

here.
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2.2.2 Horizontal System

A horizontal clamped-clamped beam isolator is shown in Figure 2.11, where two beams (of length

L1 and L2) are attached to either end of the mass to be isolated. A sinusoidal input excitation,

U(T ) = Uo sin ωt, acts in the horizontal direction at the left end of the left beam, and the right end

of the right beam is fixed. The mass moves only in the horizontal direction. Because the system

stiffness is determined by the static axial load (or end-shortening), it is independent of the mass

load, f (defined as above in equation 2.7), and so this system has a level of stiffness control that is

lacking in the previous, vertical isolator system.

Figure 2.11: Horizontal isolator schematic.

The elastica equations (equations 1.35) may again be used to study this system, along with

the same nondimensional variables and parameters as for the horizontal isolator. To numerically

integrate the equations using the shooting method, it is convenient to use two arclength variables,

where S1 and S2 represent the arclengths of the left and right struts, respectively, as shown in Figure

2.11. These arclength variables are nondimensionalized by the strut lengths (so that s1 = S1/L1

and s2 = S2/L2) and the boundary conditions are given by

x1(0, t) = u(t),

y1(0, t) = y2(0, t) = θ1(0, t) = θ2(0, t) = 0,

y1(1, t) = y2(1, t) = θ1(1, t) = θ2(1, t) = 0,

x1(1, t) + x2(1, t) = 2 − 2δ − u(t),

p1(1, t) = p2(1, t) + f ∂2x1(1,t)
∂t2 ,

(2.15)

where 2δ is the total end-shortening on the two struts. Assuming the struts are identical, the

end-shortening of each strut is δ.

It is important to note that, unlike in the vertical system, even if the two struts are assumed

to be identical (or have the same w-value), they must be analyzed simultaneously. The boundary
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conditions for each are coupled and the assumption that they deflect dynamically in phase is no

longer valid. In fact, it will be shown that system resonance occurs when the struts are out of phase

with one another.

For a given end-shortening and w-value, the equilibrium equations (equations 1.37) may be

solved (using β = 0) to satisfy

xej(0) = yej(0) = θej(0) = 0,

xe1(1) + xe2(1) = 2 − 2δ, yej(1) = θej(1) = 0,
(2.16)

where j = 1 (for the left strut) or j = 2 (for the right strut).

Equations 1.39 are again used to find the fundamental frequency of the system, using the

boundary conditions. In Figure 2.12, the fundamental frequency as a function of mass load, f , is

shown for w = 0 (for both struts) and end-shortening values δ = 0.05, 0.1, 0.25, 0.5, and 0.7. Unlike

for the vertical isolator system, the frequency here is seen to decrease with an increase in the mass

load. Because the stiffness is determined only by the end-shortening (which, for this system, is

independent of the mass load) and self-weight of the struts, this horizontal system is useful for a

much larger range of mass load values than the vertical isolator system. The mass load does not

need to be above the critical buckling load and it also does not affect static self-contact (which is

determined by the end-shortening).

The modes of vibration for this system are similar to those shown for the vertical case (in Figure

2.8); here, the left and right struts are exactly out of phase. For δ = 0.1 and f = 40, the first three

natural frequencies are Ω = 1.036, 43.89, and 75.93.

To consider forced vibrations, damping is included, and the variables may be written in the

form given in equations 2.10 and solved numerically. The dynamic variable boundary conditions

are found using equations 2.15 and 2.16, resulting in

xa1(0) = uo,

xb1(0) = xa2(0) = xb2(0) = yaj(0) = ybj(0) = θaj(0) = θbj(0) = 0,

xa1(1) + xa2(1) = 0, xb1(1) + xb2(1) = 0,

yaj(1) = ybj(1) = θaj(1) = θbj(1) = 0,

pa1(1) = pa2(1) − fΩ2xa1(1), pb1(1) = pb2(1) − fΩ2xb1(1).

(2.17)

The system transmissibility may be found numerically by varying the forcing frequency. But if

the excitation is constant, such that u(t) = uo, and the two beams are identical, then the resulting

mass deflection is given by x1(1, t) = uo/2 (using the boundary conditions given in equations 2.15).
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Figure 2.12: Nondimensional frequency, Ω, as a function of mass load, f , for the horizontal
clamped-clamped beam isolator with w = 0 and δ = 0.05 (lowermost curve), 0.1, 0.25, 0.5, and 0.7.

So effective isolation occurs for transmissibility values

Tr =

√

xa1(1)2 + xb1(1)2

uo
<

1

2
, (2.18)

and the transmissibility for Ω = 0 is Tr = 0.5. Numerical results for w = 0, δ = 0.1, f = 40,

and c = 1 are shown in Figure 2.13. As for the vertical isolator, the transmissibility peaks occur

near the natural frequencies. The steady-state vibration shapes corresponding to the first three

transmissibility peaks for this case are shown in Figure 2.14. The equilibrium configuration is

plotted with the dashed curve (and the mass location at equilibrium is plotted with an open circle).

For motion near the first transmissibility peak (the first plot in Figure 2.14), steady-state motion is

similar to that of the first mode (where the struts are out of phase). However, unlike for the vertical

isolator, the vibration shapes at the second and third transmissibility peaks are noticeably different

from the second and third mode shapes. While each strut moves in the second and third modes, the

amplitudes of motion of the left and right strut are significantly different. The left strut is seen to

move with a much larger amplitude. Some motion is transmitted to the right strut, but because the

amplitude of mass motion (and hence, excitation of the right strut) is much smaller than that of the

actual excitation, u(t), the amplitude of motion of the right strut is also smaller. This phenomenon

is called “mode localization” and, in this and other cases, may be exploited for isolation [42]. Mode
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Figure 2.13: Transmissibility for the horizontal isolator system with w = 0, f = 40, δ = 0.1, and
c = 1.

localization in a similar multispan, coupled beam system was studied by Vakakis et al. [43], where

vibration amplitude ratios of the various beams were found as a function of the torsional stiffeners

connecting the beams. The advantage of this phenomenon in the application studied here is that,

even at transmissibility peaks, effective isolation occurs, because the majority of the energy (or

motion) is in the left strut. There are also two anti-resonances that occur between the first two

transmissibility peaks. The vibration shapes corresponding to these frequencies (Ω = 12.01, 39.92)

are shown in Figure 2.15. Although this system permits a large range of mass load values, improves

the level of stiffness control, and gives dynamic mode localization results that produce effective

isolation, there are still some system disadvantages. Experimentally, a similar difficulty of system

asymmetry arises for this isolator system as for the vertical system, especially since the axial motion

of the left strut and right strut are coupled. A system with only one isolator structure eliminates

coupling, and an example of such an isolator is presented next.
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Figure 2.14: Steady-state vibration shapes for the horizontal isolator system at the first three
transmissibility peaks with w = 0, δ = 0.1, and f = 40. Dashed curve and open circle: equilibrium,
continuous curves and closed circles: vibration shapes.
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Figure 2.15: Steady-state vibration shapes for the horizontal isolator system at antiresonances, (a)
Ω = 12.01 and (b) 39.92, with w = 0, δ = 0.1, and f = 40. Dashed curve: equilibrium, continuous
curves: vibration shapes.

Figure 2.16: Pinched loop isolator schematic and experimental system.

