
Analysis of the Evolution of C-Space Models built
through Incremental Exploration

Marco Morales, Roger Pearce, Nancy M. Amato
Parasol Laboratory, Department of Computer Science

Texas A&M University, College Station, Texas, 77843-3112, USA
{marcom,rpearce,amato}@cs.tamu.edu

Abstract—Many sampling methods for motion planning ex-
plore the robot’s configuration space (C-space) starting from a set
of configuration(s) and incrementally explore surrounding areas
to produce a growing model of the space. Although there is a
common understanding of the strengths and weaknesses of these
techniques, metrics for analyzing the incremental exploration
process and for evaluating the performance of incremental
samplers have been lacking. We propose the use of local metrics
that provide insight into the complexity of the different regions
in the model and global metrics that describe the process as
a whole. These metrics only require local information and can
be efficiently computed. We illustrate the use of our proposed
metrics to analyze representative incremental strategies including
the Rapidly-exploring Random Trees, Expansive Space Trees,
and the original Randomized Path Planner. We show how these
metrics model the efficiency of C-space exploration and help to
identify different modeling stages. In addition, these metrics are
ideal for adapting space exploration to improve performance.

I. INTRODUCTION

Probabilistic sampling in C-space allows the solution of
many interesting motion planning problems that were pre-
viously impractical [1]–[9]. This approach avoids computing
an exact representation of the planning space by sampling
the configuration space (C-space): the space of feasible robot
configurations and transitions between configurations. The
result is an approximate model that encodes motions that
the robot can perform. This general methodology has found
diverse applications, such as the study of protein folding in
Biology and Chemistry [10]–[14], the development of virtual
prototypes in manufacturing and mechanical design [15], [16],
and the simulation of characters for animation and games [17],
[18].

Much work has been done to improve probabilistic sam-
pling, especially on mechanisms to bias sampling towards
regions of the space that model highly constrained robot
motions. In this paper we are particularly interested in in-
cremental planners that, starting from a set of configurations,
incrementally expand the model by exploring surrounding C-
space regions [1], [7], [9], [19]. A general set of metrics to
evaluate the performance and efficiency of these methods has
been lacking.

We propose a set of metrics that measure local and global
aspects of sampling and we apply them to analyze several
incremental samplers. Previously [20], we proposed a set of
metrics that characterizes samples as they are added to a
model and we applied them to analyze different Probabilistic

Roadmap Methods (PRMS) [2] that model the space through a
roadmap sampled globally. In [21] we applied these metrics to
decide when to stop roadmap construction. Here, we propose
to extract local metrics that provide insight into the complexity
of the different regions in the model and global metrics that
monitor the modeling process.

Sampling metrics can be applied to analyze, to compare,
and to improve planners. We can gain insight into the strengths
and weaknesses of a sampling strategy by analyzing features of
the model produced as it progresses. We can compare different
planners by studying their ability to discover new regions over
time. We can improve planners by adapting sampling to the
features of the space discovered or by deciding what method
to apply in each case by evaluating their performance as in
[21] and [22].

Without loss of generality, we study the case where there
is a single model component undergoing expansion. After in-
troducing the general methodology, we apply these metrics to
study the growth of Rapidly-exploring Random Trees (RRTs)
in its non-biased (RRT-Expand) [19] and biased (RRT-
Connect) [23] versions, Expansive Space Trees (ESTs) [9],
and the original Randomized Path Planner (RPP) [1].

II. C-SPACE MODELING THROUGH INCREMENTAL
EXPLORATION

Probabilistic planners build an approximate model of the
valid C-space (C-free) by selecting random samples of con-
figurations and transitions between them according to some
strategy. The resulting model is usually a graph or tree
with vertices representing feasible configurations and edges
representing feasible transitions between configurations. Some
planners explore the space to find new samples following some
strategy to expand the model in an incremental fashion [1], [7],
[9], [19].

