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An extension of the finite difference time domain is applied to solve the 8atger equation. A
systematic analysis of stability and convergence of this technique is carried out in this article. The
numerical scheme used to solve the Sdimger equation differs from the scheme found in
electromagnetics. Also, the unit cell employed to model quantum devices is different from the Yee
cell used by the electrical engineering community. A bound for the time step is derived to ensure
stability. Several numerical experiments in quantum structures demonstrate the accuracy of a second
order, comparable to the analysis of electromagnetic devices with the Yee cel00® American
Institute of Physics.[DOI: 10.1063/1.1753661

I. INTRODUCTION technique has been successfully applied in electromagnetics,
and we have now extended this method to solve the Schro
The finite difference in time domai(FDTD) is a widely  dinger equation. The FDTD-Q will provide us with a very
used tool in electromagnetics. The application of FDTDyseful tool for the numerical study of quantum devices, like
technique for the analysis of quantum devi¢EBTD-Q) is QD and QW, which require a two- or three-dimensional co-
based on the FDTD for elgctromagnetics, and extends thigrdinate system to be correctly modeled.
technique to solve the Scldinger equation. The FDTD The FDTD-Q technique simulates the time evolution of
method solves the Maxwell curl equations using discrete demge \wave function in a three-dimensional space, where the
rivative operat(_)_ré_.ln the same way, the FDTD-Q solves a potential could be any arbitrary function. We will show in
discretized Schringer equation in an iterative process. s article how numerical values of the wave function in the
The FDTD-Q technique has been successfully used t@ o marching scheme of FDTD-Q represent a good ap-

solve the problem of quantum dot®D) in Refs. 2 and 3. roach to the time behavior of the wave function for the
However, some aspects of the FDTD-Q cell, convergenc gmdeled structure

32% Srtzs\;“txlotrizea?tlijcr?eent%ag T:CI;'?Iane h;\gigftuzeinr?\(/?slzae In this article we present a detailed formulation of the
' ' Q q numerical FDTD-Q technique for the general three-

and analyzed when applle(_j to the .Scmmger equation with dimensional Schidinger equation. We analyze the stability
a space-dependent potential, this is the case of QD or quan; . . )
tum wires (QW), of the time marching FDTD-Q scheme and derive a bound

In one-dimensional cases, the numerical solution of théOr the time step. The maximum time step is a bound that

Schadinger equation is usually based on matrix methodsaVOidS the accumulation of numerical error. It is a must for

like Numerov's techniqué.in cylindrical and spherical ge- the Stability of the time domain simulation in the same way
ometry it is possible to reduce the dimensionality by consid-2S the CouranF stab|I.|ty condition |n.the FD_TD technique for
ering the symmetry of the problem, and rewriting it using a€lectromagnetics. Finally, calculations with the FDTD-Q
suitable coordinate system. The computational cost increaségve been carried out simulating a quantum device, specifi-
rapidly with matrix techniques when is not possible to reducecally a quantum well wirdQWW) with a known analytical
the problem to the one-dimensional case. A solution to resolution. There are many numerical experiments, using dif-
duce the computational cost in two- and three-dimensiondierent mesh resolutions, with different cell sizes, which ana-
problems is to use finite differences algorithms. The FDTDlyze the numerical convergence of the method. The numeri-
cal error is calculated by comparing the numerical solutions
) o _ _ ' with the known analytical wave functions. Some plots of the
b)EIIZ(;:‘(C))rr:Ii((; rr:Z'i'l:_ 'ér:r‘i’;:;?\I‘;‘g’;ggj\:‘:;@““es error versus cell size show that a second order accuracy is
: | ' achieved in the numerically obtained FDTD-Q wave func-
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II. FINITE DIFFERENCE TIME DOMAIN TECHNIQUE
FOR QUANTUM DEVICES

