
Analysis of the Generalized Clock Buffer Replacement Scheme for

Database Transaction Processing

Victor F. Nicola, Asit Dan and Daniel M. Dias

IBM Research Division, T. J. Watson Research

Yorktown Heights, NY 10598

Abstract

The CLOCK algorithm is a popular buffer replacement
algorithm becauseof its simplicity and its ability to approx-

imate the performance of the Least Recently Used (LRU) re-
placement policy. The Generalized Clock (GCLOCK) buffer

replacement policy usesa circular buffer and a weight asso-

ciated with each page brought in buffer to decide on which

pageto replace. We develop an approximate analysis for the

GCLOCK policy under the Independent Reference Model
(IRM) that applies to many database transaction process-

ing workloads. We validate the analysis for various work-
loads with data accessskew. Comparison with simulations

showsthat in all casesexamined the error is extremely small
(less than 1%). To show the usefulnessof the model we

apply it to a Transaction Processing Council benchmark A
(TPC-A) like workload. If knowledge of the different data

partitions in this workload is assumed, the analysis shows

that, wit h appropriate choice of weights, the performance

of the GCLOCK algorithm can be better than the LRU
policy. Performance very close to that for optimal (static)

buffer allocation can be achieved by assigning sufficiently

high weights, and can be implemented with a reasonably
low overhead. Finally, we outline how the model can be ex-
tended to capture the effect of page invalidation in a multi-

node system.

1 Introduction

The performance of database transaction processing

systems is very sensitive to the database buffer hit prob-

ability, and therefore to the buffer replacement scheme.

Improving the buffer hit probability reduces the aver-

age disk 1/0 per transaction, and thus improves the

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of ths Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

1992 ACM SIG METRICS & PERFORMANCE ‘92-6 /92/R.l., USA

01992 ACM 0-89791 -508 -91921000510035$1 .50

transaction response

Center

time as well as the throughput.

There are a large number of buffer replacement policies

in the literature (see [11] for a good survey). Two pop-

ular policies that have good performance over a wide

range of workloads are the Least Recently Used (LRU)

and the CLOCK algorithms [5, 17]. In the General-

ized CLOCK (GCLOCK) algorithm [17], a counter is

associated with each page, whose initial value (weight)

is assigned when the page is brought into the buffer.

In GCLOCK, the weights may be different for differ-

ent data types. On a page miss, a circulating clock

pointer sweeps through the buffer pages decrementing

their counters until a page with a count of zero is found.

This page is selected for replacement. On a buffer page

hit, the counter associated with that page is reset (not

necessarily to the initial count) or incremented.

A general conclusion in the literature is that while

the CLOCK algorithm is simple and efficient, its per-

formance is comparable to that of the LRU replace-

ment policy [17, 11, 2, 4]. In this paper we develop

approximate analytical models for the GCLOCK buffer

replacement scheme under the Independent Reference

Model (IRM [13]). We compare the performance of

the GCLOCK algorithm with the Least Recently Used

(LRU) schemes and with the optimal (static) buffer al-

location policy [1], and examine when the performance

of the GCLOCK algorithm differs from that of the LRU

policy. Using a workload similar to the Transaction Pro-

cessing Council benchmark A (TPC-A) [18] as an exam-

ple, we show how the GCLOCK algorithm performs for

this type of workload. We also quantify how the knowl-

edge of access patterns, as in the case of TPC-A, can be

used to advantage in the GCLOCK policy. We examine

various casea of skewed data access and show both the

accuracy of the approximate analytical model and the

comparative performance of the GCLOCK policy with

the LRU and the optimal buffer allocation policies.