Methods that model C-space through incremental explo-
ration usually start from some set of valid configurations
where the root trees that are expanded in increments as they
explore the space surrounding areas already in the tree. In each
increment, a node is added to the tree by a local exploration
around a selected node. RRTs [19] are expanded by selecting a
random configuration xrand from the C-space, identifying the
closest node xnear in the tree, and adding to the tree the last
valid configuration xnew on the line of length δ that goes from
xnear to xrand. ESTs [9] are expanded by selecting a node xg
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in the tree based on a probability biased towards unexplored
areas, and adding the last valid configuration on the line of
length δ that goes from xg in a random direction also biased
towards unexplored areas.

Some planners bias the exploration of C-space to solve
specific queries. RRT-Connect [23] roots one tree at the start
configuration and another at the goal configuration. Expanding
one tree by a step, it attempts to connect the closest node
from the other tree to the newly added node of the first
tree. This process is repeated, alternating trees for expansion
and connection, until the trees are connected or a maximum
number of iterations is reached. RPP [1] roots a tree at the
start configuration, each node is expanded by searching for a
closeby node with a smaller value of a given potential function
that attracts it to the goal configuration. When no such node
can be found, the latest configuration is a local minimum, and
a small number of escape attempts are tried through Brownian
motion. If every escape attempt fails the expansion restarts
from one previous node picked at random from the parents of
the local minimum.

III. EVOLUTION OF C-SPACE MODELS BUILT THROUGH
INCREMENTAL EXPLORATION

The goal of a C-space model is to reflect the coverage
and connectivity of the underlying C-space. However, it is
usually difficult to sample highly constrained areas of the C-
free, affecting the chances of the planner to correctly model
its coverage and connectivity.

Although finding the exact connectivity and coverage
achieved with a C-space model is only practical in some cases,
generally we can extract information from the construction
process to evaluate the progress achieved by the planner. On
one hand, studies have been made to exhaustively compare
the coverage of the C-space of a given problem with those
achieved by different PRM-based sampling strategies [24].
This kind of study requires a discretization of the space that
is not always feasible to obtain. On the other hand, a set of
metrics proposed in [20] characterizes the samples as they are
added to the model to identify the contribution of the sample
to the quality of the model. Efficient approximations of these
metrics can be obtained during model construction. Here we
discuss these metrics and propose new metrics in the context of
planners that incrementally explore the C-space from a given
configuration.

A. Effects on coverage and connectivity during incremental
exploration

Following [20], when a planner adds a valid configuration v

and a selected subset of all its valid connections to a model M ,
the connectivity and coverage of the original model changes
in exactly one of the following ways:

1) cc-create — v lies outside the coverage region of all the
components in M . A new component is then created as
seen in Fig. 1(b,c).

2) cc-merge — v lies inside the coverage region of more
than one component of M . These components can be
merged as seen in Fig. 2(a).

3) cc-expand — v lies inside the coverage of exactly one
component of M and it increases the coverage of the
component as seen in Fig. 2(b).

4) cc-oversample — v lies inside the coverage of exactly
one component of M without increasing the coverage
of the component, this is an oversample that does not
improve the model as seen in Fig. 2(c).

(a) no samples (b) one sample
cc-create

(c) two samples
cc-create

Fig. 1. (a) A two-dimensional environment with a polygonal obstacle. (b)
One sample is added. (c) One more sample is added. Note that the coverage
of the two samples overlaps above the obstacle.

(a) cc-merge (b) cc-expand (c) cc-oversample
Fig. 2. New samples (hollow dots) are added. (a) A cc-merge sample falls
in the intersecting coverage of the two existing samples connecting the two
regions. (b) A cc-expand sample increases the coverage of the component
to the left, but does not change the connectivity. (c) Oversampling does not
increase coverage or connectivity.

Here, we pay more attention to cc-expand and cc-
oversample nodes because they carry most of the information
in incremental exploration. cc-create nodes are produced only
when a tree is started and cc-merge nodes when building
more than one tree or when connecting the tree to a goal
configuration. Otherwise, the nodes are cc-expand or cc-
oversample.