66



2.3 Pinched Loop Isolator

2.3.1 Introduction and Analytical Formulation

The pinched loop isolator is shown in Figure 2.16. Excitation occurs at the base where the strip

ends are clamped together and the mass is attached to the midpoint of the strip and allowed to move

vertically. In the experimental system, the mass may be altered by adding or removing weights on

the bar attached to the polycarbonate strip, and the mass is attached to a vertical crossed roller

slide. The pinched loop was introduced in Section 1.6.2, and, in additon to the nondimensional

variables given in equation 1.123, the nondimensional time and frequency parameters are defined

such that [29]

t = T
√

g/a, Ω = ω
√

a/g, (2.19)

where ω is a dimensional vibration frequency. Again, this nondimensionalization is valid for any

nonzero weight per unit length, W > 0. The nondimensional mass load is defined here as

f = Fa2/EI, (2.20)

where F = Mg. Because it is assumed to be applied as a vertical point load at s = l/2 and given

the structural symmetry of the loop (with a constraint against horizontal motion at s = l/2), it is

sufficient to numerically analyze only half of the strip, so that 0 ≤ s ≤ l/2, where the point load at

s = l/2 is f/2. The governing elastica equations using the defined nondimensional parameters are

∂x/∂s = cos θ, ∂y/∂s = sin θ,

∂θ/∂s = m, ∂m/∂s = q cos θ − p sin θ,

∂p/∂s = − sinβ − ∂2x/∂t2, ∂q/∂s = −cosβ − ∂2y/∂t2,

(2.21)

where the corresponding equilibrium equations are given in equations 1.124. The boundary condi-

tions are

x(0, t) = u(t), y(0, t) = θ(0, t) = 0,

y(l/2, t) = 0, θ(l/2, t) = −π/2, p(l/2, t) = f/2 + (f/2) ∂2x(l/2,t)
∂t2 .

(2.22)

2.3.2 Equilibrium

For the equilibrium solution, the nondimensional length, l, and mass load, f , are specified (and

β = π/2), and numerical integration is performed along 0 ≤ s ≤ l/2 to satisfy xe(0) = ye(0) =
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θe(0) = ye(l/2) = 0, θe(l/2) = −π/2, and pe(l/2) = f/2. The vertical mass deflection (or vertical

deflection of the loop at s = l/2) is called δ, where

δ = xe(l/2)|f=0 − xe(l/2). (2.23)

Again, this upright loop configuration loses stability [29], but here the arc length is kept below the

critical value (l = 4.50). Some resulting equilibrium configurations for a nondimensional length,

l = 2, are shown in Figure 2.17(a). The uppermost curve gives the static shape with no mass

load (f = 0), and the remaining curves result from mass loads f = 10, 20, . . ., 90, and 98.6. The

final curve corresponding to f = 98.6 gives the static configuration just before self-contact. Force-

deflection curves are plotted in Figure 2.17(b) for nondimensional lengths l = 1.5, 2, 2.5, and 3 for

static deflections up to δ = 0.584, 0.778, 0.972, and 1.164, respectively. Each curve is continued up

to self-contact. As expected, an increase in loop length is seen to cause a decrease in the stiffness

(or force-deflection curve slope), and the initial slope of the curve is large (indicating that the loop

has a large initial stiffness - a desirable characteristic for a vibration isolator). It is evident that the

mass load may be used to tailor the system stiffness (to give effective isolation).
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Figure 2.17: Numerical equilibrium results for the pinched loop isolator. (a) Static configurations
for l = 2 and mass loads, f = 0, 10, 20, . . ., 90, 98.6. (b) Force-deflection curves for nondimensional
lengths, l = 1.5 (uppermost curve), 2, 2.5, 3.

Experimental equilibrium configuration results for l = 1.7416 (using a polycarbonate strip with

cross-sectional area 25.4 mm × 0.508 mm, giving a nondimensional parameter value a = 0.1664)

are shown in Figure 2.18, where upward loads (f < 0) are included. The continuous curve gives

numerical results, and the experimental data points agree well with the theory.

The vertical stiffness, k = df/dδ, may be found by estimating the slope of the static force-

deflection curve, and these results are shown in Figure 2.19 as a function of loop length, l, for four
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Figure 2.18: Force-deflection curve for the pinched loop isolator with l = 1.7416. Solid curve:
numerical results, data points: experimental results.
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Figure 2.19: Vertical stiffness (k = df/dδ) of the pinched loop isolator as a function of length, l,
for mass loads (from left to right), f = 90, 50, 20, 10.
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mass load values (from left to right), f = 90, 50, 20, and 10. The curve corresponding to each

mass load is plotted until the stiffness drops to zero (corresponding to a horizontal tangency on the

force-deflection curve and a loss of stability).

2.3.3 Free Vibration

Free vibration frequencies and mode shapes for the system are found using the equilibrium

solution (for given values of l and f), equations 1.39, and the shooting method to satisfy xd(0) =

yd(0) = θd(0) = yd(l/2) = θd(l/2) = 0 and pd(l/2) = −(f/2)Ω2xd(l/2). The first frequency is

plotted in Figure 2.20 for the four nondimensional lengths l = 3, 2.5, 2, and 1.5. For each length,

frequencies are found up to self-contact, which, for l = 3 and 2, occurs before the system becomes

unstable (i.e., before the frequency drops to zero). As with the horizontal clamped-clamped beam

isolator, the frequency decreases with the mass load. Similarly to the vertical isolator, however, the

mass load affects both the inertia at s = l/2 and the local stiffness of the system. One advantage

of this system, when compared with the previous vertical isolator, is that no minimum mass load is

required for isolation, as shown in Figure 2.20, where a frequency is found for each length at f = 0.
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Figure 2.20: Frequency as a function of mass load for the pinched loop isolator, with (from left to
right) l = 3, 2.5, 2, 1.5.

The first three natural frequencies as a function of mass load, f , are shown in Figure 2.21 for

l = 2 (up to self-contact). With no mass load (f = 0), the natural frequencies for this case are
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Ω1 = 21.13, Ω2 = 59.59, and Ω3 = 120.56. Each of the frequencies decreases initially, and the

third frequency reaches a minimum at f = 66.7, then increases for larger mass load values. The

corresponding loop isolator mode shapes are shown in Figure 2.22 for l = 2 and f = 10 (giving

δ = 0.021). The dashed curve gives the equilibrium configuration, and the mode shapes are similar

to those for the free vibration of the pinched loop (shown in Figure 1.26). Here, only the symmetric

mode shapes (the second and fourth mode shapes in Figure 1.26) appear because the midpoint of the

loop (at s = l/2) is constrained to move in the vertical direction only. The resulting nondimensional

frequencies for this case are Ω = 6.09, 41.89, and 98.40.
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Figure 2.21: First three natural frequencies as a function of mass load for the pinched loop isolator
with l = 2.

2.3.4 Vibration Isolation

Forced vibration results are again found using the solution forms given in equations 2.10 and

the resulting dynamic variable equations 2.11. Here, the boundary conditions are

xa(0) = uo, xb(0) = ya(0) = yb(0) = θa(0) = θb(0) = 0,

ya(l/2) = yb(l/2) = θa(l/2) = θb(l/2) = 0,

pa(l/2) = − f
2 Ω2xa(l/2), pb(l/2) = − f

2 Ω2xb(l/2),

(2.24)
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Figure 2.22: Pinched loop isolator mode shapes for l = 2 and f = 10 (δ = 0.021). Dashed curve
and open circle: equilibrium, solid curves and closed circles: mode shape. The first three natural
frequencies are Ω = 6.09, 41.89, and 98.40.

for specified values of forcing amplitude, uo, and frequency, Ω, and the transmissibility is given by

Tr =

√

xa(l/2)2 + xb(l/2)2

uo
. (2.25)

Numerical transmissibility results for l = 2, f = 10, and c = 0.5 are shown in Figure 2.23, where,

as for the vertical clamped-clamped beam isolator, dynamic vibration shapes corresponding to the

first three transmissibility peaks (at forcing frequencies near the first three natural frequencies) are

similar to the corresponding mode shapes. Experimental transmissibility results are found by

attaching the loop base to a shaker (as seen in Figure 2.16) that oscillates in the vertical direction.

