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Degradation of solids bearing load due to the infusion of moisture when exposed to the environment

can leads to a decrease in their load carrying capacity and can also lead to the failure of the body from

performing its intended task. In this short paper, we study some qualitative properties of the solution

to systems of equations that describe the degradation in a linearized elastic solid due to the diffusion

of a fluid. The model that is considered allows for the material properties of the solid to depend on the

concentration of the diffusing fluid. While the load carrying capacity of a solid could decrease or increase

due to the infusion of a fluid, we consider the case when degradation takes place. We are able to obtain

results concerning the uniqueness of solutions to the problem under consideration. We also consider

special anti-plane and quasi-static deformations of the body.
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1. Introduction

The ability of a body to withstand loads decreases or increases due to a variety of reasons: changes

in the temperature of the body, infusion of a fluid and subsequent chemical reactions, electromagnetic

radiation, aging, etc. For instance, the diffusion of moisture in materials like concrete and many metals

is the primary cause of degradation of such materials when exposed to the natural elements. Several

models have been introduced to describe the damage and thus the reduced load carrying capacity due

to the influence of hostile environmental conditions (it is also possible that the load carrying capacity

of certain bodies might increase due to the healing that is effected by the influence of chemicals), but

most of them have been ad hoc empirical models. For instance, in problems concerning the diffusion of

fluids through solids and the subsequent degradation of the solids, in most studies the variation of the

concentration of the fluids is assumed a priori and the convection diffusion problem is not solved (see

Bouadi & Sun (1989,1990), Snead and Palazotto (1983), Yen & Yen (1989), Kardomateas & Chung

(1993). At the other extreme, Weistman (1987a,1987b) has developed a very general framework in

which he introduces a damage tensor and the specific Helmholtz potential is assumed to depend on this

damage tensor in addition to several other variables. Unfortunately, the general theory involves material

moduli that depend, in the case of transversely isotropic solids on as many as thirty two invariants, and

is thus totally unusable as one cannot put into place an experimental program within which one could
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measure material functions of thirty two variables.

Recently, Muliana et al.(2009) adopted a somewhat different approach to study the reduction in load

carrying capacity of solids, due to the diffusion of a fluid. They assumed that the material moduli of the

solid depend on the concentration of the fluid. Using such an approach, Muliana et al.(2009) studied

the degradation of an elastic composite cylinder due to the diffusion of a fluid, by assuming that the

value of the material moduli decrease with increasing fluid content. They found that significant changes

take place over time with regard to the stress and strains within the body. For instance, the bodies

”stress-relax” due to the infusion of the fluid, but this stress-relaxation is different from that undergone

by viscoelastic solids. Similar stress-relaxation has been observed in solids that age (see Rajagopal &

Wineman (2004)).

Unsteady motions of degrading and aging elastic cylinders have been studied recently by Darbha &

Rajagopal (2009). Soares et al.(2010) introduce a damage parameter, an internal variable, that depends

on the strain as well as the fluid concentration, to study the response of biodegradable polymeric stents.

In all these studies, the problem is simplified to that being governed by the balance of linear momentum

and a convection-diffusion equation for the motion of the fluid. This is a tremendous simplification of the

full problem, but such a simplification might yield some insight into the problem under consideration.

A more thorough and comprehensive study of the problem of degradation of the solid due to the

diffusion of a fluid could be achieved by resorting to the use of the theory of mixtures (theory of inter-

acting continua) that traces its roots to the seminal work of Fick (1855) and Darcy (1856). The theory

was given a firm mathematical footing by Truesdell (1957a,1957b,1984) and a review of the same can

be found in the articles by Atkin & Craine (1976), Bowen (1976) and the books by Samohyl (1987) and

Rajagopal & Tao (1995). The basic idea behind mixture theory is that various constituents co-occupy

the region of the mixture, in a homogenized sense. Each constituents has its own kinematics and basic

balance laws are specified for each constituents. However, the theory is not without its own problems.

There are inherent difficulties concerning the specification of initial and boundary conditions within the

theory (see Rajagopal & Tao (1995)). In any event, the theory is a lot more complicated to use than

the simplified approach adopted by Muliana et al. (2009), and this particular study concerns certain

mathematical results concerning the latter approach.

