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A B S T R A C T

The new APPLE X undulators are novel elliptically-polarised undulators, which have a highly symmetric
geometry. Theoretically, all the elliptical polarisation states are expected to have the same deflection parameter
if the magnetic and geometrical errors are negligible. Nonetheless, the magnetic measurements of the first ten
APPLE X undulators performed at Paul Scherrer Institut (PSI) contradicted this simple statement and numerical
simulations were required to understand and validate the results. After the valuation of the magnetic-force
induced mechanical deformations of the undulator frame, the central role played by the magnetic susceptibility
� was investigated. The simulation results indicate that the impact of different magnet types in the Halbach
array, the anisotropic properties, and the choice of shaped field radial magnets are critical for the achieved
magnetic field. The numerical results are compared with the measurement data.

0. Introduction

The second beamline of the SwissFEL [1] project at the Paul Scher-
rer Institut (PSI), Athos [2], is designed for Soft X-rays and is equipped
with APPLE X undulators [3]. This new undulator design is part of
a common effort in the Synchrotron light source community, well
documented by these publications [4–10] which cover two decades of
innovation.

Ten PSI APPLE X units have been magnetically tested following
this procedure: 1. Alignment of the undulator on the measurement
bench to probe the magnetic axis. 2. Optimisation of the phase error
and of the trajectory. 3. Magnetic characterisation. The last step is
used to evaluate the performance and to predict the behaviour of the
undulators after their installation in the beamline, which requires a
development of analytical models to summarise the large amount of
data. An interpolation of the data is also a possible approach but
physical models have been preferred to help the critical evaluation
of the experimental results. In an APPLE type undulator the parallel
operational mode, where two diagonal magnetic rows are shifted along
the undulator axis against the lasting two rows, controls the elliptical
polarisation states. The model detailed in [11] predicts that all elliptical
polarisation states have the same deflection parameter, K, defined in
the equation below,

K =
eB�u

2�mc
= �B, (1)
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where B is the magnetic strength, �u the undulator period length, e and
m the charge and the mass of the electron respectively and c the speed
of light. Nevertheless, the experimental results contradict the above
conjecture: in the example of Fig. 1, the measurements of K are plotted
as a function of the parallel phase shift,

�p =
2��z

�u
, (2)

where �z is the difference of the position along the undulator axis
of two diagonal rows with respect to the other two, see Fig. 2. For
convenience’s sake, the peak observed in circular polarisation is defined
as:

�KC = KC − (KLH +KLV)∕2, (3)

where KC,LH,LV are the K in Circular, Linear Horizontal and Linear Ver-
tical polarisation states respectively. Besides, the consistent behaviour
of the first ten APPLE X units tested up to now suggests an underlying
physical mechanism.

This is the first time that this effect is visible and documented in a
series production, probably because the large asymmetry between the
horizontal and vertical components of the magnetic field dominates in
previous APPLE (I, II or III) undulators. A similar example was reported
in [12], where a 0.3 m long fix gap Delta undulator prototype presented
a negative �KC∕K of about −0.9%.
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Fig. 1. An example of the measurements for deflection parameter K (measured and
calculated with Eq. (11)) in parallel operational mode. The linear vertical polarisation
states (LV1 and LV2), the horizontal polarisation state (LH) and the two circular, left
and right handed, polarisation states (C+ and C−) are marked for an easy identification
respectively. Three of their geometries are schematically presented in Fig. 2. The curve
in red solid line is the calculated effect of the mechanical deformation. On average
among the different modules, the deformation accounts for about a quarter of the
measured effect on KC and one tenth of the difference between KLH and KLV.

As a preliminary assessment, a simulation study of the mechanical
deformation of the undulator support structure due to the magnetic
forces has been carried out and validated against with mechanical
measurements performed directly on the magnets. The corresponding
changes on K are calculated and presented in Fig. 1 for an easy
comparison. This effect accounts for about one quarter of the measured
average peak (average of the different models) and for one tenth of the
average asymmetry between LH and LV.

Consequently, the main part of this work is focused on the pe-
culiar magnetic structure of the PSI APPLE X undulator. First, the
magnets which form the Halbach array have different remanence and
permeability: the radial units are made of a grade of Sm2Co17 material
while the axial ones are made of SmCo5. In this regard, we will refer
to this type of mixed magnetic array as zebra-type in this article.
Second, the radial magnets are produced with the so-called shaped
field technique [3,13], with which the powders are oriented towards
a target point using a non uniform magnetic field. This is different
from the regular uniform orientation of the magnetic powders during
the pressing process achieved with a uniform pulsed magnetic field.
In this application, the powders are oriented towards the centre of
the undulator axis in order to enhance the magnetic field. With this
technology, an increase of the field strength between 5% and 10% is
expected.