The shaker output (or excitation) is in the form of a sinusoidal sweep over a specified range of

frequencies. The motions of both the sliding mass and the base are measured and the resulting

Fourier Transform ratio gives the transmissibility. Experimental results are shown in Figures 2.24

and 2.25. Figure 2.24 gives results for a nondimensional length l = 1.987, where f = 29.29 in (a)

and f = 44.60 in (b). The natural frequencies for this case are found numerically using the free

vibration equations, giving 3.33, 50.74, and 111.45 Hz for f = 29.29 and 2.13, 49.62, and 102.45

Hz for f = 44.60. The experimental transmissibility peaks occur at 3.68, 52.56, and 120.47 Hz

and 2.56, 51.63, and 112 Hz for f = 29.29 and f = 44.60, respectively. In Figure 2.24, results for

l = 1.479 are plotted, where f = 29.29 in (a) and f = 44.60 in (b). The numerically-computed

natural frequencies are 6.49, 91.93, and 214.10 Hz for f = 29.29 and 4.60, 91.50, and 206.19 Hz

for f = 44.60. The experimental transmissibility peaks occur at 6.81, 94.25, and 222.06 Hz and

4.94, 94.19, and 215.88 Hz for f = 29.29 and f = 44.60, respectively. For both lengths, numerical
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Figure 2.23: Numerical transmissibility results for the pinched loop isolator with l = 2, f = 10,
and c = 0.5.

tranmissibility results are found using a damping coefficient of c = 1. Although experimental peaks

occur near the numerically-computed natural frequencies, anti-resonances do not appear in the

experimental measurements. Because anti-resonances correspond to very small amplitudes of mass

motion, experimental measurements at these frequencies are more vulnerable to noise, making them

difficult to detect [41].

In the experimental results for each case, there are some additional transmissibility peaks that

do not appear in the numerical results. These peaks may correspond to vibration shapes with

rotation at the midpoint (where, in the analytical formulation, it is assumed that θ(l/2, t) = −π/2).

The attachment point of the mass load also has a finite width, experimentally; the analysis assumes

this force is applied as a point load. Finally, there may be some asymmetry in the experimental

system due to an error in the attachment point location of the mass load. These additional peaks,

however, have transmissibility values less than unity, indicating that the pinched loop is an effective

isolator.

In both the numerical and experimental results, there is a considerable attenuation of the

transmissibility for forcing frequencies above resonance, and it is this resonant frequency that can

be tuned by either altering the loop length or static mass load of the system.

While in this case the mass motion is constrained to be purely vertical, the pinched loop isolator
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Figure 2.24: Experimental and numerical transmissibility results for the pinched loop isolator,
l = 1.987, (a) f = 29.29, (b) f = 44.60.
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Figure 2.25: Experimental and numerical transmissibility results for the pinched loop isolator,
l = 1.479, (a) f = 29.29, (b) f = 44.60.
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system is one that may also be studied as a horizontal motion isolator or even a system that isolates

motion in both directions simultaneously. This system characteristic makes this isolator particularly

advantageous over a helical spring system, where the motion must be limited to be exclusively in

one direction.

2.4 Conclusions

Vibration isolation is required in a number of dynamics applications. There are advantages to

using a nonlinear vibration isolator, and some such systems have been studied in the literature.

Here, three nonlinear isolator systems were investigated, where highly-deformed elastic structures

were used as the spring elements. Each has some level of stiffness control, allowing isolation over a

desired frequency range.

Both the vertical clamped-clamped beam system and the pinched loop isolator satisfy the re-

quirement of a large initial stiffness, along with a relatively small local stiffness under a nonzero

mass load. Numerical results for each system indicate that displacement transmissibility is small for

forcing frequencies beyond the fundamental resonance. Experimental results for each confirm that

these systems are effective isolators. The horizontal system is also effective in that mode localization

occurs in the strut that undergoes direct excitation. Each system also has an amount of system

asymmetry in the analysis and/or experiment.
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Chapter 3

Nonlinear Beam Vibrations

3.1 Introduction

The governing equation for free, linear, beam bending vibration about a trivial equilibrium

configuration is given in equation 1.17, where the self-weight of the beam is neglected. As shown

in Sections 1.1.2, analytical mode shapes may be assumed and used to find corresponding exact,

analytical frequencies for specified boundary conditions. Even if the self-weight is included, small-

amplitude vibration modes and frequencies about a stable, trivial equilibrium (as in Section 1.1.2

and 1.3) or a highly-deformed equilibrium (as in Section 1.6 and Chapter 2) are easily found using

numerical integration and the shooting method. These results are accurate for small-amplitude

beam vibrations, but if large-amplitude vibration results are desired, other analytical or numerical

methods (some of which are outlined in Chapter 1) are necessary.

A number of studies of nonlinear beam vibrations (and solution approximation methods) appear

in the literature. Marur outlined many of the analytical and numerical solution methods that

have been used [44]. Governing equations were typically derived via energy methods [45, 46] or by

summing the assumed forces acting on the system (as in the present study). Many of the studies

have been performed using Cartesian (rather than arclength) coordinates, limiting the vibration

amplitudes and static deflection sizes that may be considered [47–51]. Most used analytical methods

where the solution forms were assumed (as the product of spatial and temporal functions, for

example) [45, 52]. Typically the analytical methods used include perturbation, Galerkin, and/or

harmonic balance methods [53–56]. Other studies have been performed on beam vibrations that

cause snap-through [57,58] and on nonlinear vibrations that result in chaotic behavior [59,60]. There

is also some experimental work in the literature [54,59,61,62], where the results were compared with

analytical methods or, as in Nandakumar and Chatterjee [63], experimental results were used to

derive a nonlinear model for dynamic beam deflection.

Here, as in previous sections, the beam is assumed to be inextensible, and shear deformation

is neglected. The elastica equations are considered, and perturbation and finite difference methods

(both outlined in Chapter 1) are used to study various boundary condition and self-weight cases.

Results are compared with those available in the literature.
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3.2 Trivial Equilibrium Configurations

First, nonlinear vibrations about trivial equlibrium configurations with various boundary con-

ditions are studied. The nondimensional quantities given in equations 1.25 and 1.34 are used, where

setting w = 0 is equivalent to neglecting the self-weight of the system.

Luongo et al. [46] studied nonlinear vibrations for the four boundary condition cases shown in

Figure 3.1, where, for each case, A gives the maximum amplitude of motion in the first vibration

mode. Self-weight was neglected in the analysis, and both immovable and movable ends were con-

sidered. Because in the present study the beam is assumed to be inextensible, results are compared

with the movable end case results (indicated in the schematic by rolling boundary conditions). Some

(a) Clamped-Free (b) Clamped-Supported

(c) Clamped-Slider (d) Pinned-Supported

Figure 3.1: Boundary condition cases for a study of nonlinear vibrations about trivial equilibrium
configurations [46].

perturbation method results for the clamped-free (cantilever) case (corresponding to Figure 3.1(a))

are shown in Section 1.4.2, where the method is performed on the elastica equations. The resulting

backbone curve (with w = 0) corresponding to motion in the first mode is plotted with the solid

curve in Figure 1.18. Because the vibration frequency, ΩN1, increases with amplitude, the system

is hardening in the first mode. Again, this curve may be expressed analytically by equation 1.120

where Ω1 is the first linear natural frequency, a1 is the amplitude of lateral tip motion, and λ1 is

a function of the frequency, Ω1, mode shape, φ1(s), and constants, po and qo, resulting from the

boundary conditions. As shown in Figure 1.10, the first cantilever vibration mode shape that is

found numerically (using the shooting method) agrees very closely with the analytical mode shape

(given by equation 1.23 with b = 1.875 and σ = 0.7341), where weight is neglected (or w = 0).
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So the same value of λn (and consequently the same analytical nonlinear frequency-amplitude rela-

tionship) results from the use of either the numerical or analytical mode shape. Note that, because

the vibrations considered here are about trivial equilibria, and x gives the longitudinal coordinate,

x = s (and φ(s) = φ(x)).

Luongo et al. [46] derived an analytical expression for the free vibration frequency-amplitude

relationship using arclength coordinates, an energy method, and a perturbation method, resulting

in [46]

ΩNn

Ωn
= 1 +

(

3b

8
− c

4

)

a2 +

[

−15b2

256
+

9c

64
(c − b)

]

a4, (3.1)

where

b =
2
∫

1

0
φ
′2
n φ

′′2
n ds

∫

1

0
φ′′2

n ds
, c =

∫

1

0

(∫ s

0
φ
′2
n ds
)2

ds
∫

1

0
φ2

nds
, (3.2)

and A = aφn(sm), where sm gives the arclength coordinate at which the maximum deflection in

the mode occurs (i.e., the location at which A is measured in Figure 3.1). For first-mode (n = 1)

vibration of the cantilever (with w = 0), the results from the study are plotted (where sm = 1),

together with the backbone curve resulting from a perturbation method using the elastica equations,

in Figure 3.2. The dashed curve is plotted using equation 3.1, and the quadratic equation (generated

by using only the first two terms of equation 3.1) is plotted with a solid curve. The second-order

elastica perturbation results (plotted with data points and given by equation 1.120) agree closely

with the quadratic approximation found by Luongo et al. [46], and the approximations are in

agreement up to a deflection size of about A = 0.35, or 35 percent of the beam length.