An interesting feature concerning the degradation of solids due to the diffusion of a fluid arises

from the fact that the diffusion can progress differently along different directions. The anisotropy with

regards to the diffusion might or might not correlate with the anisotropy of the solid. In this paper,

we shall not consider such possibilities though a simple modification to the governing equations can

address this issue. We are interested in the diffusion of a fluid through an isotropic linerized elastic

solid, and we shall assume that the Lamé constants depend on the concentration. It is possible that the

value of the Lamé constants increase or decrease with the concentration. Enhancement of properties

are relevant to both biomedical and civil engineering applications. However, most often the body’s load

carrying capacity diminishes due to the diffusion of the fluid, the common mechanism for degradation

is oxidation.

We also account for the possibility that the diffusivity changes due to the swelling of the solid due

to the absorption of the fluid. This physical phenomenon has important mathematical consequences; it

couples the reaction-diffusion equations to the balance of the linear momentum.

The plan of this paper is as follows: Section 2 is devoted to the documentation of the basic equations

that we are going to work with. In Section 3 we investigate the uniqueness of solutions for the dynamical

problem. The main argument is the use of the energy methods. In Section 4 we show how the problem

is much easier when we restrict our attention to anti-plane shear deformations. Some possible results

are discussed, but without any proof. In Section 5, we consider the case of quasi-static deformations
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and we prove that the uniqueness of solutions fails in the particular case when the concentration is

1 everywhere and when the material moduli satisfy certain conditions. However, we can not expect

that this result will hold in the general case, that is when the special condition concerning the material

moduli is not satisfied. In fact, we prove the uniqueness of solutions in the case of anti-plane shear

deformations.

2. Basic Equations

The equations governing the evolution of a degrading linearized elastic body subject to the diffusion of

a fluid are:

ρui,tt = Ti j, j, (2.1)

ct +(cu̇i),i = (D(εkl)c,i),i , (2.2)

where the constitutive equation for the stress is:

Ti j = (λ (c)+µ(c))δi juk,k +µ(c)ui, j. (2.3)

We recall that ui is the displacement vector, εkl is the linearized strain tensor given through εkl =
(uk,l + ul,k)/2, c is the concentration which satisfies 0 < c 6 1, D(εkl) denotes the strain dependent

diffusivity and λ and µ are the concentration dependent Lamé coefficients. When we consider quasi-

static deformations, we assume that the motion is such that we can neglect the acceleration components

and then the equation (2.1) becomes

Ti j, j = 0. (2.4)

In this paper we study several qualitative properties of the solutions of the system (2.1)-(2.3) or

(2.2)-(2.4). To this end, it will be convenient to set down the initial and boundary conditions we are

going to work with as well as the assumptions that we shall make concerning the constitutive functions.

The functions λ ,µ are defined in the following manner

λ (c) = λ0 −λ1c, µ(c) = µ0 −µ1c, (2.5)

where λ0,λ1,µ0 and µ1 are constants. In much of the article, we are going to assume that

λ0 > λ1, µ0 > µ1. (2.6)

It is worth noting that for functions of the form µ = µ0 exp(−γ1c), λ = λ0 exp(−γ2c) one can carry

out an analysis similar to that presented below.

With respect the function D we assume that it is a function of the linearized strain and must satisfy

the following two conditions:

(i) There exists a positive constant d0 such that

D(εkl)ξiξi > d0ξiξi, (2.7)

for every vector (ξi) and for every εkl .

(ii) The function D is such that there exists a continuous function K(., .), such that

|D(ε
(1)
kl )−D(ε

(2)
kl )|6 K(ε

(1)
i j ,ε

(2)
i j )|ε

(1)
kl − ε

(2)
kl |, (2.8)

for every ε
(i)
kl , i = 1,2.
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To render the problem determinate we will impose boundary conditions for the displacement and

the concentration

ui(x, t) = u∂
i (x, t), c(x, t) = c∂ (x, t), x ∈ ∂B, 0 < t 6 t0 < ∞, (2.9)

and initial conditions

ui(x,0) = u0
i (x), u̇i(x,0) = v0

i (x), c(x,0) = c0(x), x ∈ ∂B. (2.10)

It is worth noting that these initial and boundary conditions must be assumed when we consider the

dynamic problem, however when we consider the quasi-static problem, we only assume the third con-

dition in (2.10).

