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ABSTRACT

Galaxies are arranged in interconnected walls and filaments forming a cosmic web encompassing huge, nearly
empty, regions between the structures. Many statistical methods have been proposed in the past in order to
describe the galaxy distribution and discriminate the different cosmological models. We present in this paper
preliminary results relative to the use of new statistical tools using the 3D á trous algorithm, the 3D ridgelet
transform and the 3D beamlet transform. We show that such multiscale methods produce a new way to measure
in a coherent and statistically reliable way the degree of clustering, filamentarity, sheetedness, and voidedness
of a dataset.
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1. INTRODUCTION

Galaxies are not uniformly distributed throughout the universe. Voids, filaments, clusters, and walls of galaxies
can be observed, and their distribution constraints our cosmological theories. Therefore we need statistical
methods to compare the catalogs of galaxies to theoretical models and simulations.

The standard approach for testing models is to define a point process which can be characterized by statistical
methods. This could be the distribution of galaxies of a specific type in deep surveys or clusters of galaxies. In
order to compare models of structure formation, the different distribution of dark matter particles in N-body
simulations could be tested as well.

The two-point correlation function ξ(r) has been the primary tool for quantifying large-scale cosmic struc-
ture.1 Assuming that the galaxy distribution in the Universe is a realization of a stationary and isotropic
random process, the two-point correlation function can be defined from the probability δP of finding an ob-
ject within a volume element δV at distance r from a randomly chosen object or position inside the volume:
δP = n(1+ξ(r))δV , where n is the mean density of objects. The ξ(r) function measures the clustering properties
of objects in a given volume. It is zero for a uniform random distribution, positive (respectively, negative) for
a more (respectively, less) clustered distribution. For a hierarchical gravitational clustering or fractal process,
1+ ξ(r) has a power-law behavior with exponent D2 − 3. Since ξ(r) ∼ r−γ for the observed galaxy distribution,
the correlation dimension for the range where ξ(r) ≫ 1 is D2 ≃ 3 − γ. The two-point correlation function can
been generalized to the N-point correlation function.2, 3 Other statistical measures to characterize the spatial
distribution of galaxies have also been developed,4 such as multifractals,5 the Minkowski functionals6, 7 or the

J function8, 9 which is defined as the ratio J(r) = 1−G(r)
1−F (r) , where F is the distribution function of the distance

r of an arbitrary point in R3 to the nearest object, and G is the distribution function of the distance r of an
object to the nearest object. Wavelets have also been used for analyzing the projected 2D or the 3D galaxy
distribution.10–14

Other multiscale methods have recently emerged, the beamlet transform15, 16 and the ridgelet transform,17

which allows us to better represent data containing respectively filaments and sheets, while wavelets represent
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well isotropic features (i.e. cluster in 3D). As each of these three transforms represents perfectly one kind of
feature, all of them are useful and should be used to describe a given catalog.

Section 2, 3 and 4 describes respectively the 3D wavelet transform, the 3D ridgelet transform and the 3D
beamlet transform, and numerical experiments are given in section 4.

2. THE 3D WAVELET TRANSFORM

The à trous Isotropic Wavelet Transform

The ‘a trous algoritm‘18 of a cube c produces, at each scale j, a set of zero-mean coefficient values {wj}. This
set {wj} has the same number of pixels as the input cube (this wavelet transform is redundant). Using a wavelet
ψ defined as the difference between the scaling functions of two successive scales,
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the original cube c = c0 , can be expressed as the sum of all the wavelet scales {wj} and the last smoothed
array cJ

c0,x,y,z = cJ,x,y,z +

J∑
j=1

wj,x,y,z , (2)

The set w = {w1, w2, ..., wJ , cJ} represents the wavelet transform of the data. if we denote W the wavelet
transform operator and N the pixel number of c, the wavelet transform w (w = Wc) has (J + 1)N pixels
(redundancy factor of J + 1). The scaling function φ is generally chosen as a spline of degree 3 and the 3D
implementation is based on three 1D sets of (separable) convolutions. Like the scaling function φ, the wavelet
function ψ is isotropic (point symmetric). More details can be found in.18, 19

For each a > 0, b1, b2, b3 ∈ R3 , the wavelet is defined by

ψa,b1,b2,b3 : R3 → R

ψa,b1,b2,b3(x1, x2, x3) = a−1/2 · ψ(x1−b1
a , x2−b2

a , x3−b3
a )

Given a function f ∈ L2(R3), we define its wavelet coefficients by:

Wf : R4 → R

Wf (a, b1, b2, b3) =
∫

ψa,b1,b2,b3(x)f(x)dx.

Figure 1 shows an example of 3D wavelet function.

3. THE 3D RIDGELET TRANSFORM

The two-dimensional continuous ridgelet transform of a function f ∈ L2(R2) is defined as follows.17

We first select a smooth function ψ ∈ L2(R), we assume that ψ satisfies the admissibility condition

∫
|ψ̂(ξ)|2/|ξ| dξ < ∞, (3)

which holds if ψ has a sufficient decay and a vanishing mean
∫

ψ(t)dt = 0 (ψ can be normalized so that it has

unit energy 1/(2π)
∫
|ψ̂(ξ)|2dξ = 1).