There are few existing analytical models for the

databaae buffer. An approximate analysis for the LRU

policy is presented in [6] under IRM for skewed (non-

uniform) data accesa, and extended to a multi-systems

environment in [7, 8, 9]. However, no such analysis ex-

35. Performance Evaluation Review, Vol. 20, No. 1, June 1992

ists for the CLOCK or GCLOCK policies, though nu-

merous simulation studies are reported in the literature

(see [11] for a survey). Under IRM, each buffer page

access is independent of all previous references. Such a

model holds for many database transaction processing

applications where each transaction accessesa relatively

small set of pages. For instance, in the TPC-A work-

load, each transaction performs a debit/credit operation

to an account chosen independently and equiprobably

from the account relation. Therefore, the account ref-

erences follow the IRM model. In general both sequen-

tial and random access patterns are found in typical

database workloads. Further support for random access

patterns is found in [12] where a large fraction (close to

90%) of the accesseswere non-sequential. Furthermore,

the random access patterns were successfully modeled

as IRM in [10].

While the IRM model implies independent database

accesses, these accesses need not be uniform over all

pages. In the above TPC-A example, index pages to

the accounts are accessed more frequently than account

pages. The importance of considering such skewed data

access for database applications is also discussed in [3],

where a replacement strategy is modeled that fixes some

buffers for the most frequently used blocks, and uses the

remaining buffers to read in other blocks. Other buffer

allocation methods, such as domain separation [15] or

the hot set model [16], are static and inflexible [4]. We

explicitly model the GCLOCK algorithm for a skewed

access pattern. The model also captures the effect of

different weights for different data types. For instance,

in the TPC-A example, account pages can be assigned

a lower weight than that of index pages. We show that

the performance of the GCLOCK algorithm is sensitive

to this weight assignment, and its performance can be

either better or worse than that of the LRU replacement

policy. The analysis is used to select the weights in the

GCLOCK algorithm such that the buffer hit probability y

is arbitrarily close to that of optimal buffer allocation.

The analysis in this paper can be augmented to model

various buffer coherence policies in a multi-node system.

As an example, we outline the extension to analyze the

broadcast invalidation policy [7, 9]. We also validate

the extended model and show that it agrees closely with

simulation.

The paper is organized as follows. Section 2 describes

the analysis of the GCLOCK scheme. First, a simple

approximate model is proposed. A more refined model

is subsequently developed, which uses the solution of

the approximate model as a starting point in an itera-

tive solution. Validation, comparison with the LRU re-

placement policy and the optimal buffer allocation pol-

icy, weight assignment for the GCLOCK policy, and an

extension to the multi-node case are presented in Sec-

tion 3. A summary and concluding remarks appear in

Section 4.

2 The Model

In this section we will first describe the workload envi-

ronment and the details of the GCLOCK buffer replace-

ment scheme. We consider a database consisting of P

partitions such that access to database pages within a

partition is uniform [6]. Skewed data accesscan be mod-

eled by assigning different sizes and access frequencies

to different partitions [7]. Let Sp be the size of partition

p, 1 < p < P. (A list of symbols used in the following

analyses are given in Table 1). We assume that accessto

database pages follows the IRM model (i.e., each page

request is independent of all previous requests) and each

access is to a page of partition p with probability TP. If

a request is to a page that is not in the buffer, a buffer

page must be selected for replacement. As outlined in

Section 1, when a miss occurs, the clock points to the

buffer page immediately following the page that was

brought in for the previous miss. If the count associ-

ated with the page pointed at is zero, then the page is

selected for replacement, otherwise the count is decre-

mented and the next buffer page in sequence is exam-

ined, until a page with zero count is found and selected

for replacement. The page that caused the miss is then

fetched into the buffer location (after writing out the

replaced buffer page, if necessary), and the count asso-

ciated with it is set to the initial weight 1P (if the new

access is to partition p). If a buffer request is for a page

that is in the buffer (this can be determined using a hash

table for pages in the buffer) then the count associated

with that buffer page is reset to the hit weight (weight

assigned on a hit), say, Hp. Note that, on a hit, there

is no advancement of the clock pointer. We denote the

maximum weight of partition p (the larger of the initial

and hit weights) by Lp, i.e., LP = rnaz(.&, Hp). In the

following analyses, we will assume that, on a hit, the

counter of the buffer page is reset to the initial weight,

i.e., Lp = IIp = 1P. The analysis is extended in [14] to

include the cases where the initial and the hit weights

may not be the same.