We can also consider the class of incompressible linearized elastic solids. The constitutive relation

for such bodies takes the form

T =−pI+2µ(c)εεε,

where −pI is the indeterminate spherical stress due to the constraint of the incompressibility. In this

case the governing equations reduces to

(µ(c)ui, j), j + p,i = fi(x, t), ui,i = 0, (2.11)

ct +(cu̇i),i = (D(εkl)c,i),i +g(x, t). (2.12)

Anti-plane shear deformations are one of the easiest deformations to study within the context of

elasticity. We shall study such anti-plane shear deformations in the case of the degradation of an elastic

cylinder due to the diffusion of a fluid. In this case we look for solutions of the form

u1(x, t) = u2(x, t) = 0, u3(x, t) = u(x1,x2, t), c(x, t) = c(x1,x2, t). (2.13)

Here (x1,x2) lies in a two dimensional domain S. The functions (u,c) must satisfy the system

ρu,tt = ((µ0 −µ1(c(x1,x2, t))u,α),α c,t = (D(u,1,u,2)c,α),α (2.14)

where α = 1,2. To define the problem, we need to impose initial conditions

u(x1,x2,0) = u0(x1,x2), v(x1,x2,0) = v0(x1,x2), c(x1,x2,0) = c0(x1,x2), (x1,x2) ∈ S, (2.15)

and the boundary conditions

u(x1,x2, t) = u∂ (x1,x2, t), c(x1,x2, t) = c∂ (x1,x2, t), (x1,x2) ∈ ∂S, 0 < t 6 t0 < ∞. (2.16)

When µ = µ0 exp(−γ1c) the equation (2.14) becomes ρu,tt = (µ0 exp(−γ1c)u,α),α .,
In the case of quasi-static deformations the first of the equations in (2.14) becomes

((µ0 −µ1(c(x1,x2, t))u,α),α = 0. (2.17)

To complete this problem, we adjoin the boundary conditions as in (2.16) and only the third condition

in (2.15).

When µ = µ0 exp(−γ1c) the equation (2.17) becomes

(µ0 exp(−γ1c)u,α),α = 0.
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3. Uniqueness of solutions

In this section we will prove the uniqueness of solutions for the problem determined by the system

(2.1)-(2.3), when we assume the conditions (2.5), (2.6), (2.7), (2.8), the boundary conditions (2.9) and

the initial conditions (2.10).

We assume the existence of two solutions (u
( j)
i ,c( j)), j = 1,2 such that they satisfy the problem

and such that c( j) satisfies 0 < c( j) 6 1 for j = 1,2. It is worth noting that this condition is imposed to

guarantee that the solutions are physically meaningful.

In this section we will assume that

u
( j)
i ∈C2,0 ∩C0,1, c( j) ∈C0,1, j = 1,2. (3.1)

It is worth noting that u
( j)
i,kl , u̇

( j)
i and ċ( j) are bounded on B for every 0 6 t 6 t0 < ∞ and for every j = 1,2.

We define

wi = u
(1)
i −u

(2)
i , h = c(1)− c(2). (3.2)

The functions (wi,h) satisfy the problem determined by the system

ρwi,tt =
((

λ (c(1))+µ(c(1))
)

δi ju
(1)
k,k +µ(c(1))u

(1)
i, j

)

, j

−
((

λ (c(2))+µ(c(2))
)

δi ju
(2)
k,k +µ(c(2))u

(2)
i, j

)

, j
(3.3)

h,t +(c(1)u̇
(1)
i ),i − (c(2)u̇

(2)
i ),i =

(

D(ε
(1)
kl )c

(1)
,i

)

,i
−
(

D(ε
(2)
kl )c

(2)
,i

)

,i
(3.4)

the initial conditions

wi(x,0) = ẇi(x,0) = h(x,0) = 0 x ∈ B (3.5)

and the boundary conditions

wi(x, t) = h(x, t) = 0 (x, t) ∈ ∂B× (0, t0). (3.6)

The system can be written as

ρwi,tt =
((

λ (c(1))+µ(c(1))
)

δi jwk,k +µ(c(1))wi, j

)

, j
−
(

(λ1 +µ1)hδi ju
(2)
k,k +µ1hu

(2)
i, j

)

, j
(3.7)

h,t +(hu̇
(1)
i ),i +(c(2)ẇi),i =

(

D(ε
(1)
kl )h,i

)

,i
+
(

(D(ε
(1)
kl )−D(ε

(2)
kl ))c

(2)
,i

)

,i
. (3.8)

If we define the function

E(t) =
1

2

∫

B

(

ρẇiẇi +µ(c(1))wi, jwi, j +(λ (c(1))+µ(c(1)))wi,iw j, j +h2
)

dv. (3.9)