In the following section, the analytical model presented in [11]
is extended to the full Fourier spectrum and the associated method
to evaluate K will then be applied to different numerical models of
increasing complexity.

1. Analytical model

The magnetic field of an APPLE type undulator can be expressed
as the sum of the field generated by each row [11,14]. Limiting the
investigation to the on-axis field, this statement can be summarised
through the following equation:

B (z) =

4∑

n=1

Bn

(
z − zn

)
, (4)

where z is the spatial coordinate along the magnetic axis. Eq. (4) can
be expressed as a function of one of the four rows using the symmetries
Rn of the cross section of the APPLE undulator,

B (z) =

4∑

n=1

Rn ⋅ B1

(
z − zn

)
. (5)

The above expression has a simpler formulation in the Fourier domain
(denoted with a hat, ̂):

B̂ =

4∑

n=1

exp(i�n)Rn ⋅ B̂1 (6)

and B̂1, the on-axis magnetic field generated by one of the magnetic
row (by convention, the one of the first quadrant), can be explicitly
written as the sum of its harmonics [14]. Eq. (6) becomes:

B̂ =
∑

ℎ

4∑

n=1

exp(iℎ�n)Rn ⋅ B̂1ℎ, (7)

where the field expression of each harmonic, B̂ℎ, can be finally written
as,

B̂ℎ =

4∑

n=1

exp(iℎ�n)Rn ⋅ B̂1ℎ. (8)

The effective deflection parameter to be used in the fundamental
undulator equation [15], hereafter

� =
�u

22

(
1 +

K2

2

)
, (9)

is given by

K2 =
∑

ℎ

Kℎ ⋅K
∗
ℎ
, (10)

where

Kℎ =
�

ℎ
B̂ℎ

A demonstration of Eq. (10) for a generic APPLE geometry is pre-
sented in Appendix. This firstly provides a very general and accurate
formula used in this paper for the evaluation of K out of measure-
ments and simulations as a function of the Fourier components of the
magnetic field, both in x- and y-axes,

K = �

√√√√√∑

ℎ

(
B̂xℎ

ℎ

)2

+

(
B̂yℎ

ℎ

)2

(11)

Secondly it also provides the following prediction for the case of an
APPLE X,

K = 4�

√√√√√∑

ℎ

(
B̂ℎ

ℎ

)2

(12)

where B̂ℎ = B̂1ℎ = B̂1xℎ = B̂1yℎ represents theoretically the horizontal
or vertical magnetic strength of one array. Because of the symmetry of
an ideal APPLE X undulator, the horizontal and the vertical magnetic
field components are equal. With an opportune choice of the initial
phase, they are also real numbers. Eq. (12) predicts that the K should
be independent of the phase of the parallel shift �p and the presence
of high order harmonics slightly only changes its absolute value.

As a practical tool for the data analysis, it is convenient to estimate
K, this time only for the first harmonic (ℎ = 1) when B̂1x − B̂1y = �B,
where �B is small but not zero. This is usually the case in a real device
and in particular in the APPLE X undulators where an equivalent angle
deviation (with respect to the ideal 45◦) is estimated to be less than
a few degrees. Under the above condition, Eq. (12) can be written as
follows,

K ∼ KLH + �KLV sin
2(�p∕2), (13)
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Fig. 2. 3D model of the magnetic arrays in the parallel undulator operational mode, where three elliptical polarisation states are presented: (a) Linear Vertical (LV1), where
�p = −�. The rows are shifted with half the undulator period. (b) Circular minus (C−) with �p = −�∕2. (c) Linear Horizontal (LH) whose �p is 0. In this state, there is no shift
between the magnetic arrays.

where KLH is K in Linear Horizontal polarisation, while �KLV is its

difference with respect to K in Linear Vertical.

An example of popular K-approximation is to evaluate it directly

using the maximum value of the magnetic field profile. This is the

typical textbook approximation [15], valid under the assumption of a

perfect sinusoidal magnetic field profile. On a real undulator, which

has small but not negligible harmonics, this approximation produces

a qualitatively different trend if used to estimate the changes of K in

elliptical polarisation: it does not predict a constant value like equation

(12) but a function of �p similar to our experimental results. It is pos-

sible to produce an analytical expression of K based on the maximum

value of the magnetic field profile using the Fourier formalism. The

expression truncated for the sake of simplicity to the third harmonic

becomes:

K = 4�

√
B̂2
1
− 2B̂1B̂3 cos

2 �p + B̂2
3
, (14)

where K changes with �p and has a maximum or a minimum in circular

polarisation, depending on the sign of B̂3. Eq. (14) can be further

manipulated by assuming that b3 = B̂3∕B̂1 ≪ 1 which results in the

variation of K with respect to �p reducing to

�K ∼ b3 sin
2 �p (15)

and by analogy the equation is extended to high order corrections in a

Fourier fashion

�K ∼
∑

n>0

�n sin
2 n�p . (16)

We would like to emphasize that this is just an analogy with no

physical meaning, and it is used later as a practical tool for fitting the

experimental data. A detailed analysis of the harmonics as a function

of �p was not carried out in this preliminary work and we reserve the

possibility to propose a second manuscript in case that this study brings

further light into this effect.