An exact Markov model for the GCLOCK pol-

icy, requires a very large state space, which is

o(B-L-:=,(~p+v), where B is the buffer size in pages.

For example, for a buffer size of 1000 pages, 3 partitions,

and each partition with a maximum weight of 3, an ex-

act model has 1036states. Therefore, we must resort to

approximate models. We first develop a simple Marko-

vian model. This ap roximat e model has the number
lJ’

of states equal to ~P=l (.LP+ 1). Balance equations are

written for this model and simplified to P coupled equa-

tions. These equations are solved by an iterative proce-

dure. This simple model ignores the distance of a buffer

36. Performance Evaluation Review, VCJ1.20, No. 1, June 1992

Table 1: List of Symbols Used

Workload and system parameters

P Number of data partitions

Sp Size of partition p (pages)

rP Prob. of accessing the pth partition

1P Initial weight assigned to partition p

HP Hit weight assigned to partition p

LP maz(lP, HP)

B Buffer size {pages)

Simple approximate model

hP hit prob. of partition p

~ miss prob. of partition p

overall buffer hit probability

m overall buffer miss probability

nP Average number of bufer pages of partition p

nP,; Average number of hufleT pages of partition p

with count i

no Average number of bufler pages with count O

Additional symbols for the refined model

np,i,j

n-o

Average number of buffer pages of partition p

with count i and at a distance of j misses from

the clock pointer

Average number of misses per clock cycle

page from the clock pointer, and underestimates the

buffer hit ratio of the hot partitions (as detailed later).

We then make a refinement to the model, by which we

roughly take into account the distance of a buffer page

from the clock pointer. The resulting Markovian model

has the number of states as the product of ~~=1 (LP + 1)

and the average number of misses in one rotation of the

clock pointer around the buffer (the reason for this will

be detailed later). The solution from the simple model

is used as a starting point for solving the refined model.

Though the refined model is still approximate, valida-

tion in the next section shows that it is very accurate

across a wide range of parameter values.

The objective of the model is to determine the buffer

hit probability hP for each partition. Let np be the

steady-state average number of pages of partition p in

the buffer. Then the buffer hit probability for this par-

tition hp = ~ and its miss probability ~ = 1 – hp.

The overall hit probability is h = ~~=1 rphp, and the

overall miss probability is m = 1 – h. In Section 2.1

we develop and analyze a simple approximate model,

which is refined in Section 2.2. From these models, we

will estimate nP for each of the partitions.

2.1 Approximate Model

The Markov chain for the simple approximate model

represents the state of an arbitrary buffer page at the

instant of a random page request. A portion of that

Markov chain, corresponding to partition p, is shown

in Figure 1. In this figure, a state (p, i), O < i ~ LP,

corresponds to a buffer page of partition p, with a count

i. In other words, the steady-state probability y of being

in state (p, i) is the probability that an arbitrary buffer

page is of partition p and has a count i. The complete

Markov chain includes all portions (similar to that in

Figure 1), corresponding to all partitions. Transitions

among the parts of the Markov chain (corresponding to

different partitions) occur only through states (p, O)and

(P, Lp), OS P S P, as shown.

●

●

● Hrp/sp

‘w/

Figure

Since all pages in

B, we have

1: Approximate Model

buffer must sum to the buffer size

5
np = B.

p=o

(1)

Let nP,i be the steady-state average number of pages of

partition p having a count i, OS i 5 LP. Then

np = 5np,i,

i=o

(2)