The first-mode backbone curves for the three remaining boundary conditions shown in Figure

3.1 were also found by Luongo et al. [46]. For these cases, equations 3.1 and 3.2 still apply, where

φ1 is the analytical first-frequency mode shape for specified boundary conditions. For the clamped-

supported and clamped-slider beams, the analytical mode shapes are given by equation 1.23, where

b = 3.927 and σ = 1.0008 (for the clamped-supported case, with sm = 0.58) and b = 4.730 and

σ = 0.9825 (for the clamped-slider case, with sm = 0.5) [11]. The analytical mode shape for

vibration in the first mode of the pinned-supported beam is given by φ1(s) = sinπs (and sm = 0.5).

The analytical backbone equation resulting from the elastica perturbation analysis (equation

1.120) also applies for the remaining boundary condition cases. Again, the equation involves the

linear vibration frequency, Ω1, and mode shape, φ1, which may be found analytically (given above,

for each case) or numerically (using the shooting method). The remaining unknown values in
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Figure 3.2: Backbone curves for cantilever vibration (with w = 0) in the first mode. Data points:
elastica perturbation method; solid curve: energy perturbation method, quadratic equation; dashed
curve: energy perturbation method, fourth-order equation [46].

equation 1.120 are po and qo, which, as shown in Section 1.4.2, are determined by the boundary

conditions. For the clamped-supported case, the values are chosen such that they satisfy p(s =

1, t) = 0 and q(s = 0.58, t) = 0. For the clamped-slider and pinned-supported cases, p(1, t) = 0 and

q(0.5, t) = 0. The resulting backbone curves are plotted in Figure 3.3, where, for each boundary

condition case, the quadratic and fourth-order equations derived by Luongo et al. [46] are plotted

along with the elastica perturbation results. For each of the boundary conditions, the system is

softening in the first mode, and agreement between the two quadratic curves (from the elastica

and energy methods) is good. However, for each pair of curves (quadratic and fourth-order) the

agreement is only good up to about 6 percent of the beam length (or A = 0.06). This range of

agreement is significantly smaller than that for the cantilever vibration, because the degree of change

in the nonlinear frequency (or the amount of system softening or hardening) is larger. For example,

for the clamped-slider boundary condition, a frequency decrease of about 2 percent occurs for a

dynamic amplitude of A = 0.07, compared with a similar increase in frequency for the cantilever

corresponding to an amplitude of A = 0.8, or 80 percent of the beam length.

As shown in Section 1.3.5, a finite difference method may also be used to generate the backbone

curve for nonlinear vibrations. The amplitude of steady-state free vibration in the lateral direction

(|y(s = 1, t)| of the upright cantilever, approximated above by A = aφ(s = 1)) is found, and
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Figure 3.3: Backbone curves for vibration in the first mode of beams (with w = 0) with various
boundary conditions. Data points: elastica perturbation method; solid curve: energy perturba-
tion method, quadratic equation; dashed curve: energy perturbation method, fourth-order equa-
tion [46]. Each pair of curves represents the boundary conditions: (left to right) clamped-slider,
pinned-supported, clamped-supported.

the period of vibration at the resulting amplitude is determined, giving the nonlinear vibration

frequency, ΩN1. These results are plotted as data points, along with the second- and fourth-order

backbone approximations, in Figure 3.4. It can be seen in the figure that the fourth-order equation

gives results that are accurate for a larger range of amplitudes than the second-order approximation.

However, these perturbation results are not as accurate as those from the finite difference method,

which captures the “fold-over” that occurs for large deflections, where the lateral deflection reaches

a maximum, y(s = 1, t) ≈ 0.832, and then decreases. This behavior can be seen in Figure 1.14,

where nonlinear vibration shapes are plotted for various deflection sizes.

For each boundary condition case, the second-order elastica perturbation approximations agree

very closely with the quadratic equations derived by Luongo et al., but one advantage of the elastica

perturbation method is that it may be used to analyze nonlinear vibrations of heavy beams (where

w > 0). Equation 1.120 may again be used, where the linear mode shape, φ(s), is found numerically

for a specified nonzero weight, w, and boundary conditions, using the shooting method (where

φ(s) = yd(s)). In the case of the upright heavy cantilever, the trivial equilibrium configuration is

stable for weight values 0 ≤ w < 7.837. Backbone curve approximations resulting from this analysis

are shown for three nonzero, pre-buckling weight values, w = 5.859, 2.989, 1.655, along with the
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Figure 3.4: Backbone curve approximations for the cantilever with w = 0. Solid curve: sec-
ond-order approximation; dashed curve: fourth-order approximation; data points: finite difference
results from steady-state free vibrations.

results for w = 0, in Figure 3.5. For these four weight values, the fundamental frequencies are

Ω1 = 1.769, 2.768, 3.124, and 3.516, respectively. Also plotted (as data points) are finite difference

method results for each of the self-weight values. It can be seen that, as the self-weight is increased,

the system is increasingly hardening in the first mode, and the second-order elastica perturbation

method results are accurate up to a dynamic amplitude of about half of the beam length (or

|y(1, t)| = 0.5). The finite difference method may also be used to determine the nonlinear dynamic

beam response to excitation. For horizontal base excitation of the heavy cantilever, the method is

applied as outlined in Section 1.3.5. Equations 1.86 are again used, where a nonzero damping is

included (c > 0), and the boundary conditions are changed such that

x(0, t) = θ(0, t) = 0, y(0, t) = u(t),
m(1, t) = p(1, t) = q(1, t) = 0, (3.3)

where u(t) gives the horizontal base excitation (and u(t) is nondimensionalized as before, where

u = U/L). For the discretized system, these boundary conditions become

xj
1 = θj

1 = 0, yj
1 = uj ,

mj
n+1 = pj

n+1 = qj
j+1 = 0,

(3.4)

where uj = u(tj). If the base excitation is sinusoidal (with a constant amplitude and frequency), then

the excitation function is given by uj = uo sinΩtj . However, if an excitation with a varying frequency
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Figure 3.5: Backbone curve approximations for the upright heavy cantilever with weight values
(from left to right) w = 5.859, 2.989, 1.655, 0, where the natural frequencies are Ω1 = 1.769, 2.768,
3.124, 3.516, respectively. Solid curve: elastica perturbation results; closed circles: finite difference
method results.
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Figure 3.6: Numerical amplitude response data for the heavy, upright cantilever (with w = 5.859),
using the finite difference method. Open circles: backbone approximation from free-vibration anal-
ysis; squares: uo = 0.005; data points: uo = 0.013; crosses and asterisk: uo = 0.025.
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is to be modeled, a sine sweep function can be applied. For a linear sinusoidal sweep excitation

over a time range 0 < t < tf , with beginning and ending frequencies Ωo and Ωf , respectively, the

frequency as a function of time is given by

Ω(t) = Ωo + t (Ωf − Ωo) /tf . (3.5)

The “chirp function”, u(t), is then given by u(t) = uo sin φ(t), where φ̇(t) = Ω(t). The function can

then be written

u(t) = uo sin

(

Ωot +
1

2tf
(Ωf − Ωo)t

2

)

. (3.6)

Similarly, an excitation function with an exponential sine sweep is found and given by

u(t) = uo sin
(

(Ωo − Ωf )e−t + Ωf t
)

. (3.7)

The steady-state response amplitudes (for constant-frequency base excitation, u = uo sin Ωt, using

the finite difference method) are shown in Figure 3.6 for w = 5.859, along with the backbone curve

found using finite differences. The tip angle amplitude is plotted, and the damping constant is

c = 0.06. The forcing amplitudes are uo = 0.005, 0.013, and 0.025. It can be seen that, for larger

forcing amplitudes, the response amplitude is discontinuous just beyond nonlinear resonance for this

hardening system. A smaller-amplitude, steady-state motion is found (plotted with an asterisk) by

applying an exponential sine sweep (as given in equation 3.7) with Ωo = 3.0. It can be seen that

these lightly damped, forced vibration results agree well with the numerical backbone curve data.