By looking further into the details of the material properties (in

particular the large anisotropic properties introduced by the zebra-

type configuration), we found that it was possible to explain the

phenomenon(�K). Indeed, only numerical simulations can be used to

investigate the effect of a magnetic susceptibility larger than zero,

where the assumption of simple superposition of the magnetic fields

produced by different sources does not apply any longer.

Table 1
Magnetic material simulated in RADIA 4.31.

Magnetic material �
∥

�
⟂

Br Comment Type in zebra

– – T

Mi1 0.00 0.00 1.0 Isotropic Axial
Mi2 0.14 0.14 1.0 Isotropic Radial
Ma1 0.00 0.14 1.0 Anisotropic Radial
Ma2 0.14 0.00 1.0 Anisotropic Radial
SmCo5 0.01 0.04 0.94 – Axial
Sm2Co17 0.04 0.14 1.1 – Radial

2. Numerical models

2.1. Configurations and settings of the numerical simulation

The numerical simulations were carried out within the Wolfram
Mathematica© environment using the code RADIA 4.31. The method
used in RADIA belongs to the category of boundary Integral Meth-
ods [16,17]. Volume objects are created and material properties are ap-
plied to them. Each object can be subdivided into a number of smaller
objects for which the magnetization is estimated with an interactive
algorithm.

Two undulator geometries have been used for this numerical study:
the first one, quite popular and simple to implement, later referred to
as the cubic geometry is depicted in Fig. 3(a). The second geometry
is called the cylindrical one and is depicted in Fig. 3(b). The cubic
geometry is used to start the step-by-step investigation. The first set of
simulations was done assuming a uniform magnetisation of the building
blocks of the Halbach array, at the designed 45◦ angle. As for the
cylindrical model, on one hand, it is closer to the actual PSI APPLE
X geometry, whilst on the other hand it makes the implementation of
the shaped field more natural in the simulations. This is because the
magnetisation of each element corresponds, in good approximation, to
the orientation of the radial mesh, as shown in Fig. 3(d).

In Table 1, the material parameters used for the simulations are
listed. The two lines at the bottom correspond to commercial materials
and their susceptibilities are measured by the magnet manufacturer. In
this context they are used for a direct quantitative comparison with the
measurement results. In contrast, the first four rows of the table (M) do
not necessarily correspond to any existing materials and they are solely
designed to conduct a systematic study of the effect of the susceptibil-
ity. In order to correctly account for the properties of those magnetic
materials, the susceptibility is sorted in two types: the susceptibility

3
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Fig. 3. (a) 3D Model simulation with RADIA 4.31: Two undulator periods are presented
with cubic geometry. (b) 3D model with cylindrical geometry. (c) 2D cross section
schema of magnets in cylindrical geometry. The dashed lines represent the mesh of the
subdivision for the magnets in the simulation. The distance between the electron beam
axis (undulator central axis) and the magnet is defined as gap radius R. (d) The shaped
field technique is applied, where the magnetisation direction are not homogeneous
45◦ but varying and pointing to the beam axis.

parallel to the magnetisation axis (�∥) and the one perpendicular to
the magnetisation axis (�

⟂
). The materials with �∥ = �

⟂
in this

context are called isotropic whilst the others are called anisotropic. To
avoid ambiguity, all magnetic materials used in undulator applications
are produced by orienting their constituent powders to increase the
remnant magnetisation, or in short, the remanence (Br). This creates
a preferential magnetisation direction and thus they are all commonly
referred to as anisotropic magnets. However, in this paper, anisotropic
magnets refer to magnets with susceptibility �∥ ≠ �

⟂
.

The mesh size is an important factor to correctly untangle the effect
we are investigating. A coarse mesh is usually enough in an APPLE
undulator to catch the main effect and has both a quantitative (at a
level of 10−2) and qualitative description of the magnetic field, because
of the low magnetic susceptibility of permanent magnets. This is not
the case for undulators equipped with iron poles (like in the case of in-
vacuum undulators), because the large change of susceptibility between
permanent magnets and iron requires more degrees of freedom to solve
the Maxwell equations accurately. As the magnetic flux lines bend with
smaller radius, it requires finer meshes than for a regular APPLE type
structure. A similar effect occurs for zebra-types where a tiny but abrupt
change of susceptibility happens between two neighbouring magnets
and hence a finer mesh is required to describe this small but intriguing
stationary point in circular polarisation.