We have
dE

dt
=−

µ1

2

∫

B
ċ(1)wi, jwi, jdv−

λ1 +µ1

2

∫

B
ċ(1)wi,iw j, jdv

+(λ1 +µ1)

(

∫

B
ẇih,iu

(2)
k,k dv+

∫

B
ẇihu

(2)
k,kidv

)
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+µ1

(

∫

B
ẇih, ju

(2)
i, j dv+

∫

B
ẇihu

(2)
i, j jdv

)

+
∫

B

(

hh,iu̇
(1)
i + c(2)h,iẇi

)

dv

−
∫

B
D(ε

(1)
kl )h,ih,idv−

∫

B

(

D(ε
(1)
kl )−D(ε

(2)
kl )

)

h,ic
(2)
,i dv (3.10)

In view of continuity we have the existence of several positive constants Ci such that

∣

∣

∣

∣

−
µ1

2

∫

B
ċ(1)wi, jwi, jdv

∣

∣

∣

∣

6C1

∫

B
µ(c(1))wi, jwi, jdv (3.11)

∣

∣

∣

∣

λ1 +µ1

2

∫

B
ċ(1)wi,iw j, jdv

∣

∣

∣

∣

6C2

∫

B
(λ (c(1))+µ(c(1)))wi,iw j, jdv (3.12)

∣

∣

∣

∣

(λ1 +µ1)
∫

B
ẇih,iu

(2)
k,k dv

∣

∣

∣

∣

6C3

∫

B
ρẇiẇidv+δ1

∫

B
Dh,ih,idv (3.13)

∣

∣

∣

∣

(λ1 +µ1)
∫

B
ẇihu

(2)
k,kidv

∣

∣

∣

∣

6C4

(

∫

B
ρẇiẇidv+

∫

B
h2dv

)

(3.14)

∣

∣

∣

∣

µ1

∫

B
ẇih, ju

(2)
i, j dv

∣

∣

∣

∣

6C5

∫

B
ρẇiẇidv+δ2

∫

B
D(ε

(1)
kl )h,ih,idv (3.15)

∣

∣

∣

∣

µ1

∫

B
ẇihu

(2)
i, j jdv

∣

∣

∣

∣

6C6

(

∫

B
ρẇiẇidv+

∫

B
h2dv

)

(3.16)

∣

∣

∣

∣

∫

B

(

hh,iu̇
(1)
i + c(2)h,iẇi

)

dv

∣

∣

∣

∣

6C7

(

∫

B
(ρ̇wiẇi +h2)dv

)

+δ3

∫

B
D(ε

(1)
kl )h,ih,idv. (3.17)

We note that the constants δi, i = 1,2,3 are positive constants than can be picked as small as we want it

to be. Again, continuity and the condition (2.8) for the function D yield

∣

∣

∣

∣

∫

B

(

D(ε
(1)
kl )−D(ε

(2)
kl )

)

h,ic
(2)
,i dv

∣

∣

∣

∣

6C8

∫

B
µ(c(1))wi, jwi, jdv+δ4

∫

B
D(ε

(1)
kl )h,ih,idv, (3.18)

where δ4 can be picked to be as small as we want and C8 is a positive constant. Thus, we obtain

dE

dt
6 K1

∫

B

(

ρẇiẇi +µ(c(1))wi, jwi, j +(λ (c(1))+µ(c(1)))wi,iw j, j +h2
)

dv

+δ

∫

B
D(ε

(1)
kl )h, jh, jdv−

∫

B
D(ε

(1)
kl )h,ih,idv, (3.19)

where δ is a positive constant that can be picked to be as small as we want and K1 is a constant which

depends on the Ci, i = 1...8
We know that we can take δ less than unity and then, we obtain that there exists a positive constant

K2 such that
dE

dt
6 K2E(t), t ∈ [0, t0]. (3.20)

This inequality implies that

E(t)6 E(0)exp(K2t), t ∈ [0, t0]. (3.21)

As we assume that the initial conditions satisfy (3.5), we see that E(0) = 0 and then E(t) = 0 for every

t ∈ [0, t0]. Thus we have proved the following result.
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THEOREM 3.1 . Let (u
( j)
i ,c( j)), j = 1,2 be two solutions satisfying condition (3.1) of the problem

determined by the system (2.1)-(2.3), when we assume the conditions (2.5), (2.6), (2.7), (2.8), the

boundary conditions (2.9) and the initial conditions (2.10) for every t ∈ (0, t0) where t0 < ∞. Then

(u
(1)
i ,c(1)) = (u

(2)
i ,c(2)).