Finally, it is shown that lightly damped, free vibration results may be used to find accurate

backbone curve data. Nandakumar and Chatterjee [63] used this method with an experimental

cantilever system to generate a backbone curve. Here, the finite difference method is again used for

the heavy, upright cantilever with w = 5.859. The damping coefficient is set to a small, nonzero

value, c = 0.03, and a large initial deflection is used to initialize the algorithm. The initial, deflected

configuration is shown in Figure 3.7(a). The amplitude of motion decays, and the resulting time

series of tip angle motion, θ(1, t), is shown in Figure 3.7(b). These time series data are used to

generate a backbone curve. Between consecutive maxima, the maximum motion amplitudes are

averaged, and the period is measured by t2 − t1, where t1 is the time at which the graph crosses

the t-axis (with a negative slope), and t2 is the next time where this occurs. The amplitudes and

frequencies of motion for each cycle are recorded and plotted as data points in Figure 3.8, where

the steady-state motion data are also shown. The lightly damped free vibration data are seen to

closely agree with backbone curve generated from undamped, steady-state motion. Generating the
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Figure 3.7: Damped, free vibration of the heavy cantilever with w = 5.859, c = 0.03, and
θ(s = 1, t = 0) = 2.062.
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Figure 3.8: Backbone curve approximations for the heavy, upright cantilever (with w = 5.859)
from steady-state vibration and lightly damped vibration results (using a finite difference method).
Open circles: steady state vibration; closed circles: damped, free vibration.

backbone curve with this method greatly reduces computation time; several data points may be

found from a single, damped-motion time series.

3.3 Highly Deformed Equilibrium Configurations

So far, results have been shown for large-amplitude beam vibrations about trivial equilibrium

configurations. The finite difference method, however, may be used to model motion about highly

deformed equilibria. The clamped-clamped beam, for example, was introduced in Section 1.6.2. For

a specified nondimensional end-shortening, δ, and self-weight, w, the buckled static shape may be

found via the shooting method. Small-amplitude vibration frequencies and mode shapes may also be

determined with this method (also described in Section 1.6.2). Analytical backbone curves for this

case (with a specified end-shortening and self-weight) can be found using a perturbation method,

but for cases with nontrivial equilibria, the equations become considerably more involved. Here, the

finite difference method is used to compute large-amplitude motions of the clamped-clamped beam.

As shown in the preceding section, accurate backbone curve approximations may be found by

modeling lightly damped, free vibration. Here, backbone curves are obtained by finding steady-

state, undamped, free vibration frequencies and amplitudes for large-amplitude motion. The initial
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deflections for these cases are determined by forcing the lightly damped system at the linear-vibration

fundamental frequency. For the case of the horizontal, clamped-clamped, heavy beam, the horizontal

excitation takes the form

u(t) = uo sinΩ1t, (3.8)

giving the boundary conditions

x(0, t) = uo sin Ω1t, x(1, t) = 1 − δ + uo sin Ω1t. (3.9)

The system is forced in this manner, and a local deflection maximum is found. This configuration

is then used as an initial deflection for free, undamped vibration, where the horizontal coordinates

are reset such that

xfree(s, 0) = xf (s, tf ) − uo sin Ωtf , (3.10)

where tf is the time at which the desired deflection occurs in the horizontal excitation results, and xf

gives the horizontal deflection at tf with forcing. Free, undamped, vibration may be initialized with

this initial deflection and the amplitudes and period of motion are recorded. The finite difference

method may again be used with a small damping coefficient value to find motion of slightly smaller

amplitudes. The amplitudes and frequency are again recorded and this procedure is repeated to

generate a backbone curve for the specified parameters.

For end-shortening δ = 0.05 and self-weight w = 0, this method is used, where the initial

deflection for motion at the largest recorded amplitude is plotted in Figure 3.9(a). For larger initial

deflection magnitudes, numerical convergence could not be met in the free vibration algorithm. The

resulting backbone curve is shown in Figure 3.9(b), where the measured amplitude is the angle of

the tangent to the beam at the midpoint (i.e., |θ(0.5, t)|). It can be seen that the system is initially

hardening, but becomes softening for larger amplitudes.

Phase projections for θ(0.5, t) are shown in Figure 3.10 for free vibration at various initial

deflection magnitudes. For small-amplitude vibrations, the phase projections are ellipses (where the

ratio of the intersections with the velocity and displacement axes is the natural frequency, Ωj , of

the jth mode). For the specified parameter values, Ω1 = 44.16. It is clear that, for large amplitudes

of motion, the phase projection is not elliptical. Some numerical damping is also evident in this

outermost curve thickness.

The horizontal and vertical motions at points on the left half of the beam are plotted in Figures

3.11(a) and 3.12(a) for free vibration, where the initial deflection is as shown in Figure 3.9(a). It

can be seen that the time series are very different along varying arclength coordinates, and that
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Figure 3.9: Initial deflection and backbone curve approximation using finite differences for the
postbuckled, clamped-clamped beam with w = 0 and δ = 0.05 (giving a linear natural frequency of
Ω1 = 44.16). In (a) the dashed curve gives the equilibrium configuration and the solid curve gives
the deflected shape. Circles are located at s = 0.5 on each configuration.
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Figure 3.10: Phase projections of the midpoint angle motion of the clamped-clamped beam with
w = 0 and δ = 0.05 for varying amplitudes.

higher harmonics of the first frequency are present. In Figure 3.12(a), the time series of vertical

motion at s = 0.1, 0.3, and 0.5 are plotted. The vertical equilibrium deflections at these points are

ye(0.1, 0.3, 0.5) = 0.014, 0.092, and 0.140, and it can be seen that the vertical motions at these beam

locations are not symmetric about the equilibrium values. In fact, the beam midpoint (s = 0.5) can

be seen to never even dynamically pass through equilibrium. This behavior can also be seen in the

phase projection of vertical motion at s = 0.5 plotted in Figure 3.12(b). The projections in this

figure and Figure 3.11(b) also indicate that the midpoint bounces between the time series maxima

of each cycle.

A similar process is used to approximate the backbone curve for end-shortening δ = 0.5 (and,

as before, w = 0). The initial deflection used to generate the free vibration data is shown in Figure

3.13(a), and the resulting backbone curve approximation is plotted in Figure 3.13(b). Here, the

curve is initially softening and then becomes hardening at larger amplitudes. The free-vibration

phase projection for θ(0.5, t) corresponding to the largest initial deflection is shown in Figure 3.14.

Results may also be found for the case of a nonzero self-weight. Here, w = 32.56, as chosen

by Santillan et al. [14], and the backbone curve approximations for δ = 0.05 and 0.5 are shown in

Figure 3.15 along with the numerical data for w = 0. The amplitude, A, is plotted, where

A =
max(x(0.24, t)) − min(x(0.24, t))

2
. (3.11)
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Figure 3.11: Time series and phase projection of the horizontal motion of the clamped-clamped
beam (with w = 0 and δ = 0.05). (a) Horizontal motion at s = 0.1, 0.2,. . ., 0.5. (b) Phase projection
of horizontal motion at s = 0.5.
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Figure 3.12: Time series and phase projection of the vertical motion of the clamped-clamped
beam (with w = 0 and δ = 0.05). (a) Vertical motion at s = 0.1, 0.3, and 0.5. Vertical equilibrium
deflections at these points are ye(s = 0.1, 0.3, 0.5) = 0.014, 0.092, and 0.140. (b) Phase projection
of vertical motion at s = 0.5.
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(b) Backbone curve approximation

Figure 3.13: Initial deflection and backbone curve approximation using finite differences for the
postbuckled, clamped-clamped beam with w = 0 and δ = 0.5 (with Ω1 = 37.28). In (a) the dashed
curve gives the equilibrium configuration and the solid curve gives the deflected shape. Circles are
located at s = 0.5 on each configuration.
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Figure 3.14: Phase projections of the midpoint angle motion of the clamped-clamped beam with
w = 0 and δ = 0.05 for varying amplitudes.