B. Local and global characterization of C-space sampling

We propose to compile a history of local metrics and global
metrics to gain insight into the planning process and the C-
space discovered. Local metrics help us to understand the
complexity of the C-space regions around sampled areas.
Global metrics help us to understand the overall progress
made by the planner over time. These metrics are general,
independent of the dimensionality of the problem, and can
be applied to any probabilistic sampler that explores C-space
incrementally.
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C. Local metrics
Local metrics characterize the complexity of the C-space

region around a particular sample. We define as growth sites
the nodes that have been selected for expansion, regardless
of whether the expansion attempt is successful. By keeping
track of growth sites we can analyze the distribution of the
sampling. By keeping track of the history of the success of
the growth sites, we can estimate the complexity of their
surrounding regions. Also, we can compute more expensive
tests for approximating whether new nodes are cc-expand or
cc-oversample. Thus, the following metrics are maintained for
each growth site:

• growth attempts – Number of times the node has been
selected for incremental expansion. Node 1 in Fig. 3 (left)
has four growth attempts.

• successful growths – Number of successful growth at-
tempts. Node 1 in Fig. 3 (left) has two successful growths.

• obstruction ratio – Complement of the ratio of success-
ful growths to growth attempts. The obstruction ratio is
undefined for nodes that have no growth attempts (nodes
in the fringe that have not been selected). Node 1 in Fig. 3
(left) has an obstruction ratio of 0.5.

In addition, we compute an expansion ratio for new nodes
– the expansion ratio for a node is the complement of the
percentage of neighbors of the parent that the node can connect
to. This test may require additional validity tests than specified
by the incremental planner. Node 10 in Fig. 3 (right) has an
expansion ratio of 0.5 whereas node 9 has an expansion ratio
of 0.
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Fig. 3. Incremental model of the problem in Figure 1. Numbers indicate ver-
tices and their placement order. Solid arrows indicate successful connections
and their direction (a) Dotted lines indicate failure growth attempts from the
source node. (b) Hollow arrows indicate connection attempts for the expansion
ratio test when nodes 9 and 10 were added to the model.

These metrics model the complexity of the areas sampled in
the past as well as the distribution of the sampling at the node
level. If the model is expanding uniformly, most growth sites
should have a similar number of growth attempts. In RRTs,
sites that have more than average growth attempts may point
to areas of the tree that are repeatedly selected for growth,
but whose Voronoi regions fail to shrink. Sites frequently
selected with low successful growths have a high obstruction
ratio indicating a highly constrained region. Ideally, the sites

with low obstruction ratio should have smaller probabilities of
selection for growth.

We propose to group nodes in order to gain insight into
the complexity of their neighborhoods. We group growth sites
in bubbles, n-dimensional spheres of radius r. We create a
bubble centered on every new growth site that does not lie
inside any existing bubble. When a new growth site lies inside
an existing bubble, a link is made between the growth site and
the bubble. This way, the bubbles represent the coverage of the
C-space achieved by the planner approximated at a resolution
defined by r. By combining the node statistics of the growth
sites in each bubble, we obtain a characterization of the space
it represents that provides information that can be used to
adjust the sampling distributions. For example, bubbles with
many growth sites that have low obstruction ratio may indicate
oversampling.

Instead of computing the volume covered by the bubbles,
we compute the ratio of bubbles to total growth sites as an
indication of useful expansions of the model.

D. Global metrics
Global metrics keep track of the evolution of the incremental

model, they aggregate local metrics and global information
over slices of time during the planning. We divide the incre-
mental expansion attempts into sets (bins) of equal size and
aggregate the following statistics:

• percentage of successful growths – Indicates how diffi-
cult it is to expand the model.

• average obstruction ratio of growth sites – A high value
indicates a highly constrained region of the space.

• ratio of bubbles to growth sites – Indicates the effi-
ciency of the sampler in discovering unexplored regions.
A high value indicates that most growth sites produce
new bubbles, a low value indicates oversampling.