2.2. Numerical convergence study

Since the effect under investigation (�KC) is quite small (at a level
of one percent), even if not at all negligible to predict the resonance of
an undulator (Eq. (9)), a detailed study of the numerical convergence
as a function of the mesh size of subdivision in RADIA had to be carried
out.

Fig. 4. (a) 3D schema of an example with subdivision {3, 8, 2}. (b) In the case of zebra-
type structure with mixed material SmCo5(axial) and Sm2Co17(radial) at R = 3.25 mm,
the relative �KC (see Eq. (3)) compared with K0 (KLH at minimum gap radius) versus
subdivisions. Cylindrical geometry and shaped field simulation were applied. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

An example of the 3D mesh for cylindrical geometry is presented in
Fig. 4(a), where the magnet is subdivided in the three directions: r, �
and z.

In order to check the effect of mesh size, different simulations
were done by modifying the subdivisions (Ni) in one, two or in all
three directions, Fig. 4(b). When varying one or two parameters, the
remaining Ni are kept equal to one. Increasing the number of subdivi-
sions converges quickly (Ni > 5) to a reasonable stable value. Varying
the subdivision of only one or two directions also converges but to
an erroneous value. Only when all three Ni parameters are changed
simultaneously (see red line in Fig. 4(b)), does the simulation gives a
consistent solution to the problem. This study demonstrates the conver-
gence; it gives the possibility to select a trade off between the required
accuracy and computational time and highlights the great dependence
of this effect from chosen mesh. As an example, the computation time
for the subdivision {10, 10, 10} is more than 3 h for only one K point.
The results presented in Fig. 4(b) show a spread of almost a factor of 3
in the amplitude of the �KC when varying only one or two subdivision
parameters, Ni.

2.3. Simulation results and interpretation

Two sets of simulation results are presented: the cubic geometry
without shaped field in Fig. 5 and the cylindrical geometry with shaped

4
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Fig. 5. The K variation in elliptical polarisation states (parallel operational mode) is evaluated for three different row arrangements of magnets, the following colour and material
convention of the curves is kept also for Fig. 6: Red: Normal Halbach structure constructed only with the material labelled. Green: Halbach structure with the material labelled.
Blue: Zebra-type Halbach structure, where the axial magnets are built with the material labelled in red colour while the radial magnets are built with the one in green. (a) Mi1:
�∥ = 0, �

⟂
= 0; Mi2: �∥ = 0.14, �

⟂
= 0.14. (b) Mi1: �∥ = 0, �

⟂
= 0; Ma1: �∥ = 0, �

⟂
= 0.14. (c) Mi1: �∥ = 0, �

⟂
= 0; Ma2: �∥ = 0.14, �

⟂
= 0. (d) SmCo5: �∥ = 0.01, �

⟂
= 0.04; Sm2Co17:

�∥ = 0.04, �
⟂
= 0.14. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. The simulations presented in Fig. 5 are now repeated for the cylindrical geometry with shaped field. The other parameters remain the same. As a reminder: Blue: Zebra-type
Halbach structure, where the axial magnets are built with the material labelled in red colour while the radial magnets are built with the one in green. (a) Mi1: �∥ = 0, �

⟂
= 0;

Mi2: �∥ = 0.14, �
⟂
= 0.14. (b) Mi1: �∥ = 0, �

⟂
= 0; Ma1: �∥ = 0, �

⟂
= 0.14. (c) Mi1: �∥ = 0, �

⟂
= 0; Ma2: �∥ = 0.14, �

⟂
= 0. (d) SmCo5: �∥ = 0.01, �

⟂
= 0.04; Sm2Co17: �∥ = 0.04,

�
⟂
= 0.14. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

field in Fig. 6. In the analysis, only the relative variation of the
deflection parameter K is presented in the following form:

�K∕K0 =
K(�p) −K(0)

K0

where K0 is the K at minimum radius R = 3.25 mm in Linear Horizontal
polarisation. K(�p) is the actual K for a given parallel shift. In this first
numerical investigation, the K(�p) is estimated at the minimum radius
as well.

2.3.1. Cubic geometry without shaped field

The results of these first numerical calculations are presented in
Fig. 5. The curves of isotropic materials Mi1 (red) and the Mi2 (green)
of Fig. 5(a) are for any practical purpose identically flat, even if the
susceptibility of the latter one is not zero. In contrast, the zebra-type
(blue) which is composed of axial magnets with Mi1 and radial magnets
with Mi2 produces a local peak in circular polarisation (C) of about
1.2% relative to Linear Horizontal (or Vertical) polarisation state.