For each a > 0, b ∈ R and θ1 ∈ [0, 2π[, we define the ridgelet by

ψa,b,θ1
: R2 → R

ψa,b,θ1
(x1, x2) = a−1/2 · ψ((x1 cos θ1 + x2 sin θ1 − b)/a);

Given a function f ∈ L2(R2), we define its ridgelet coefficients by:

Rf : R3 → R

Rf (a, b, θ1) =
∫

ψa,b,θ1
(x)f(x)dx.
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Figure 1. Example of wavelet function.
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Figure 2. Definition of angle1 θ1 and θ2 in R2 and R3

It has been shown17 that the ridgelet transform is precisely the application of a 1-dimensional wavelet
transform to the slices of the Radon transform (where the angular variable θ1 is constant). This method is
therefore optimal to detect lines of the size of the image (the integration increase as the length of the line).
More details on the implementation of the digital ridgelet transform can be found in.20

Figure 3 (left) shows an example ridgelet function. This function is constant along lines x1 cos θ +x2 sin θ =
const. Transverse to these ridges it is a wavelet (see figure 3 (right).

From 2D to 3D

The three-dimensional continuous ridgelet transform of a function f ∈ L2(R3) is given by:

Rf : R4 → R

Rf (a, b, θ1, θ2) =
∫

ψa,b,θ1,θ2
(x)f(x)dx.

where a > 0, b ∈ R , θ1 ∈ [0, 2π[ and θ2 ∈ [0, π[.



Figure 3. Example of 2D ridgelet function.

The ridgelet function is defined by:

ψa,b,θ1,θ2
: R3 → R

ψa,b,θ1,θ2
(x1, x2, x3) = a−1/2 · ψ((x1 cos θ1 cos θ2 + x2 sin θ1 cos θ2 + x3 sin θ2 − b)/a);

Figure 4. Example of ridgelet function.

Figure 4 shows an example of ridgelet function. It is a wavelet function in the direction defined by the line
(θ1, theta2), and it is constant along the orthogonal plane to this line.

As in the 2D case, the 3D ridgelet transform can be built by extracting lines in the Fourier domain. Let
c(i1, i2, i3) a cube of size (N,N,N), the algorithm consists in the following steps:

1. 3D-FFT. Compute ĉ(k1, k2, k3), the three-dimensional FFT of the cube c(i1, i2, i3).
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Figure 5. 3D ridgelet transform flowgraph.

2. Cartesian to Spherical Conversion. Using an interpolation scheme, substitute the sampled values of ĉ
obtained on the cartesian coordinate system (k1, k2, k3) with sampled values of on a spherical coordinate
system (θ1, θ2, ρ).

3. Extract lines. Extract the 3N 2 lines (size N) passing throught the origin and the boundary of ĉ.

4. 1D-IFFT. Compute the one-dimensional inverse FFT on each line.

5. 1D-WT. Compute the one-dimensional wavelet transform on each line.

Figure 5 the 3D ridgelet transform flowgraph. The 3D ridgelet transform allows us to detect sheets in a cube.

Local 3D Ridgelet Transform

The ridgelet transform is optimal to find sheets of the size of the cube. To detect smaller sheets, a partitioning
must be introduced.21 The cube c is decomposed into blocks of lower side-length b so that for a N ∗ N ∗ N
cube, we count N/b blocks in each direction. After the block partitioning, The detection is therefore optimal for
sheets of size b×b and of thickness aj , aj corresponding to the different dyadic scales used in the transformation.

4. THE 3D BEAMLET TRANSFORM

Let ψ ∈ L2(R2) a smooth function satisfying the admissibility condition (a 2D wavelet function), the three-
dimensional continuous beamlet transform of a function f ∈ L2(R3)is given by:

Bf : R5 → R

Bf (a, b1, b2, θ1, θ2) =
∫

ψa,b,θ1,θ2
(x)f(x)dx.

where a > 0, b1, b2 ∈ R ,θ1 ∈ [0, 2π[ and θ2 ∈ [0, π[.
The beamlet function is defined by:

ψa,b1,b2,θ1,θ2
: R3 → R

ψa,b1,b2,θ1,θ2
(x1, x2, x3) = a−1/2 · ψ( (−x1 sin θ1 + x2 cos θ1 + b1)/a,

(x1 cos θ1 cos θ2 + x2 sin θ1 cos θ2 − x3 sin θ2 + b2)/a);
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Figure 6. Example of beamlet function.

Figure 4 shows an example of beamlet function. It is constant along lines of direction (θ1, θ2), and a 2D
wavelet function along plane orthogonal to this direction.