A formal description of the FDTD-Q technique is intro-
duced in this section. We explain step by step how to deduce Fo===== <P
the discrete equations, and how to use them to obtain the
numerical solution of the Schdinger equation. First, the
complex wave function is separated into two real functions

that correspond to its real and imaginary parts i,

I
I
I
I
I
r

W(r,)=Wg(r,t)+j¥(r,1). () (?
I
I
I
I
I (

i, j+1, k)
Then, the Schrdinger equation :
]
L (GRS |
it P ~om VZ\If(r t)+V(r)W(r,t) (2 (i+1, j, Ky / ]
I I -,G ——----- !
is divided into two equations involving real functions corre- VAL
sponding to¥' and ¥, L)
/
- - - Y
dWR(r,t) h2 | PW (rt) &%V (r1)
h— =~ 2ma| o + Py FIG. 1. FDTD-Q cell.
az‘lf.(r t) V(P 3
972 VIO, B rite Wi as a function of and ¥ Y2, The FDTD-Q
equation obtained to update the real part of the wave func-
ﬁa\P,(F,t) K2 | PWR(T L) . FPW (1) tion is
at 2me|  ox? ay? i o hAt[ 1 1 1
VR (0,],k)=PR(3,j,k) + —t =t
PV (T 1) R R Ax?  Ay? Az
+—— |~ V(NWR(T,1). (3b)
Jz V(i,j,k)At 1 hAt
|
A mesh is defined in a given boundary value problem, 2meAX
yvhere the contmuous complex wave fgncnon is represented ><(\I,nﬂ/z(l +1,, k)+q,n+1/2( 1j,k)
in our computational domain as two discrete functions, the
discretized real part of the wave function and the discretized hAL
imaginary part of the wave function T Iy (WM Y20+ 1k)
me
WR(r,t)=Wh(i,j,K)=Wg(iAX,jAy,kAzZ,nAt),
- - o (4) +WPMY -1 k) — hal
W (r,t)=w(i,],k)=",(i1AX,jAy,kAz,nAt). 2mAZ?
The second-order derivatives in E48a and (3b) are x(qfin+1/2(i,j,k+ 1)+\Ifi”+1/2(i,j,k—1))
discretized using centered differences. Therefore, the calcu-
lation of Egs.(3a and (3b) at a given mesh pointi (j,k) ®)
involves the pointsi(+1,j,k), (i—1,j,k), (i,j+1k), (i,] with a similar equation for the imaginary part.
—1k), (i,j,k+1), and {,j,k—1).! For example, to update The above equations are solved in an iterative process,

the real part of the wave function at the discrete pointwith the necessary boundary conditions, in which the time is

(i,j,k); at the instantif+ 1)At, we need the imaginary part incrementedAt in the numerical loop.

of the wave function at the pointd,{,k), (i+1,j,k), (i Numerical FDTD-Q loop:

-1j,k), (i,j+1k), (i,j—1k), (i,j,k+1), and f{,j,k (1) Impose initial boundary conditions okiz and V¥, at

—1) at the instantif+ 1/2)At. This evaluation involves the t=0.

real and imaginary parts of the wave function at each node. (2) Calculation of¥, at timet+ At/2.

Second-order derivatives are calculated at each point of the (3) Boundary conditions o, .

discrete space then, in our numerical scheme both the real (4) Calculation of¥y at timet+ At, using Eq.(5).

and imaginary parts of the wave function are located at the (5) Boundary conditions oV .

same nodes. This detail makes a difference with the FDTD (6) Time is incremented=t+ At.

techniqgue when applied to electromagnetic problems. The (7) If t<NAt then Goto 2. Else STOP the loop.

unit cell in FDTD-Q is shown in Fig. 1. The wave function propagates in the numerical space of
Once the differential operators are replaced by their corthe computer following the above iterative process. In this

responding discrete operators using centered differences, weay, it simulates the time behavior of the wave function,
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derived from the time domain Schtinger equation. The A. Temporal eigenvalues
loop stops when the conditidr= NAt is verified,NAt is the
total simulation time.

A rough analogy between the FDTD technique in elec-
tromagnetism and the above presented FDTD-Q is the iden- . ¥
tification of the electric field components with the real part of I =a

the wave function, and the magnetic field components with . .
g P Where both the real and imaginary partsWfare con-

the imaginary part. However, some epistemological differ- . . . - .
ginary p P 9 dered, the differential operator is introduced, through its

ences arise. The FDTD technique was developed to solve t d

Maxwell curl equations involving the electromagnetic fields,e.quwalem discrete operator, to obtain a numerical differen-

The temporal eigenvaluesof the Schrdinger equation
are analyzed from left side of EQR)

=\V. (6)

that are vectorial magnitudes; whereas Sdhrger equation tiation:
is a scalar equation involving the scalar wave function. Dif- WG k) =P YA LK) h
ferences can also be extended to the boundary conditions: 17 At =AW, j,Kk). (7)