In Fig. 5(b), the green curve is the result of a Halbach structure
with anisotropic material Ma1, where a local minimum is now well
pronounced in circular polarisation. This was observed for instance in
the previously cited Delta prototype [12]. The zebra-type made with
radial magnets Ma1 and axial magnets Mi1, generates a local maximum.
Although it is less pronounced than in Fig. 5(a), the amplitude of this

local maximum of the zebra-type structure (blue) is larger than the one
of the local minimum in the case of the Halbach array with Ma1 (green).

In Fig. 5(c), the green curve is calculated with the other anisotropic
magnets Ma2, with which a local but small maximum is generated,
whereas the zebra-type presents an even smaller local maximum.

Also in the case of the simulated materials SmCo5 and Sm2Co17,
the K variation presents a pronounced local maximum (blue curve in
Fig. 5(d)).

The above simulation results confirm that the non-linearities (� > 0)
do not produce alone the observed effect in the APPLE X undulator
(Mi2 in Fig. 5(a)). This example shows clearly that the key ingredient
which generates the local K maximum is not the presence of high
order harmonics or the larger susceptibility, but the inhomogeneity of
the magnetic structure, in this example due to the zebra-type Halbach
arrangement.

Nevertheless, the effect simulated using our best knowledge of the
material parameters, does not match alone quantitatively the experi-
mental observations.

2.3.2. Cylindrical geometry without and with shaped field
The qualitative agreement of the above results instigates the pos-

sibility of a more quantitative prediction of the experiments if more
details are taken into account. Firstly, we implement cylindrical mag-
nets in the simulations which fit better the designed geometry of the

5
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Fig. 7. Comparison of the zebra Halbach simulations using the same material setting
(axial: SmCo5, radial: Sm2Co17) but using three different geometries. In order to
compare directly the curve shape of the simulation results with the measurement points
(grey markers), one set of simulation is multiplied with a coefficient in red solid line.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

PSI APPLE X magnets. Secondly, we implement the shaped field of
the radial magnets, as sketched in Fig. 3(d). The cylindrical geometry
without shaped field confirms the same qualitative, previously observed
behaviour by the cubic geometry with negligible quantitative differ-
ences. Furthermore, the quantitative differences due to the geometry
change (from cubic to cylindrical) were not large enough to require a
new set of plots. Therefore, only the complete set of simulations with
shaped field magnets is reported.

The details of the simulation using the cylindrical geometry with
shaped field are presented in Fig. 6. The first evidence, comparing to
the non shaped field cases, is the reduction of the anisotropy effect. The
single anisotropic material (green curves) shows an almost negligible
peak (either a maximum or a minimum) in Fig. 6(c). Intuitively, the
shaped field spoils the concept of parallel and perpendicular suscep-
tibility with respect to the Cartesian reference frame and it is not
surprising that this minimises its impact.

However, after using more realistic simulation parameters the dis-
crepancy between the simulation and the measurements of �KC in-
creased instead of decreasing. In Fig. 7, this effect is presented for three
zebra-types: cubic, cylindrical without shaped field and cylindrical with
shaped field.

2.3.3. Susceptibility study
The different amplitudes of the curves in Figs. 5 and 6 are strongly

correlated to the susceptibility values of the magnetic materials in
Table 1. This indicates a simple relation between �KC and the suscep-
tibility. Therefore, a systematic study was made and it is presented in
Fig. 8. In Fig. 8(a) a zebra-type is analysed and the peak is plotted as a
function of the difference in susceptibility, �� , between the radial and
the axial magnets. The three curves respectively represent the effect
of the perpendicular susceptibility difference, ��

⟂
, the parallel suscep-

tibility difference, ��∥, and both together, ��
⟂
&��∥. The dominant

effect for a zebra-type undulator is ��
⟂
, while the effect of the parallel

susceptibility difference is negligible. The results for a regular Halbach
array made of one magnetic material are presented in Fig. 8(b). When
the material is isotropic �

⟂
= �∥, there is no peak as already observed in

the few examples above. In contrast, the peak decreases at increasing
�
⟂
(when �∥ = 0) while it increases at increasing �∥ (when �

⟂
= 0).

In the range explored, the dependence of �KC with respect to the
susceptibility is, for any practical purpose, linear and its slope can be
used to predict the effect without time consuming simulations.

2.3.4. Final remark on the simulation results
A detailed analysis of the elliptical polarisation states of an APPLE X

undulator has been carried out with the numerical code RADIA. Before

Fig. 8. The relative �KC with respect to KLH at minimum gap as a function of �� or
� . Cylindrical geometry and shaped field are applied.

concluding this section, it is mandatory to look once at the absolute
value of K, see Fig. 9 for an example of a zebra-type undulator. As
expected, the field strength in an undulator decreases with the rise of
susceptibility, so the peak observed in the zebra-type is due to a lower
decrease in field strength in circular polarisation which is less than in
linear polarisations. In conclusion, �KC is not an increase of the field at
an increasing susceptibility but only a more moderate decrease of the
field with respect to the other elliptical polarisation states.