92



Again, the motion is not symmetric about equilibrium for large-amplitude motion. For δ = 0.05,

the self-weight causes the backbone curve to become more hardening. Even for very small dynamic

amplitudes, the frequency is seen to increase significantly. This behavior may explain why, for these

self-weight and end-shortening values, the experimental data lie to the right of the numerical data

(calculated by assuming harmonic motion) in Figure 7 of Santillan et al. [14]. For δ = 0.5, the

system is initially softening in the first mode, but the variation in frequency is more gradual (and

in Figure 7 of Santillan et al. [14], the experimental data are more consistent with the numerical

solution for this end-shortening value).

0.9 0.95 1 1.05 1.1 1.15
0

0.002

0.004

0.006

0.008

0.01

0.012

W
N1

/W
1

A

(a) δ = 0.05

0.985 0.99 0.995 1 1.005 1.01
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

W
N1

/W
1

A

(b) δ = 0.5

Figure 3.15: Backbone curve approximations for the clamped-clamped beam with δ = 0.05 and
0.5. A is defined in equation 3.11. Open circles: w = 0; closed circles: w = 32.56.

Backbone curves may also be found for varying end-shortening values (with w = 32.56). The

curves are found for larger amplitude ranges as the end-shortening is increased; the horizontal

component of motion is small compared to the vertical for small end-shortening, but the motion

becomes primarily horizontal as the end-shortening increases. For δ = 0.7, the range of amplitudes

is limited by self-contact. It can be seen that the variation in frequency with amplitude of the

system varies significantly with end-shortening. For δ = 0.1, 0.2, and 0.3, the system is initially

hardening in the first mode, but the backbone curves change direction only for δ = 0.1 and 0.2.

For larger end-shortening values, the system is initially softening, and, for δ = 0.4, 0.5, and 0.6,

becomes hardening at larger amplitudes.

93



35 36 37 38 39 40 41 42 43 44 45
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ω

A

(a) δ = 0.1, 0.2, 0.3 (from left to right)

26 28 30 32 34 36 38
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Ω

A

(b) δ = 0.7, 0.6, 0.5, 0.4 (from left to right)

Figure 3.16: Backbone curve approximations for the heavy, postbuckled clamped-clamped beam
(with w = 32.56) with varying end-shortening. A is defined in equation 3.11.

3.4 Conclusions

In this section, the perturbation and finite difference methods were used to characterize large-

amplitude beam vibrations. Some work on various boundary condition cases has been conducted

in the literature, where typically analytical methods are used to solve the governing equations.

Results for four boundary condition cases (with trivial equilibria) were compared with those in

the literature. These results were found using both a perturbation method and a finite difference

method. The elastica equations were also used to find analytical and numerical backbone curves for

the upright, prebuckled, heavy cantilever with nonzero self-weight values. The system was shown to

be increasingly hardening with self-weight. Amplitude-response curves were obtained for the forced

cantilever (with nonzero damping), where the forcing was in the form of horizontal base excitation,

and a lightly damped system was shown to give accurate backbone curve results.

Finally, nonlinear vibrations of a postbuckled clamped-clamped beam were investigated. Phase

projections and time series show that large-amplitude motion may not be accurately modeled using

a single harmonic function. Backbone curves were approximated for two end-shortening values,

where self-weight was neglected, and these results were compared to those for a nonzero weight.

The amplitude-frequency relationships were also determined for various end-shortening cases with

this nonzero weight.
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Chapter 4

Future Directions

There are several directions for future work involving this type of elastica analysis. The numeri-

cal, analytical, and experimental methods outlined here may be used to investigate the elastica as a

model in many applications. The elastica may be used to model cables and subsea pipelines, where

additional loading types are considered (e.g., buoyancy, air/fluid flow). Small cantilever beams are

also being used in Atomic Force Microscopy (AFM) applications to detect surface features at the

molecular level, and so an analysis of the beam dynamics (where appropriate forces are included) is

necessary. Highly-deformed, flexible beams are being studied in sensor applications as well [64, 65],

and the elastica analysis is certainly useful in characterizing these systems. In some applications, it

becomes necessary to model beam contact with a surface. Pipelines resting on the seabed, for exam-

ple, may buckle under thermal loading, and the uplifted segment may propagate along the pipeline,

creating a rolling contact with the seabed. A similar behavior may occur in the handling of paper

and fabrics, and this contact may be modeled using the finite difference method. Also, the anal-

ysis here is two-dimensional; a natural extension of the research is to conduct a three-dimensional

study. The analysis may be applied to problems over a wide range of size scales; DNA strands, for

example, may be studied with this analysis [66]. With such an investigation, twisting, torsion, and

other out-of-plane motion may be modeled. For many of these behavior types, it is necessary to

model dynamic self-contact. Snap-through of the clamped-clamped beam was not modeled here,

but may occur for large amplitude forcing in the lateral or longitudinal direction. This behavior

type may certainly be studied thoroughly using the method described. Finally, the studies here

are performed with the assumption of beam inextensibility. Another research extension, then, is to

allow extensibility, or stretching, of the beam.

Here, a preliminary study is performed on the dynamics of subsea risers modeled as slender

elastica structures.

4.1 Subsea Pipelines

The use of highly flexible risers for oil drilling purposes is widespread. In terms of simple

modeling, a freely hanging riser with minimal bending stiffness can be considered as a catenary.
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However, it is common practice to incorporate a buoyant portion relatively close to the sea-bed, and

this results in the standard configurations of lazy wave, steep wave, lazy-S, and steep-S, according

to whether the riser rests along the sea-bed and the means by which the buoyancy is achieved [67].

It is also reasonable to assume that the riser possesses some bending stiffness.

Here, equilibrium configurations are computed for a baseline case in which typical values of the

various parameters are set. Then the following parameters are varied systematically: length of the

buoyant section; length of the upper unbuoyed section of the riser relative to water depth; degree of

buoyancy; and magnitude of a cross current. Once an equilibrium configuration has been computed,

a small-amplitude vibration analysis is conducted (also utilizing a finite difference approach) and

described in terms of natural frequencies and mode shapes.

The dimensional baseline values here were taken from the paper by Hong [68], who used an

alternative analysis and focused on the lazy-wave configuration. A large-deflection catenary study

incorporating a slip joint at the vessel and the effect of steady current is described by Huang and

Chucheepsakul [69]. Extensive parameter studies of risers including dynamics for the steep-wave

and lazy-wave configurations have been performed by Seyed and Patel [70], and Liu Bergdahl [71],

respectively. Some related vibration studies for hanging cables are described by Ahmadi, Smith and

Thompson, and Bylsma et al [72–74], and the effect of flow past a circular section has also been

studied in the literature [75, 76].

A number of simplifications are used in this study. The analysis is planar and thus no twisting

behavior is possible [77], damping is neglected, the riser is assumed to be inextensible, the connection

to the vessel is not subject to oscillations, and the numerical examples do not include internal flow.

There is nothing in the analysis restricting the riser from lying beneath the seafloor; however, with

reasonable parameter values, the uplift along the buoyed section prevents seafloor contact. All

of these factors can be incorporated in the analysis if necessary, and in general this approach is

somewhat more efficient than a finite element analysis.

4.1.1 Analytical Formulation

The riser is depicted in Fig. 4.1. Points on the riser have coordinates X(S, T ) and Y (S, T ), and

rotation θ(S, T ) with respect to the X axis, where S is the arc length and T is time. The total length

of the riser is L = L1 +L2 +L3, and the sea depth is H . The length of the unbuoyed segment of the

riser at the seafloor connection is L1 and the buoyed length is L2. The horizontal distance between

the riser ends is D. The internal forces in the strip are denoted P (S, T ) and Q(S, T ) parallel to the
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Figure 4.1: Steep wave riser schematic.