The boundary conditions in FDTD are defined in the field § . )
components separately, up to six electromagnetic compo- 1he “growth factor” g determines the growth of the
nents. Whereas in FDTD-Q the boundary conditions are en/ave function at each time iteration

forced only on¥g andW¥, . Also, the electric and magnetic Pn+12

field components are sampled at distinct spatial points, q= - (8)
whereas the real and imaginary parts of the wave function v

are evaluated at the same spatial point. if g is introduced in Eq(7), and the resulting equation is

The computational cost of FDTD-Q is lower than the splved in order to obtain the growth factor as a function of
cost of the FDTD technique used for electromagnetic probat and

lems. There are two components per cell in FDTD-Q, real
and imaginary parts of the wave function, and six field com-

NAt
. 2+j——q—1=0, 9
ponents per cell in FDTD, three electric and three magnetic. ] h q ©)

_MAE /1 NAt\ 2 10
9==l5z* |7 (10

The instability appears when the eigenfunction associ-
The time discretizatiort is the time increment between ated to the\ eigenvalue grows on each iteration. The stabil-
consecutively calculated fields in the numerical approach dety of the temporal dependence of any spatial mode is as-
scribed in Eq.(5). The choice ofAt is critical in the sumed by imposing the conditiojy|<1. This is verified
FDTD-Q simulations. The computational cost decreases agutomatically if
At increases, because longer time steps provide us with < Im(\)=0: This condition establishes that all eigenval-
longer simulation times with the same number of numericalues must be real. If we assume that the Hamiltonian is an
iterations. On the other hand, from our numerical experi-hermitian operator, it will always be true because all eigen-
ments, the longer the time steps are the less stable is thalues associated to an hermitian operator are real.
behavior of our simulation. * Re(\)At<2%: A stability condition is derived from this
The time step should be chosen as a balance betweealationship, involving both the spatial and temporal discreti-
computational cost and stability. Of course, the best time stepation.
to choose would be the longer one so that the algorithm’s
stability is maintained. So, it is important to establish a maxi-
mum tlme_ step that ensures the stability of our s_|mula_t|on_. AB Spatial eigenvalues
relationship between the spatial and temporal discretizations
is necessary to keep the numerical error under control as the The process described above is repeated again for the
simulation process progresses. spatial eigenvalues. The right side of Ef) is analyzed as a
If we separate the finite difference problem into two ei- spatial eigenvalue problem
genvalue problems, a spatial eigenvalue and a temporal ei- 9 [ gt > Der o2
genvalue problem, the study of the numerical stability is ana-  \ y(r t)= — A7 [ 7Y + IH(TY + (LY
lytically feasible. The wave packet is supposed to be a 2m ax? ay? Fria
superposition of plane waves, and each plane wave is an _ _
eigpenfrzmction of tEe numerical domain. Thg eigenvalues as- FVNE(r.Y. 1D
sociated to the spatial differentiation and the eigenvalues as- The most general solution for the wave equation can be
sociated to the temporal operators are calculated. If the spalescribed as a superposition of plane waves.
tial eigenvalue spectrum is enclosed in the temporal i _
eigenvalue spectrum then the algorithm will be numerically W(xy .z =elteriyriaen, (12
stable® In this way, the numerical stability is guaranteed by ~ The operatoV? is replaced by another expression that is
preventing the uncontrolled growth of the numerical error atthe resulting from its application to a plane wave
each time iteration. W (X,y,z,t) ~ el (i AxtkyjAy tkkAz=wnAt)

IIl. STABILITY
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az‘lf(x,y,z,t) el (keI +1)A%) _ 9i (K AX) 4 0] (Ky(i = 1)A%) 0.5
NG B Ax?
k, AX 0.3
= —4 sir? XT w(i,j,k). (13) _
=al
The associated eigenvalues are derived 01
k, A X k,A k,Az
252 sinz(XT sinz( y2 Y sinz( 22 )
M= 2 T ;T 2 -
m Ax Ay Az 0.1 2000 4000 6000 8000 10000
v (14) time steps