3. Magnetic measurements and data analysis

During the series production, all APPLE X undulators are magnet-
ically tested in the PSI laboratories. As shown in Fig. 10, the newly
developed electronics [18–20] for the read-out of the SENIS Hall S-
type probe is used and integrated into a SAFALI bench [21,22]. Among
a set of more than a thousand magnetic field profile acquisitions per
undulator module, a subset is dedicated to the characterisation of the
elliptical polarisation. A full shift of �p is systematically performed at
several gaps: from LV1, C−, LH, C+ to LV2 (see Fig. 11(a)) with a total
of 17 recorded K. Presently, five APPLE X units have been measured
(including the prototype) and two main parameters have been extracted
using the following procedure and by means of the equations described
below.

First, the smooth transition between LH and LV is calculated with
Eq. (13), using the measured value of KLH and KLV1&2. This is then
subtracted as a background, see Fig. 11(b). The residual values (�K)
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Fig. 9. The deflection parameter K as a function of the phase shift in parallel operational
mode for a series of ��

⟂
in zebra structure, where �� is the difference between the �

of radial magnets with respect to axial magnets.

Fig. 10. A photo of the APPLE X cross section taken during the magnetic measurements
at PSI laboratories. On the right hand side the four magnetic rows and on the left side
the magnetic measurement bench guided by the two red laser spots, in a close loop
SAFALI system. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

are fitted with Eq. (16) truncated to the first two odd terms:

�K = �1 sin
2 �p + �3 sin

2 3�p. (17)

The amplitude of the peak in circular polarisation is evaluated as �KC =

�1 + �3. Eq. (17) describes changes of K across a full parallel shift with
a relative accuracy well below 10−3 as shown in Fig. 11(d).

4. Systematic comparison between measurements and simula-
tions

After presenting the data analysis method, the measurements are
compared to the simulations. Fig. 12 shows �KC versus gap for the first
ten APPLE X modules, where the peaks in C+ and C− polarisation states
are reported for comparison. The results of the most refined simulations
are shown in a solid red line and are identical in both polarisation
states as is expected by perfect symmetry. The effect of the mechanical
deformation is presented in a solid blue line. Combining those two
factors, namely the susceptibility and deformation, in the dashed red
line, gives a better prediction of the experimental results. Moreover,
the different decays of the two effects as a function of the radius, well
describes the tails of the data, more exponential at small radii and more
linear at larger ones.

Fig. 11. The fitting procedures and performance of the example at minimum gap
R = 3.25 mm: (a) With the fitting model using the Eq. (13), the asymmetry between
the transition from LH to LV is subtracted. (b) After the subtraction, we fit the residual
part using the model of Eq. (17). (c) Combining the models in (a) and (b), we obtain
the final model for the measurements. (d) Relative error of the model in (c), compared
with measurements data.
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Fig. 12. The measurements of the �KC as a function of the Gap Radius on the first
ten APPLE X undulator units of the Athos beamline are presented together with the
results of the simulations of a zebra-type cylindrical geometry combined with the effect
of the mechanical deformation (red dashed line). The separate contributions of the
susceptibility and deformation are presented respectively in the red and blue solid
lines. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

The experimental results show a spread among different undula-

tor units and a small systematic difference between the two circular

polarisation states: the peak in the C+ is always lower than in C−.

There is still a discrepancy between measurements and simulations.

The latter still underestimate the real observed phenomenon of local K

variations, �KC. We have not identified additional effects which could

explain it and we assume that a better knowledge of the magnetic and

mechanical properties could explain the remaining gap between simu-

lation results and measurement data. The consistency among different

undulator modules is a clear sign that this effect is dominated by the

design parameters (magnets and mechanical support frame), more than

by the details of the assembling process.

In Fig. 13, the difference, �KLV, between the K in linear horizontal

(LH) and in vertical polarisations (both extremes of vertical polarisa-

tion, LV1 and LV2), are shown for the ten undulator units. The total

spread among them is more than a factor of two (while KLV1 ≈ KLV2).

This behaviour is clearly related to the specific details of each undulator

assembly and cannot be predicted but only kept under control via a

quality process. This difference can also be expressed as an equivalent

magnetisation angle deviation from 45◦, in this case always to one side

(bend to the horizontal plane) and lower than 0.8◦. The equivalent

angle systematically decreases with increasing gap.

Fig. 13. The difference of K between LH and LV1 polarisation mode(left) and between
LH and LV2 polarisation mode(right).