4. Anti-plane shear solutions

In this Section we study a particular sub-class of problems of the general problem discussed earlier,

namely anti-plane shear problems.

When we assume that c∂ = 1 for every point at the boundary, and we define the function d through

c(x1,x2, t) = 1−d(x1,x2, t), (4.1)

then d(x1,x2, t) is a function which satisfies the same equations as c(x1,x2, t), but with null boundary

conditions. We can see that

F(t)6 F(0)exp(−2d0λ1t), (4.2)

where λ1 is the first eigenvalue for the Laplacian operator in the region S and

F(t) =
1

2

∫

S
d2(xα , t)da. (4.3)

The estimate (4.2) is a time decay estimate for the difference between the concentration and the con-

centration assumed on the boundary. Thus, it says that the concentration in the domain S tends to the

concentration at the boundary. It also gives a continuous dependence result on the initial data for the

solution.

Now, we look for a continuous dependence result with respect to the displacement. We assume the

existence of a positive constant C∗ (which could depend on the initial data and boundary conditions)

such that

|ċ(xα , t)|6C∗,(x1,x2) ∈ ∂S, 0 < t 6 t0 < ∞. (4.4)

We note that the maximum principle guarantees the existence of C∗ in the particular case that the diffu-

sivity D does not depend on ∇u.

Let us consider homogeneous boundary conditions for u, and define the function

G(t) =
1

2

∫

S

(

ρ|u̇|2 +(µ0 −µ1(c(x1,x2, t))|∇u|2
)

da. (4.5)

We have

Ġ(t) =−µ1

∫

S
ċ(xα , t)|∇u|2da 6 µ1C∗

∫

S
|∇u|2da. (4.6)

It is worth noting that when µ = µ0 exp(−γ1c), we can define

G(t) =
1

2

∫

R

(

ρ|u̇|2 +µ(c)|∇u|2
)

da.

We then obtain that

Ġ(t) =−γ1

∫

S
ċ(xα , t)µ|∇u|2da 6 γ1C∗

∫

S
µ|∇u|2da.
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It is clear that we can obtain a positive constant D∗ such that

Ġ(t)6 D∗G(t). (4.7)

A quadrature yields

G(t)6 G(0)exp(D∗t), (4.8)

which gives a bound for the solutions in terms of the initial conditions.

However, in the case when D does not depend on ∇u, the problem becomes easier and we can apply

several alternative arguments. For instance, the equation for the concentration is the well known linear

diffusion equation which can be solved directly. Thus, with the known solutions for c, we can introduce

them into the equations of motion and solve the time dependent wave equation. It is also worth noting

that in this case it is also easy to obtain the impossibility of localization of solutions.

5. Quasi-static deformations

In this section we consider the problem when the deformations are so slow that we can neglect the

acceleration of the body.

The first thing we want to pay attention to is the fact that the uniqueness of solutions fails when

c(x)≡ 1, λ0 = λ1 and µ0 = µ1. This is an obvious consequence of the physics of the problem for in this

case one can engender infinite strains by the application of finite stress. If we look for solutions of the

form

ui(x, t) = f ∗(t)u
(0)
i (x), (5.1)

where f ∗(t) is an arbitrary function of time and u
(0)
i,i = 0, we obtain that the pair (ui,c) satisfies our

system of equations. To be precise we should set down the boundary value problem for the displacement.

It is clear that if we assume the ui vanishes on the boundary and u
(0)
i (x) is an arbitrary solution to the

system of equations, then the functions of the form f ∗(t)u
(0)
i (x) also satisfy the same boundary value

problem. Thus, we see that the uniqueness of solution does not hold in this case. When we assume

exponential type dependence for the Lamé constants, the proposed example does not work and the

non-uniqueness of a solution cannot be proved using such a methodology.

Now, we consider the case of anti-plane deformations and the case µ0 > µ1. We want to investigate

the uniqueness of solutions. As for the dynamical case, we assume the existence of two solutions

(u( j),c( j)), j = 1,2 such that they satisfy (2.14)2-(2.17) and such that c( j) satisfies 0 < c( j) 6 1 for

j = 1,2 and

u( j) ∈C2,0 ∩C0,1, c( j) ∈C0,1. (5.2)

Then, u
( j)
,kl , u̇

( j) and ċ( j) are bounded on B, for every 0 6 t 6 t0 < ∞.