The numerical solution requires that both the temporaF'G- 3. Absolute value of the wave function at an arbitrary point of the
and spatial eigenvalues associated to the temporal and spaffjfS" during the first ten thousand iteratioas=0.5Atesicar
parts of the Schidinger equation are the same. Taking into
account the conditions imposed to dgf=<1 the following

relationship is obtained: Some numerical experim_epts were carried out to check
) the validity of the above stability condition. In all cases, the
[ kAX [ kyAy [ kAz stability was observed when the condition of E#6) was
5| sir? sir? sir? o
2h 2% 2 2 2 verified.
A_tzﬁ_ A2 + Ay? + A2 4 A rectangular two-dimensional QWW was simulated

with a regular mesiAx=Ay. The simulation time wahblAt,
where the number of time iterations wids=100 000, and\t
+V was varied arounatiica -
The excitation consists of a set of narrow pulses in the
time domain that are arbitrarily distributed on the cross sec-
V. (15  tion of the QWW. The boundary conditions in our example
were introduced in the wave function by defining a rectan-

Writing At functi fth tial di tizati dgular boundary in which the potential is infinite. Then, the
riing At as a function ot the spatial discretization and .o ,nction is zero at that boundary.

remaining constants, a maximum value for the time step that The time evolution of the wave function at a given point

ensures the stability of the algorithm can be obtained: of the mesh was filed at each step of the simulation loop. The
7 time evolution of the wave function is plotted in Figs. 2, 3,
(16)  and 4 for three distincAt. The wave function evolved under
a bound when the time step was lower th¥iR;ica - IN Figs.
2 and 3 we show two different simulations for the first ten
thousand iterations of the FDTD-Q simulation. However,
We named tritical stef or Atgjica, the maximum  during more than one million time steps of the simulations,
time step which maintains the algorithm’s stability, this valuenot shown in Figs. 2 and 3, the maximum value of the wave
is obtained from the right side of E¢16).

2%2[ 1 1 1

g_

m A2 Ay2 A7

ﬁ2
> ___

=

m

! + ! +
Ax?  Ay? AZ?

At

1 1 1

<
ﬁZ
AX?2  Ay? AZ?

+V
m

10 10
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8 [N Ry T Ry R | IR
15
10 }-
_6 -
> = |-
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10 }-
24
0 10°
04 0 100 200 300  10°
2000 4000 6000 8000 10000 time steps time steps

time steps
FIG. 4. Time evolution of the wave function at an arbitrary point of the
FIG. 2. Absolute value of the wave function at an arbitrary point of the mesh.At=1.005At .- Left: First three hundred iterations. Right: The
mesh during the first ten thousand iteratioA$= At ica - first one thousand iterations.
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function can be observed evolving under a bound. That istwo-dimensional structure with translational symmetry along

stability was observed whefat< At tical - the z-axis. In particular, the FDTD-Q technique provides a
Numerical experiments with a time step longer thantime series at a given mesh point j()

At iica @re observed to diverge. In Fig. 4 the time evolution - . .

of Ctrztcaawave function at a given point of the mesh for L) =w(iAx,jAy,nat) n=012.N-1 (18

= 1.005Atiical IS Presented. In the logarithmic scale of Fig. where the total simulation time iHAt.

4 we can see how the FDTD-Q algorithm diverges quickly A method to reconstruct the eigenfunctions is described

when the selected time step is a little greater tAdgiica - in Ref. 2, in the discrete case it is the evaluation of the
equation
N—1
IV. CONVERGENCE em(in)= \/_NnEo WN(i,j)e IEmnALA (19

Once the stability of the FDTD-Q algorithm is ensured, The application of the inverse discrete fourier transform

under certain conditions aboutt, the next step consists of PO : . . i
checking that the numerical solution obtained with FDTD—QI(rilc?nFI? ftroe;I:Je(;é)a in Eq. (19) will result in a discrete func

converges in a given boundary value problem. The study o
the convergence has been carried out by analyzing a quan- o AR e
tum structure with known analytical solution, this is the case ~ ¢m(i,J) = > | 2 gli,j)el@mPNn) g iEmn

N—-1 /N-1

of the QWW that are numerically treated as two-dimensional n=01p=0
structures. Then, a large set of numerical simulations have Nt 1— e J(EqNAD/A
been carried out for a given QW, and FDTD-Q results are = NpZO Pp(is]) 1 o I (End /A= 2rpN) (20

compared against analytically obtained solutions. A QWW

was simulated with different spatial discretizations, in order  This equation shows that the information to reconstruct

to analyze the numerical error as a function of the spatiabach eigenfunction is shared in all discrete frequency com-
discretization. The errors were calculated as the differencgonents. If we pay attenton to the tern{l

between the numerical and analytically obtained eigenvalues. g~1((EmA/A=(27P)/N)] " e notice that the most important
and eigenfunctions. contribution to them-eigenfunction is due to the component