X and Y axes, respectively, and the bending moment is M(S, T ). The ends of the riser are pinned

(M(0, T ) = M(L, T ) = 0).

The governing elastica equations are similar to those in equation 1.32, except that here, the

effects of varying self-weight, buoyance, current, and fluid velocity are included, giving

XS = cos θ,

YS = sin θ,

θS = M/EjIj ,

MS = Q cos θ − P sin θ,

PS = −(2 − Bj)(Wj/g)XTT − 2µfUXST − µfU2XSS + Fj sin θ,

QS = −(2 − Bj)(Wj/g)YTT − 2µfUYST − µfU2YSS − WjBj ,

(4.1)

where the subscripts S and T denote partial derivatives. The subscript j denotes values that vary

according to the location along the riser length. For example, EjIj = EpIp, the bending stiffness of

the unbuoyed riser, along 0 ≤ S < L1 and L1 + L2 < S ≤ L, and EjIj = EbIb, the bending stiffness

of the buoyed riser, along L1 ≤ S ≤ L1 + L2. The buoyancy coefficient is Bj = 1− (ρgAj/Wj), and

Fj = ρrjCdV
2. The weight per unit length in air is given by Wj . The steady current velocity is V , ρ

denotes the sea water density, and r and A are the radius and the cross-sectional area, respectively.

The drag coefficient is Cd. The inner fluid velocity and mass per unit length are given by U and

µf , respectively.
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The following nondimensional quantities are defined:

x = X/H, y = Y/H, s = S/H, d = D/H,

l = L/H, l1 = L1/H, l2 = L2/H, l3 = L3/H,

m = MH/EpIp, p = PH2/EpIp, q = QH2/EpIp, t = (T/H2)
√

EpIpg/Wp,

u = UH
√

µf/EpIp, fj = FjH
3/EpIp, β = µfg/Wp,

wj = WjH
3/EpIp, Ω = ωH2

√

Wp/EpIpg, γj = EpIp/EjIj .

(4.2)

where ω is a dimensional vibration frequency.

In nondimensional terms, equations (4.1) become

xs = cos θ,

ys = sin θ,

θs = mγj ,

ms = q cos θ − p sin θ,

ps = −(2 − Bj)(wj/wp)xtt − 2
√

βuxst − u2xss + fj sin θ,

qs = −(2 − Bj)(wj/wp)ytt − 2
√

βuyst − u2yss − Bjwj .

(4.3)

The variables are written in the form

x(s, t) = xe(s) + xd(s)e
iΩt, y(s, t) = ye(s) + yd(s)e

iΩt,

θ(s, t) = θe(s) + θd(s)e
iΩt, m(s, t) = me(s) + md(s)e

iΩt,

p(s, t) = pe(s) + pd(s)e
iΩt, q(s, t) = qe(s) + qd(s)e

iΩt.

(4.4)

At equilibrium, the equations are given by

x′

e = cos θe, y′

e = sin θe,

θ′e = meγj , m′

e = qe cos θe − pe sin θe,

p′e = −u2x′′

e + fj sin θe, q′e = −u2y′′

e − Bjwj .

(4.5)

The resulting linear equations in the dynamic variables are given by

x′

d = −θd sin θe,

y′

d = θd cos θe,

θ′d = mdγj ,

m′

d = (qd − peθd) cos θe − (pd + qeθd) sin θe,

p′d = Ω2(2 − Bj)(wj/wp)xd − 2i
√

βuΩx′

d − u2x′′

d + fjθd cos θe,

q′d = Ω2(2 − Bj)(wj/wp)yd − 2i
√

βuΩy′

d − u2y′′

d .

(4.6)

The dynamic force equations can also be written as

p′d = Ω2(2 − Bj)(wj/wp)xd + (2i
√

βuΩθd + u2md) sin θe + (u2meθd + fjθd) cos θe,
q′d = Ω2(2 − Bj)(wj/wp)yd − (2i

√
βuΩθd + u2md) cos θe + u2meθd sin θe.

(4.7)
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Table 4.1: Dimensional and nondimensional values used in the present study [68].
Baseline Values

Dimensional Nondimensional

EpIp = 6.57 kN-m2, EbIb = 100 kN-m2 γp = 1, γb = 0.0657
H = 350 m, D = 350 m d = 1

Wp = 873.09 N/m, Wb = 3453.12 N/m wp = 5.698 x 106, wb = 2.253 x 107

rp = 0.1077 m, rb = 0.4275 m, ρ = 1025 kg/m3 Bp = 0.580, Bb = −0.672
L = 560 m, L1 = 122.5 m, L2 = 105 m l = 1.6, l1 = 0.35, l2 = 0.3

µf = 18.37 kg/m β = 0.206
Cd = 1, V = 0 m/s fj = 0

U = 0 m/s u = 0

4.1.2 Equilibrium Results

To obtain numerical results for the equilibrium shapes of the riser, a second-order finite difference

method is used. Equations (4.5) are used to create difference equations for internal nodes of the

riser. The boundary conditions at s = 0 (xe = ye = me = 0) and at s = l (xe = d, ye = 1, me = 0)

are applied at the end nodes.

Throughout the present study, baseline parameter values are as given in Table 4.1. These values

were computed using the included dimensional values (similar to those used by Hong [68]).

First, the method is used to generate equilibrium results for a catenary. In this case, wb =

wp, Bb = Bp = 1, and d = 1. The resulting equilbrium shape is shown in Figure 4.2. The

numerical results (plotted as data points) agree well with the analytical catenary solution, y =

a cosh ((x − c)/a) − b (where a = 0.424, b = 0.467, and c = 0.189), shown by the continuous curve

[78].

Parameters are then varied and resulting equilibrium shapes are found. The effect of the length

of the buoyed section is illustrated in Figure 4.3. The baseline case is the second shape from the

bottom. The center of the buoyed segment is located at s = 0.5 for this case and for the other three

cases shown. The length l2 of the buoyed segment is reduced from 0.3 to 0.2 for the lowest shape,

and to 0.4 and 0.6 for the higher shapes. As l2 is increased, all internal points of the riser move to

higher positions.

In Figure 4.4, the effect of the length l3 of the upper section is shown. The baseline length

l3 = 0.95 (middle shape) is raised to 1.15, and is lowered to 0.85 (i.e., the total riser length is raised

from 1.6 to 1.8, and lowered to 1.5). As l3 is increased, the upper part of the riser moves downward

and the lower part moves leftward. If l3 were increased further, the internal local minimum of the

shape would reach the seafloor when l3 = 1.71 and l = 2.36.

In Figure 4.5, the buoyancy coefficient along the buoyed segment, Bb, is varied, and resulting
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Figure 4.2: Catenary configuration with d = 1. Data points: numerical results using a finite
difference method; continuous line - analytical solution.
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Figure 4.3: Static configurations with various buoyant segment lengths, l2. The length l1 is chosen
such that l1 + 0.5l2 = 0.5. The lengths for each case are (beginnging with the uppermost curve):
l1 = 0.2, l2 = 0.6; l1 = 0.3, l2 = 0.4; l1 = 0.35, l2 = 0.3; l1 = 0.4, l2 = 0.2;
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Figure 4.4: Equilibrium riser configurations where the upper-section length, l3, is varied such that
l3 = 1.5, 1.6, 1.8.

equilibrium configurations are depicted. A change in the value of Bb may be caused by a change

in the radius, stiffness, and/or weight of the buoyed section, each of which affects the buoyed

segment weight parameter, wb. In this case, the value of wb is assumed to be constant. Under

this assumption, Bb < −0.215 to avoid riser contact with the seafloor. As expected, an increase in

the upward buoyancy force (i.e., in the magnitude of the buoyancy coefficient) results in a higher

configuration at all internal points of the riser.

Next, the constant current velocity of the surrounding fluid is varied, and the results are shown in

Figure 4.6. The current is assumed to move in the positive x-direction, and the three configurations

correspond to velocities of 0, 1, and 2 m/s. As shown in Eqs. (4.3), the effect of the current force is

largest where the pipe is close to vertical, and assumed to be negligible where the riser is horizontal.