5. Conclusions

Our studies show that the details of the susceptibility of the magnets
and the mechanical properties of the support frame structure of the PSI
APPLE X undulators have to be carefully taken into account to correctly
interpret and validate the experimental results. Understanding the ze-
bra-type structure (alternating materials with different susceptibility in
a Halbach structure) is essential to explain the presence of a local K-
peak in the elliptical polarisation states. The more difference of the
perpendicular susceptibility (�

⟂
) value between the axial magnets and

radial magnets, the larger is this effect.
The complexity of these types of structures cannot be easily untan-

gled without numerical simulations. However, this study gives some
simple instruments and ideas to interpret the results. This last aspect is
crucial, especially when measuring complex undulator structures like
those of the APPLE type. The presence of strong and highly inho-
mogeneous magnetic fields, like in circular polarisation, can generate
spurious signals in a Hall probe due to the non-negligible planar
effect [23]. Our magnetic bench is designed to be insensitive to this
effect thanks to the spinning current technique. Nevertheless, these
results, without a clear physical interpretation, may raise questions
about the measurement quality and its reliability. Thus, we consider
understanding the experimental results to be of paramount importance,
even if only qualitatively, before trusting the output of our readout
electronics blindly.

Although we did not achieve a quantitatively perfect agreement
(within the spread of the production) between the simulations and the
measurements, Eq. (17) fits accurately the data and it is now used to

8



X. Liang, M. Calvi, M.-E. Couprie et al. Nuclear Inst. and Methods in Physics Research, A 987 (2021) 164741

feed the control system of the SwissFEL beamline in order to predict
the deflection parameter when operated in elliptical polarisation state.

More generally, the analysis tools presented in this article are
effectively used to steer the series production of complex APPLE undu-
lators. They give simple parameters to verify if the production proceeds
smoothly and in a reproducible fashion, and to detect if sudden and
unwanted changes occur. This is true for the magnets, for their as-
sembly and for the large mechanical support which holds their large
magnetic forces and moves them precisely to change the magnetic
configuration.
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Appendix

A.1. Calculation of the deflection parameter taking into account the higher
harmonics

The demonstration of the calculation for the undulator deflection
parameter K from the magnetic field B [22] is presented in this
appendix.

To describe the magnetic field we use the coordinate system of the
electron beam trajectory (undulator axis) in accelerators: it composes
a transverse plane (x, y) along with its longitudinal position z (see
Fig. 2(a)). The horizontal and vertical components of the magnetic field
are named respectively as Bx and By. We are starting from the equation
of motion for relativistic electrons in a magnetic field in dependence of
z:

ẍ(z) =
e

mc
By(z) (A.1)

ÿ(z) =
e

mc
Bx(z). (A.2)

The periodical magnetic fields are not purely sinusoidally dis-
tributed along the undulator axis. The equation describing the magnetic

field can be expressed in a Fourier series. The different harmonic orders
of the series are noted as ℎ:

By(z) =
∑

ℎ

Byℎ cos

(
2�ℎ

�u
z

)
(A.3)

Bx(z) =
∑

ℎ

Bxℎ cos

(
2�ℎ

�u
z + �

)
. (A.4)

The constant � in formula (A.4) represents the phase difference
which can exist between these components. By inserting (A.3) into
(A.1) and integrating (A.1) over z, we obtain:

ẋ(z) =
�



∑

ℎ

byℎ sin

(
2�ℎ

�u
z

)
, (A.5)

where � and byℎ are defined as: � =
e�u

2�mc
and byℎ =

Byℎ

ℎ
. Since � is

a constant, we can do the same integration for the vertical direction
combined with horizontal magnetic component:

ẏ(z) =
�



∑

ℎ

bxℎ sin

(
2�ℎ

�u
z + �

)
(A.6)

In our case for ultra-relativistic electrons, we apply an important
approximation: The horizontal normalised speed �x is evaluated as
equal to ẋ:

ẋ(z) =
dx

dz
≈

1

c

dx

dt
= �x (A.7)

Though we are actually interested in the longitudinal component:

�2
z
= �2 −

(
�2
x
+ �2

y

)
(A.8)

And since �x and �y ≪ � (or �z), we are able to use the equivalent

infinitesimal: (1 + x)
1
2 ∼ 1 +

x

2
, Eq. (A.8) is approximated to be:

�z = �

√

1 −
�2
x
+ �2

y

�2
≈ �

(
1 −

�2
x
+ �2

y

2�2

)
(A.9)

Now let us simplify the expression of �2, first for x direction.
Extending equation (A.5) with (A.7), we get:

�2
x
=

�2

2

∑

ℎ

∑

ℎ′

byℎbyℎ′ sin

(
2�ℎ

�u
z

)
sin

(
2�ℎ′

�u
z

)
(A.10)

In one undulator period �u, the integral sine products from different
harmonics equal to zero:

⟨sin(ax) sin(bx)⟩ = 0, if |a| ≠ |b| and a, b ∈ Z

As a consequence, Eq. (A.10) can be integrated and simplified as:

⟨�2
x
⟩ = 1

�u ∫
�u

0

�2

2

∑

ℎ

b2
yℎ

sin2
(
2�ℎ

�u
z

)
dz

=
�2

22

∑

ℎ

b2
yℎ

(A.11)

Considering that in one period �u, the constant phase difference �

does not change the integration, we can calculate for y direction in the
same way and obtain ⟨�2

y
⟩ from Eq. (A.6):

⟨�2
y
⟩ = 1

�u ∫
�u

0

�2

2

∑

ℎ

b2
xℎ

sin2
(
2�ℎ

�u
z + �

)
dz

=
�2

22

∑

ℎ

b2
xℎ

(A.12)

Now we can extend the expression of ⟨�z⟩ by combining Eqs. (A.11)
and (A.12) within Eq. (A.9):

⟨�z⟩ = �

(
1 −

⟨�2
x
⟩ + ⟨�2

y
⟩

2�2

)

= �

(
1 −

�2

4�22

∑

ℎ

(
b2
yℎ

+ b2
xℎ

))
(A.13)
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Applying again the approximation with equivalent infinitesimal:

� =
√

1 −
1

2
≈ 1 −

1

22
, Eq. (A.13) becomes:

⟨�z⟩ = 1 −
1

22
−

�2

4�2

∑

ℎ

(
b2
yℎ

+ b2
xℎ

)
(A.14)

Now we introduce the resonance condition [15]:

p�r =
�u

⟨�z⟩
− �u = �u

(
⟨�z⟩−1 − 1

)

where p is a positive integer, � the radiation wavelength and �u the
undulator period. Combining with Eq. (A.14), we obtain:

p�r = �u

(
1

22
+

�2

4�2

∑

ℎ

(
b2
yℎ

+ b2
xℎ

))
, p ∈ N∗ (A.15)

The undulator associated deflection parameter is defined as K =
e�u

2�mc
B = �B. In our case, we can define an effective value of K to get

the relation between � and B, which is useful for another purpose.

K = �

√∑

ℎ

(
b2
yℎ

+ b2
xℎ

)
(A.16)

where bℎ = (bxℎ, byℎ) = Bℎ∕ℎ.

A.2. Prediction of the deflection parameter of APPLE X in elliptical polari-
sation

We are able to do the calculation directly in the complex domain.
With a definition in form of vector:

K̂ℎ = �
B̂ℎ

ℎ
= �b̂ℎ

The Eq. (A.16) changes as:

K2 =
∑

ℎ

K̂ℎ ⋅ K̂
∗

ℎ
(A.17)

The change from b =
(bx
by

)
in z (spatial) domain to b̂ =

(b̂x
b̂y

)
in !

(complex) domain:

b2
x
+ b2

y
= b

T
⋅ b = b̂x ⋅ b̂

∗
x
+ b̂y ⋅ b̂

∗
y
= b̂

T
⋅ b̂

∗

Combining Eqs. (8) and (A.17), we obtain the equation of K:

K = �

√√√√√∑

ℎ

(
4∑

n=1

eiℎ'nRn ⋅ b̂1ℎ

)T

⋅

(
4∑

n=1

eiℎ'nRn ⋅ b̂1ℎ

)∗

(A.18)

The Z matrix is introduced as a combination of the rotation matrix
and the longitudinal shifts, whose definition is:

Zxℎ = eiℎ'1 − eiℎ'2 + eiℎ'3 − eiℎ'4

Zyℎ = eiℎ'1 + eiℎ'2 + eiℎ'3 + eiℎ'4

Zℎ =

[
Zxℎ 0

0 Zyℎ

]

Then the Eq. (A.18) becomes:

K = �

√∑

ℎ

(
Zℎ ⋅ b̂1ℎ

)T
⋅

(
Zℎ ⋅ b̂1ℎ

)∗
(A.19)

To change the elliptical polarisation state, we shift relatively arrays
No.1 and No.3 in the same direction. The relative phase shift differences
of the arrays vary thus in this way:

'1 = �p, '2 = 0, '3 = �p, '4 = 0

With the Zℎ matrix, the number of the array does not play a role
anymore, we can note b1ℎ as bℎ. We obtain then K in parallel operational
mode:

K(�p) = 2
√
2�

√∑

ℎ

(b2
xℎ

+ b2
yℎ
) − cos(ℎ�p)(b

2
xℎ

− b2
yℎ
) (A.20)

Because of the symmetry of the APPLE X undulators, the horizontal and
the vertical magnetic field components are equal: B̂ℎ = B̂1ℎ = B̂1xℎ =

B̂1yℎ, the Eq. (A.20) becomes:

K = 4�

√√√√√∑

ℎ

(
B̂ℎ

ℎ

)2

. (A.21)
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