The analysis of a particle in a QWW is mathematically namedp,, which makes the following term the closest to
similar to the analysis of an electromagnetic wavegfide. zero:

A. Numerical eigenvalues and eigenfunctions in a ( E, At Zme)
- ~ (21)

QWwW h N

After the introduction of a time-domain—space-domain
pulsed excitation, only eigenfunctions are allowed inside the
two-dimensional cross-section of the QWW. These have tim&*
harmonic dependence with the energies of the bound states. 27h
After the time pulsed excitation the wave function can be  Em-Foro= 37 Pm (22)
expressed as a superposition of eigenfunctions, whose eigen-
values are included in the spectrum of the introduced timénd the energy sensitivity achievable by the discrete fourier

Numerically, the eigenvalue associated to the
eigenfunction is evaluated as

domain pulse transform(DFT) is
V(F)= 2 Apep()e Enth, (17) NAt’
m=1

which is related to the number of time stedsand the cell

In the above equatiop () appears, it is the space dis- dimensionsAx and Ay by the stability criterion derived
tribution of the mreigenfunction along the cross section of @bove. Apart from this factor, the achievable accuracy to be
the QWW, and the eigenvalue or eigenenefgyassociated gained _in the_numgricgl calculation also depends on the
to them-eigenfunction. The complex constaky, establishes ~SPace-time  discretization process undertaken by the
the contribution of then-eigenfunction to the wave function. FDTD-Q. This will be discussed in the following section.

Equations(3a and (3b) are defined for a given spatial The numerical error also depends on the feasibility of
discretizationAt chosen along with boundary conditions de- the imposed numerical boundary conditions, and inevitable
fining the edges of the QWW. The potential is assumed tgwumerical roundoff. The relative error between numerical
become infinite at the walls of the QWW, so the wave func-and analytical energies is calculated to evaluate the accuracy
tion becomes zero there. From the FDTD-Q algorithm, the?f our procedure
real and imaginary parts of the wave function are computed
in alternate time steps, giving the time evolution of the wave  e.(%)= E -
function component¥ g and¥, . m-analytica

From now on we will use a two-dimensional description The field distribution for each eigenfunction can be cal-
of the FDTD-Q equations, because the QWW constitutes aulated once the eigenvalue is known. The shape of each

| Em—FDTD_ Em—analytical

100. (24)

Downloaded 28 Jan 2010 to 147.156.182.23. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



8016 J. Appl. Phys., Vol. 95, No. 12, 15 June 2004 Soriano et al.

TABLE I. Estimated FDTD-Q energy levels for the 22836 nnf quantum well wire in million electron volt, and their relative error.

Eigenfunction 1-1 Eigenfunction 2-2 Eigenfunction 1-4 Eigenfunction 3-2
mesh energy(meV) % energy(meV) % energy(meV) % energy(meV) %
6X9 1.0687 102 1.27 4.0305 102 6.92 5.3130 102 12.6 6.8702 102 14.9

10x15 1.0687 102 1.27 4.2137 107 2.69 5.7710 102 5.06 7.6030 102 5.871
12x18 1.0687 102 1.27 4.2443 107 1.98 5.8626 102 3.55 7.7252 10 4.36
14x21 1.0687 102 1.27 4.2748 107 1.27 5.9237 102 2.55 7.8168 102 3.22
16x24 1.0687 102 1.27 4.2748 107 1.27 5.9542 102 2.05 7.8778 102 2.47
18x27 1.0687 102 1.27 4.3053 107 0.57 5.9847 102 1.55 7.9084 102 2.09
20%x30 1.0687 102 1.27 4.3053 10 0.57 6.0153 102 1.04 7.9389 102 1.71
22X33 1.0687 102 1.27 4.3053 102 0.57 6.0153 102 1.04 7.9694 102 1.33
24%36 1.0687 102 1.27 4.3053 102 0.57 6.0153 102 1.04 8.0000 102 0.96
28x42 1.0687 102 1.27 4.3053 102 0.57 6.0458 102 0.54 8.0000 102 0.96
32x48 1.0687 102 1.27 4.3053 107 0.57 6.0458 102 0.54 8.0305 102 0.58
36%x54 1.0687 102 1.27 4.3359 10 0.14 6.0458 102 0.54 8.0305 102 0.58
40%x60 1.0687 102 1.27 4.3359 107 0.14 6.0458 102 0.54 8.0305 102 0.58
44x66 1.0687 102 1.27 4.3359 10 0.14 6.0763 102 0.04 8.0611 102 0.20