We define the functions

w = u(1)−u(2), h = c(1)− c(2). (5.3)

The functions (w,h) satisfy the problem determined by the system

0 =
(

µ(c(1))w, j

)

, j
−
(

µ1hu
(2)
, j

)

, j
(5.4)

h,t =
(

D(ε
(1)
kl )c

(1)
,i

)

,i
−
(

D(ε
(2)
kl )c

(2)
,i

)

,i
(5.5)
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the initial conditions

h(x,0) = 0 x ∈ B (5.6)

and the boundary conditions

w(x, t) = h(x, t) = 0 (x, t) ∈ ∂B× (0, t0). (5.7)

If we define the function

E(t) =
1

2

∫

S
h2da, (5.8)

we have
dE

dt
=−

∫

S
D(∇u(1))h,ih,ida−

∫

B

(

D(∇u(1))−D(∇u(2))
)

h,ic
(2)
,i dv. (5.9)

In view of the assumptions on the function D, we can guarantee that

dE

dt
6 K1

∫

S
µ(c(1))w, jw, jda+δ

∫

S
Dh, jh, jda−

∫

S
Dh,ih,ida. (5.10)

Here δ is a positive constant that we can pick as small as we want. We also can see that

∫

S
µ(c(1))w, jw, jds =

∫

S
µ1u

(2)
, j hw, jda. (5.11)

In view of this equality we can obtain the existence of a positive constant K2 such that

∫

S
µ(c(1))w, jw, jds 6 K2

∫

S
h2da. (5.12)

It follows that there exists a constant K3 such that

dE

dt
6 K3E(t). (5.13)

After a quadrature and on using null initial conditions, we can conclude that h(t) = 0 for every t ∈ (0, t0).

Then w satisfies 0 =
(

µ(c(1))w, j

)

, j
, which in view of the boundary conditions allow us to conclude that

w also vanishes and the uniqueness of solution follows. Thus, we have proved:

THEOREM 5.1 . Let (u( j),c( j)), j = 1,2 be two solutions satisfying condition (6.2) of the problem

determined by the system (2.11)-(2.12), when we assume the conditions (2.5), (2.6), (2.7), (2.8), the

boundary conditions (2.16) and the initial conditions (2.15)3 for every t ∈ (0, t0) where t0 < ∞. Then

(u(1),c(1)) = (u(2),c(2)).

The arguments that we have used here can be adapted to obtain a continuous dependence result on

the initial data and supply terms for the system corresponding to the quasi-static and incompressible

case. We first note that the function d = 1− c satisfies

dt +(du̇i),i = (D(εkl)d,i),i −g(x, t). (5.14)

Let us consider

E(t) =
1

2

∫

B
d2dv. (5.15)
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We have
dE

dt
=−

∫

B
Dd,id,idv−

1

2

∫

B
d2u̇i,idv−

∫

B
dgdv (5.16)

Poincaré’s inequality implies the following estimate

dE

dt
6−

∫

B
Dd,id,idv+2

(

∫

B
g2dV

)1/2

E(t)1/2. (5.17)

Thus, we see that

E(t)6 E(0)+2

∫ t

0
h∗(τ)

1/2E(τ)1/2dτ (5.18)

where

h∗(t) =
∫

B
g2(x, t)dv. (5.19)

From the Grownwall inequality we obtain that

E(t)1/2
6 E(0)1/2 +

∫ t

0
h∗(s)ds. (5.20)

We can also obtain the following estimate:

∫

B
µui, jui, jdv =

∫

B
fiuidv. (5.21)

In view of the Poincaré inequality we can obtain that

∫

B
µui, jui, jdv 6 K2

∫

B
fi fidv, (5.22)

where K2 can be easily calculated. Estimates (5.20) and (5.22) imply continuous dependence of the

solution on initial data and supply terms.

6. Conclusion

In this paper we have analyzed the system of equations that governs the degradation of a linearized

elastic solid due to the diffusion of a fluid. We have established that:

1. Under suitable conditions (see (2.5)-(2.9)) we can obtain the uniqueness of solution.

2. Bounds exist for anti-plane shear deformations.

3. In the case of quasi-static deformations except for a very special condition concerning the material

parameters and when c = 1, the anti-plane shear problem has uniqueness of solutions.
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