• ratio of bubbles to growth sites from successful expan-
sions – Similar to the previous, but only includes bubbles
and growth sites created during successful expansions.

The evolution of global metrics is correlated with the ability
of the planner to increase its knowledge of the planning space
over time. A high percentage of successful growths and low
average obstruction ratio of growth sites over some time
indicates that the areas being covered are mostly free. A low
ratio of bubbles to growth sites indicates oversampling.

IV. APPLICATION: ANALYSIS OF THE EVOLUTION OF
INCREMENTAL PLANNERS

We demonstrate the application of local and global metrics
in an experimental analysis of the evolution of models pro-
duced with different incremental planners applied to different
environments as described below:

• Problem domain – The problems studied involve rigid
robots moving in three-dimensional environments.

• Incremental strategies – RRT-Expand [19], EST [9],
and the biased RRT-Connect [23] and RPP [1].

• Expansion parameters – In each iteration, we apply
the expansion rule of the method studied. We define a
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maximum number of samples and bin them into even
intervals. Since each planner may produce more than one
sample per iteration, bin size had some variations. For
each planner and environment we used the parameters
(deltaq) that showed the best performance.

• Study parameters – The bubble radius r was chosen to
be about 15% more than the expansion length. Smaller
bubbles overestimate the coverage increase, larger bub-
bles underestimate it.

A. Environments
We selected environments that have both open spaces and

narrow passages in order to evaluate the metrics. We evaluate
the way in which the metrics characterize the planner’s ability
to cover the space finding their way through the passages. All
the robots studied here were six-DOF rigid bodies.

The walls environment (Fig. 4-walls) has a cubic robot that
must pass through four short narrow passages from right to
left.

The maze (Fig. 4-maze) environment has a 6-DOF rigid body
that must move through a long narrow maze to go from the
top to the bottom. The entrances of the passages are small.

The hook (Fig. 4-hook) environment has a 6-DOF rigid
body resembling a hook that must pass through two walls
using translations and rotations. The narrow passages in this
environment are long due to the shape of the robot.

B. Experiments
In each environment we defined one initial configuration for

the non-biased methods RRT-Expand and EST, and two initial
configurations on the extremes of the environments for the
biased methods RRT-Connect and RPP. In each independent
run, we ran the expansion strategy for a maximum number
of iterations and for a number of desired nodes. We collected
global and local statistics over all the samples and over the
latest bin.

We extracted aggregated metrics for all methods when
mapping the walls (Fig. 5) and the maze environments (Fig. 6).
We present the ratio of bubbles to growth sites (total and per
bin) and the ratio of bubbles to growth sites created during
successful expansion (per bin). The total ratio of bubbles to
growth sites shows the efficiency of the sampler in discovering
new regions of the C-space. The ratios per bin give us a picture
of the recent progress made. These metrics show the features
of sampling and allow us to compare them among planners.

We show two global metrics for the unbiased samplers
RRT-Expand and EST when mapping the hook environment
(Fig. 7). We show the percentage of successful growths per
bin and the accumulated expansion ratio.

1) Walls Environment: Each of the planners evaluated has
a steady decline in their ratio of bubbles to growth sites but
at different rates. This corresponds to the speed at which the
majority of the C-space was mapped by each planner. RRT-
Connect, which covers at 500 nodes, has the highest ratio and
the slowest decline. RRT-Expand, which covers at 1000 nodes,
starts with a ratio of bubbles to growth sites just below .3 and

has a slow decline. EST, which covers at 1400 nodes, starts
with a ratio of .2 that quickly declines to about .05 after which
it has a slower decline. RPP, which covers at 2300 nodes,
starts with a high ratio that quickly declines to 0.2 where it
continues at a slower rate.