m-eigenfunction is obtained by calculating the DFT compo-E; .1, E,.», E1.4, andE;., are compared in Table | to show
nent associated to the enerBy,, over the entire cross sec- the convergence of our technique. In Table Il we show the

tion of the QWW. convergence of the energy levels when the sensitivity of the
DFT is increased. The increaseMieads to greater accuracy
B. Numerical analysis of eigenvalues in the estimation of the eigenvalues, see Ef). However

there is no linear relationship between the deviation and nu-
merical results in Table Il. The deviation in the numerical
£nergy levels is associated to the discretization, and we ob-
of 224%336 nit. tain t'h.e.se numerical results using the DFT, howev_er the I:?FT

After the introduction of the time-domain—space-domaintshegSDItII:\q.Z eC: s\:ﬁ\r/?t; k\];e noubnggR/cealaecrcr;:]r\./e'lr'h;r:éeb)éfI?ﬁefegs\'/?ag_
pulsed excitation in the two-dimensional FDTD-Q mesh, thetion to a constant value that is associatgd to the numerical
wave function is sampled at different mesh points, providingdiscretization 46060 cells
the time domain numerical behavior of the wave function. '
The sampling was done at three different points of the mesh
to avoid nulls of the eigenfunctions. The DFT of these tem-C. Numerical analysis of eigenfunctions
poral series provide us with the spectral amplitude of the The numerically obtained eigenfunction comes closer to
wave function in the sampled mesh points. This frequenq{he analytical value when cell dimensions are reduced. The
response has maximum values, or peaks, at the frequencies y . . . '

. : . : most general solution of the Scliinger equation for a par-

associated to the eigenenergies of the confined states. These
are theE,,..ptp numerical values.

The accuracy in the numerical estimation of the ObtamedI'ABLE II. Estimated FDTD-Q energy levels for the 22836 nnf quantum
eigenvalues is expected to depend on the spatial discretizaell wire in million electron volt, and their relative error. The mesh size is
tion. As cell dimensions decrease, numerical eigenvalues b@ox60 cells,At=1.3544 10 "s.

come closer to the analytical values given in the following

In order to simplify the numerical analysis we simulated
a two-dimensional QWW. To avoid degeneration alarand
y axis, we simulated a QWW with a rectangular cross sectio

equation' Eigenfunction 1-1 Eigenfunction 2-2
2,2 ) ’ Iterations Energy(meV)  Error (%) Energy(meV)  Error (%)
The [ p° g
Epq= S+, (25) 5000  1.2214 107 12.829 4.2748 107 1.275
2me (a? b 8000  1.1450 102 5.777 4.1985 10? 3.038
. . 9000  1.0178 107 5.976 4.4105 10° 1.859
wherea= 224 nm ando=336 nm are the'dlmensmns ofthe 19000 1.221410° 12.829 4.2748 10 1.275
QWW, the integerp andq define each eigenvalue. 20000  1.0687 107 1.275 4.2748 102 1.275
As we have already saidyt is limited by cell dimen- 30000  1.1196 107 3.426 4.2748 10° 1.275
. . . . 2
sions to ensure the algorithm’s stability. The number of time 50000 1.0992 1322 1,546 4335910 0.135
iterationsN was increased for smaller cell dimensions, in gg 888 1'8223 102 é;;g ﬁégg 182 g'ig‘l‘
order to maintain the DFT sensitivity when the same QWW 155000 1.0687 10? 1275 4.3359 102 0.135
is simulated with denser meshes. The error’'s decrease in the2o0000  1.0840 1¢? 0.135 4.3206 102 0.217
eigenvalue estimation when the mesh size increases is300000  1.0789 107 0.335 4.3257 10° 0.100
. . . 2