Because the force is also dependent upon the radius of the riser, for a given velocity, the force

coefficient, fj , is larger along the buoyed segment. Of course this effect is counteracted by the larger

buoyancy effect along this segment. As the current velocity increases, the internal points on the

riser naturally tend to move downstream, i.e., to the right.
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Figure 4.5: Static configurations for varying buoyancy coefficient values, Bb = −1.25 (uppermost
configuration), −0.672, −0.25.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

x

y

Figure 4.6: The effect of a steady current with velocity, V , on the static configuration. fp values
(fp = 0 (uppermost configuration), 7.204 × 105, 2.882 × 106) correspond to dimensional velocities
of V = 0, 1, and 2 m/s (giving fb = 0, 2.860 × 106, 1.144× 107).

102



4.1.3 Vibration Results

Small vibrations about equilibrium are considered. A finite difference method is again applied

to obtain numerical solutions to Eqs. (4.6) and (4.7), using Eqs. (4.5) . The boundary conditions

at s = 0 and s = l are xd = yd = md = 0.

The first in-plane vibration frequency of the catenary is found (again where Bb = Bp = 1 and

wb = wp) for varying d values, and are in agreement with [74]. For the baseline value, d = 1, the

corresponding natural frequency is Ω = 3,986 (or 0.0444 Hz).

The frequency for the first in-plane vibration mode of the riser (using the baseline parameter

values) is Ω = 1,733 (or 0.0193 Hz) and the corresponding mode shape is shown in Figure 4.7. The

primary motion is horizontal.
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Figure 4.7: Mode shape corresponding to the first frequency of the riser (with baseline parameter
values). The equilibrium configuration is given by the dotted line.

Figure 4.8 gives the fundamental frequency as a function of Bb, assuming again that this buoy-

ancy coefficient can by varied independently from the weight parameter, wb, and results are plotted

only over the range of Bb values that prevent seafloor contact. The frequency is seen to increase by

approximately 50 percent as the upward buoyancy force is increased (and Bb is decreased) over the

range of Bb values shown.

The first (fundamental) frequency as a function of buoyed segment length, l2, is plotted in
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Figure 4.8: Frequency, Ω, as a function of the buoyancy coefficient, Bb.

Figure 4.9 where, again, the length l1+0.5l2 and the total length l are fixed. The frequency decreases

with length for small l2 values, then increases as the buoyant segment length is increased. Because

the lengths l1 and l2 must be a multiple of the node spacing (in the finite difference algorithm), the

number of data points in the plot is limited. The continuous line is a polynomial curve-fit of the

numerical data points.

The current velocity is then varied and the corresponding fundamental frequency is computed.

In Figure 4.10, dimensional values of V versus frequency in Hz are plotted as the solid curve,

and nondimensional values Ω are plotted versus fp as the dashed curve. The frequency reaches a

minimum when V = 0.87 m/s.

4.1.4 Concluding Remarks

Planar equilibrium shapes of the steep-wave riser and small vibrations about equilibrium have

been analyzed. The riser is modeled as an inextensible elastica, in which the bending stiffness is

included and the bending moment is assumed to be proportional to the curvature. The ends are

pinned at fixed locations, and an internal section is buoyed so that the net force in that section acts

upward. A baseline case is defined, and numerical results are obtained using the finite difference

method. Internal fluid flow in the riser is included in the governing equations, but not in the
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Figure 4.9: Frequency as a function of buoyed segment length.
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Figure 4.10: Frequency as a function of steady current velocity, dashed curve: Ω vs fp; solid curve:
V vs dimensional frequency.
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presented results (since its effect is small for practical conditions). The effects of the following

parameters on the equilibrium shape have been investigated: length of the buoyed section, length of

the upper unbuoyed section, magnitude of the buoyancy force, and velocity of the steady horizontal

current. The fundamental mode of vibration consists primarily of back and forth horizontal motion

of the riser. The fundamental frequency tends to increase with an increase of the buoyancy force

and with an increase in the length of the buoyed segment. As the current velocity is increased from

zero, the fundamental frequency initially decreases and then increases.
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Chapter 5

Concluding Remarks

In this study, the elastica equations were used to investigate a number of boundary condition

cases of the two-dimensional study of beam dynamics, with applications to vibration isolation and

nonlinear beam vibrations.

First, linear theory was introduced, along with its limitations in static and dynamic beam

analyses. The elastica equations were then given, and were shown to be useful and accurate in

determining large-deflection behavior where self-weight may be included. It was assumed in the

equation derivation, however, that the beam is inextensible and that shear deformation is negligible

(for a slender beam, it is reasonable to neglect these effects). The solutions for static deflection of the

cantilever under self-weight were compared with some in the literature. Next, linear beam vibrations

were introduced, along with traditional solution methods for small-amplitude beam vibrations. Some

numerical techniques that are useful for the solution of boundary value problems were introduced.

For nonlinear equilibrium and linear vibration solutions, the shooting method is useful and efficient,

and the finite difference method may be used to characterize large-amplitude vibrations about both

trivial and nontrivial equilibria. Two analytical methods - the Galerkin method and a perturbation

method - were also introduced. While the Galerkin method (when applied to the elastica equations)

is not useful for large dynamic deflections (if the condition of inextensibility is to be satisfied), the

perturbation method gives accurate vibration solutions for a moderate range of dynamic deflection

amplitudes. Experimental methods were then described, and some numerical and experimental

studies of the equilibria and linear vibrations of the cantilever, heavy clamped-clamped beam, and

pinched loop were shown.

Next, the elastica equations, as applied to vibration isolation, were studied. Three different

systems were modeled and analyzed. The vertical and horizontal buckled beam isolator systems

were introduced and shown to be effective isolators. For the vertical isolator, the transmissibility

peaks occur near the natural frequencies of the system, where each of the n struts were assumed to

behave identically. The horizontal system, however, was analyzed by considering the motion of each

strut, because the two may not deflect in phase (at resonance, for example) or with equal amplitudes.

This system exhibits some mode localization at transmissibility peaks beyond the first, producing
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effective vibration isolation of the central mass. Finally, the pinched loop isolator was introduced.

Only half of the beam length was analyzed, as the mass motion and excitation were assumed to

be exclusively in the vertical direction. The static loop deflection due to a point load by the mass

was found and agreed closely with experimental data. Next, natural frequencies and corresponding

mode shapes of the system were found as a function of the mass load (where there is no minimum

mass load required, as for the vertical, buckled beam isolator). Experimental transmissibility results

were obtained for varying mass loads and lengths, and were found to agree well with the numerical

transmissibility. Some additional transmissibility peaks were seen in the experimental data, and

these may correspond to out-of-plane motion or some in-plane motion resulting from asymmetry in

the experimental system.

Nonlinear beam vibrations were then investigated, where motion about trivial equilibria were

studied first. The perturbation method was used to derive analytical backbone curves for the

beam with various boundary conditions, where, in each case, self-weight was neglected. The results

compare well with those from a similar study in the literature (where the equations were derived

using an energy approach). The Perturbation Method was then applied to the elastica equations to

determine analytical backbone curves for the heavy, upright, prebuckled cantilever, and the system

was found to be increasingly hardening with weight in the first mode. The finite difference method

was also used to find numerical backbone curve results, where steady-state vibration and lightly

damped free vibration results were seen to agree closely. This method was also used to characterize

the large-amplitude motion of beams about nontrivial equilibria (with and without self-weight).

Finally, some extensions of the research were presented and some preliminary studies of subsea

risers using this type of elastica analysis were described. The equations were derived such that the

effects of gravity, buoyancy, buoyant segment length, and velocities (of the surrounding fluid current

and conveying fluid) could be considered.

The elastica equations certainly may be used to generate accurate results well beyond those from

the linear theory, where relevant forces (for a given application) may be included in the analysis.

Numerical and analytical methods are useful in obtaining solutions to these equations, and there

are many applications and extensions of the research herein.
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