The 3D beamlet transform can be built using the ”Generalized projection-slice theorem”.22 Let

• f(x) an n dimensional function,

• Radmf its m-dimensional partial radon transform along the first m cardinal directions, m < n, Radmf is
a function of (p, µm;xm+1, ..., xn), µm a unit directional vector in Radm (note that for a given projection
angle, the m dimensional partial radon transform of f(x) has (n−m) untransformated spatial dimension
and a (n-m+1) dimensional projection profile),

• {Ff}(k) its Fourier transform (x and k are conjugate variable pairs of F),

The Fourier transform of the m dimensional partial radom transform Rmf is related to the Fourier transform
of f (Ff) by the following relation

{Fn−m+1Radmf}(k, km+1, ..., kn) = {Ff}(kµm, km+1, ..., kn) (4)

Let c(i1, i2, i3) a cube of size (N,N,N), the Beamlet algorithm consists in the following steps:

1. 3D-FFT. Compute ĉ(k1, k2, k3), the three-dimensional FFT of the cube c(i1, i2, i3).

2. Cartesian to Spherical Conversion. Using an interpolation scheme, substitute the sampled values of ĉ
obtained on the cartesian coordinate system (k1, k2, k3) with sampled values of on a spherical coordinate
system (θ1, θ2, ρ).

3. Extract planes. Extract the 3N 2 planes (of size N ×N) passing throught the origin (each line used in the
3D ridgelet transform defines set of orthogonal planes, we take the one which include the origin).
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Figure 7. 3D beamlet transform flowgraph.

4. 2D-IFFT. Compute the two-dimensional inverse FFT on each plane.

5. 2D-WT. Compute the two-dimensional wavelet transform on each plane.

Figure 7 the 3D beamlet transform flowgraph. The 3D beamlet transform allows us to detect filament in a cube.
The beamlet transform algorithm presented in this section differs from the one presented in,23 and relation
between both algorithms is given in.16

5. EXPERIMENTS

5.1. Experiment 1

We have simulated three data set containing respectively a cluster, a plane and a line. On each data set, Poisson
noise have been added with eight different background levels. Then we have applied the three transforms on the
24 simulated data set. The coefficients distribution related to each transformation is normalized using twenty
realizations of a 3D flat distribution with a Poisson noise and which have the same number of counts as in the
data.

Figure 8 shows, from top to bottom, the maximum value of the normalized distribution versus the noise level
for our three simulated data set. As expected, wavelets, ridgelets and beamlets are respectively the best for
clusters, sheets and lines detection. It must also be underlined that a feature can be detected with a very high
signal-to-noise ratio in a given basis, and and not detected in another basis. For example, the wall is detected
at more than 60σ by the ridgelet transform, and less than 5σ by the wavelet transform. The line is detected
almost at 10σ by the beamlet transform, and is under a 3σ detection level using wavelets. These results shows
the importance of using several transforms for an optimal detection of all features contained in a data set.

5.2. Experiment 2

We use here two simulated data sets to illustrate the discriminative power of the multiscale methods. The
first one is a simulation from stochastic geometry. It is based on a Voronoi model. The second one is a mock
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Figure 8. Simulation of cubes containing a cluster (top), a plane (middle) and a line (bottom).

catalog of the galaxy distribution drawn from a Λ-CDM N-body cosmological model.24 Both processes have
very similar two-point correlation functions at small scales, although they look quite different and have been
generated following completely different algorithms.

• the first comes from a Voronoi simulation: We locate a point in each of the vertices of a Voronoi tessellation
of 1.500 cells defined by 1500 nuclei distributed following a binomial process. There are 10085 vertices
lying within a box of 141.4 h−1 Mpc side.

• the second point pattern represents the galaxy positions extracted from a cosmological Λ-CDM N-body
simulation. The simulation has been carried out by the Virgo consortium and related groups (see
http://arXiv/org/abs/astro-ph/0007362). The simulation is a low-density (Ω = 0.3) model with
cosmological constant Λ = 0.7. It is, therefore, the closer set to the real galaxy distribution.24 There
are 15445 galaxies within a box with side 141.3 h−1 Mpc. Galaxies in this catalog have stellar masses
exceeding 2 × 1010 M⊙.



Figure 9. Simulated data sets. Top, the Voronoi vertices point pattern (left) and the galaxies of the GIF Λ-CDM
N-body simulation (right). The bottom panels show one 10 h

−1 width slice of the each data set.

Figure 9 shows the two simulated data set, and Figure 10 shows the two-point correlation function curve
for the two point processes. The two point fields are different, but as it can be seen in Fig. 10, both have very
similar two-point correlation functions in a huge range of scales (2 decades).

We have applied the three transforms to each data set, and we have calculated the skewness vector S =
(sj

w, sj
r, s

j
b) and the kurtosis vector K = (kj

w, kj
r, k

j
b) at each scale j. sj

w, sj
r, s

j
b are respectively the skewness at

scale j of the wavelet coefficients, the ridgelet coefficients and the beamlet coefficients. kj
w, kj

r , k
j
b are respectively

the kurtosis at scale j of the wavelet coefficients, the ridgelet coefficients and the beamlet coefficients. Figure 11
shows the kurtosis and the skewness vectors of the two data set at the two first scales. On the contrary to the
two-point correlation function, this analysis shows strong differences between the two data set, particularly on
the wavelet axis, which indicates that the second data contains more, or with a higher density, clusters than
the first one.
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