mainly due to the effect of cell dimensions, because the DFT ggg 888 1-8282 1822 8-;47 4-2237 182 8-1‘2";

resolution remains constant. L ! 217 432441 ) 1
. 900000  1.0823 1% 0.021 4.3223 10 0.178
Table | shows the FDTD-Q calculated eigenvalues, and; oo0000  1.0809 1% 0.147 4.3237 102 0.147

their deviation from the analytical ones. The eigenenergies of
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FIG. 5. Numerical eigenfunctions of the 22836 nn? two-dimensional ~ FIG. 6. Decimal logarithm of the numerical error in calculating the 1-1
quantum well, regular mesh of 4®0 square cells. Up: eigenfunction 1-1. eigenfunction versus decimal logarithm of the cell size} maximum erroy

Down: eigenfunction 2-2. and(+) average error

the maximum error. Then, we can say, as a first approach,
ticle in a rectangular QWW can be written as a linear com-hat the calculation of the eigenfunctions is second-order ac-
bination of its corresponding eigenfunctions, see ). In  curate versus discretization.

a two dimensional case A second-order accuracy was expected in the finite dif-
ference time domain results, because centered differences ap-
® proach for numerical derivatives provide a second-order
WXy, D=2 2 Apqpqxyle EnadVh accuracy. However, the used excitation and the numerical
p=laq=1 DFT influenced the final error for the numerically obtained

(26) eigenfunctions in the spectral domain. We observed this in-

[ TP . 7q fluence in our simulations. The pulsed excitation distributes
QDp,q(X,y)=sm<?X)Sln(Ty), its energy between the eigenfunctions, but the best coupling
between excitation and a given eigenfunction is when the

where ¢, 4(x,y) is the space distribution of the pulse is located in the maximum of the spectral distribution.
(p,q)-eigenfunction along the cross section of the QWW, its The location of the maximum is not known beforehand, then
associated eigenenergy s ,, andA, , is a complex con- heuristic excitation can distort the spectral distribution of the

stant that establishes the contribution of the,q)- numerically calculated eigenfunction. The DFT also influ-

eigenfunction to the wave function. ences the accuracy of the numerically obtained eigenfunc-
To obtain the eigenfunctiorfthe DFT is performed dur- tions, because its sensitivity influences the numerical spec-

ing the FDTD-Q simulation at each mesh po[see Eqg. trum.

(19)]. The DFT is done at some selected frequencies associ-

ated to the lowest numerical eigenenergies obtained in thg. CONCLUSIONS

eigenvalue analysis O,f previou; section. Figure 5 shows the The numerical finite difference time domain technique

calculated FDTD-Q eigenfunction&-1) and (2-2). that solves the Schdinger equation is named FDTD-Q. In
To analyze the convergence of the FDTD-Q, we evaluyne present work, the FDTD-Q is presented, analyzed, and

ated the deviation, or error, as the difference between an%’uccessfully applied in the analysis of a cross-sectional

lytical and numerical solutions at each mesh poinf)(* In WW. A relationship between the spatial discretization and
this particular case, maximum absolute error and average

error were obtained for two given eigenfunctions: The 1-1,
and 2-2. The average or mean error is calculated averaging 0.5
the error at all the mesh points for a given mesh. In Fig. 6 we
present the maximum and average error for the first numeri-
cal eigenfunction(1-1) versus cell size. The least-squares
regression provides a slope of 1.74 for the average error, and
1.51 for the maximum error, in both cases the correlation
coefficient is higher than 0.9. Similar results for the 2-2
eigenfunction are presented in Fig. 7, where the least-squares

—y

~
2

n

log10(error)

) +mean
regression gives a slope of 2.35 for the average error and ///+ O maximum|

N

(6]

\
+\

2.11 for the maximum error, also with correlation coeffi- 3
cients higher than 0.9. The regression line of the error versus 8.1 79 7.7 75 73

cell size is also plotted in Figs. 6 and 7 for both the average log10(Ax)

and maximum error, V.Vhere. the convergence Versus cell SIZl’i:“IG. 7. Decimal logarithm of the numerical error in calculating the 2-2
of the proposed technique is demonstrated. The average ergfenfunction versus decimal logarithm of the cell siz) maximum error

is more significant and reduces fas(eersus cell sizethan  and(+) average error
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is obtained in the analysis of the numerical error versus the
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