At the bin level we see that the ratio of bubbles to growth
sites and the ratio of bubbles to growth sites from successful
expansions follow a similar behavior with spikes that mark
drastic changes in coverage. Some of these spikes correlate
to the iterations where the planner makes its way through to
the following chamber. Other spikes may be due to the quick
coverage of non-apparent tightly constrained regions of the C-
space. Also note that the non-biased RRT-Expand and EST
show the biggest difference between the ratio of bubbles to
growth sites and the ratio of bubbles to growth sites from
successful expansions which may indicate more time spent on
free areas of the space.

2) Maze Environment: Similar to the walls environment,
in the maze each planner shows a steady decline in their
ratio of bubbles to growth sites. This trend held for many
other environments we used during our experiments. The maze
environment has two free chambers on either side of the actual
maze. The mapping of the two free chambers can be seen in
the bin ratios of each planner. RRT-Connect, RRT-Expand,
and RPP start with a high ratio of bubbles to growth sites
computed over bins as they map the first chamber. After
negotiating the maze, RRT-Connect and RRT-Expand show
a large increase in their ratio of bubbles to growth sites
computed over bins as they map the second chamber. RRT-
Connect does not show as pronounced of a spike as it maps
the second chamber because its ratio of bubbles to growth
sites is already high due to its quick progress. RRT-Connect
maps the free space in about 700 nodes, RPP maps in about
1800 nodes and RRT-Expand maps in about 5800 nodes. EST
failed to make significant progress through the maze.

3) Hook Environment: For the hook environment, we show
the percentage of successful growths per bin and the accu-
mulated expansion ratio for both RRT-Expand and EST. The
percentage of successful growths per bin shows how successful
the planner is in creating new expansions at different slices of
time. This metric alone is not enough to show how “good”
the newly created samples are. The accumulated expansion
ratio helps to show the planners progress in creating high
quality samples. An increase in the accumulated expansion
ratio means that new samples have been added with high
expansion ratios.

RRT-Expand shows a steady increase of successful growths
per bin as the planner progresses. Also, the accumulated
expansion ratio for RRT-Expand increases steadily showing
that the planner is making progress mapping new areas. On
the other hand, EST’s percentage of successful growths per
bin continuously stays between 70% and 100% and when
examining the accumulated expansion ratio we can see the
reason. EST’s expansion ratio grows at a much slower rate
than that of RRT-Expand, it is mostly creating new samples
in previously mapped areas and it is not successful in finding
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(walls) (maze) (hook)
Fig. 4. (walls) 6-DOFcubic robot, four short passages; (maze) solid view, 6-DOF robot, and wire view; (hook) 6-DOFhook robot, two medium passages.
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Fig. 5. Global metrics for walls environment mapped with RRT-Expand (left), EST (left), RRT-Connect (center), and RPP (right). For each sampler we
show the total ratio of bubbles to growth sites (total), the bin ratio of bubbles to growth sites (bin), and the bin ratio of bubbles to growth sites from successful
expansions (bin: success) with bins of either 50 or 200 nodes
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Fig. 6. Global metrics for maze environment mapped with RRT-Expand (left), RRT-Connect (center), and RPP (right). For each sampler we show the total
ratio of bubbles to growth sites (total), the bin ratio of bubbles to growth sites (bin), and the bin ratio of bubbles to growth sites from successful expansions
(bin: success) with bins of either 200 nodes

samples with high expansion ratios.

V. CONCLUSIONS

In this paper we propose several qualitative metrics for use
in the analysis, comparison, and improvement of incremental
expansion planners. Building on previous work [20], we show
that most samples from an incremental planner will be either a
cc-oversample or cc-expand, and propose aggregating statistics
both local and global with every expansion attempt. At the
local level we collect node statistics and group them in bubbles
rooted at growth sites to shed light on the complexity of a
region. Tightly constrained regions can be identified for their
obstruction in the sampling process. At the global level we
collect statistics from nodes and bubbles that monitor the
modeling process to provide insight into how well the planner
is progressing – if the planner is making poor progress it

can also be seen with these metrics. We used the metrics
proposed to evaluate the performance of four incremental
planners in three different environments with narrow passages.
Our metrics helped to explain the relative performance of the
methods studied.
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