We denote by no = ~~=o nP,o the steady-state average

number of buffer pages, from all partitions, having a

zero count. Define a clock cycle as a complete rotation

37. Performance Evaluation Review, Vol. 20, No. 1, June 1992

of the clock pointer through all pages in the buffer. Note

that at each buffer miss, the clock traverses buffer pages

until it finds a buffer page with a zero count. Therefore,

in a clock cycle, the number of buffer misses, say ho,

equals the number of buffer pages with a zero count en-

countered during that cycle. The basic approximation

in the simple model is assuming that the average num-

ber of misses in a complete cycle of the clock is equal to

no, i.e., ho = no. From this approximation, it follows

that, given a miss, the probability of decrementing the

count of an arbitrary buffer page equals &. Therefore,

at a page request, the transition probability from state

(p, i) to state (p, i – 1), O < i s LP, is ~. Note that

the probability of a transition out of state (p, O) due to

a miss is also ~, and corresponds to the probability of

replacing an arbitrary buffer page having a zero count.

An arbitrary page of partition p is requested with prob-

abilityy ~, and this is the transition probability from

any state (p, i) ,0 ~ i ~ (LP – 1), to state (p, LP). On

a request, the probability that a page of partition p is

brought into the buffer is rPmP. Therefore, the transi-

tion probability from each of the states (p, O) ,1< p < P

to state (p, LP) is *.

Before we proceed to derive np, the average number

of partition p pages in buffer in the steady-state, we first

note that the steady-state probability of a page being

in state (p, i) can be expressed as ‘&. In the following,

we write the balance equations of the Markov chain in

terms of, only, nP,;, O S i S LP, since B cancels out in

all balance equations.

Balance at the aggregate states for each of the parti-

tions, yields

(3)

Balance at the state i, O< i < LP – 1,yields

It follows that

nP,i = (1+ ;~)i np,o, O<i <Lp. (4)

Substituting from Equations (3) and (4) in Equation

(2), with ~ = 1 – ~, we finally get

72P= Sp(l– ~
(+ &)Lp+l)’ 1< P < p. (5)

In the above expression for nP, notice that the quantities

m and no always appear together as the ratio ‘fl, which

can be determined by substituting from Equation (5)

in (1). The resulting nonlinear equation can be solved

iteratively for the ratio ~. One possible way to solve

this equation is the bisection method, which, according

to our experience, converges very quickly. Once the

ratio ~ is determined we can evaluate nP, 1 < p < P,

from Equation (5), and, hence, also the hit probabilities

for each partition.

The approximate model gives reasonably accurate re-

sults, but, as will be shown in Section 3, tends to under-

estimate high hit probabilities for the relatively hot par-

titions (mostly within 5% of the values obtained from

simulation). However, this translates to large relative

errors for the low miss probabilities, which may not be

acceptable. Next we develop a more accurate model to

overcome this problem.

2.2 Refined Model

As mentioned earlier, the main approximation in this

simple model is the assumption that the average num-

ber of misses per clock cycle, which we denote by iio, is

equal to nO, the steady-state average number of pages

with a zero count in buffer. This assumption is not ac-

curate, since pages with a count zero may have been hit

and converted to pages with a non-zero count, as the

clock pointer traverses one round through the buffer.

This effect causes no to overly estimate iio, particularly

for high overall hit probabilities. To capture this effect

in our analysis, we must include some kind of measure

for the distance from the clock pointer in the state rep-

resentation of an arbitrary buffer page. By definition,

on the average, it takes ho misses for the pointer clock

to return to the same buffer page. Therefore, one way

to model the distance from the clock pointer is to add

another phase (state) variable in the state representa-

tion of a buffer page. Upon replacement or decrement of

its count, a page is in phase fio (i.e., it is fio misses away

from the clock pointer). With each miss, the phase of a

buffer page is decreased by one, since the page is getting

one miss closer to the clock pointer. Only at the fio-th

miss after decrement (or replacement), the count of a

buffer page is again decremented (or replaced, if it has

a zero count). Note that, in this refined model, a buffer

page may be hit and its count reset to the hit weight

before the clock pointer returns to it. This captures the

missing effect in the approximate model. The refined

model is not exact, since we have modeled the distance

from the clock pointer by a deterministic variable tio

rather than a stochastic variable. However, because fio

is usually a large number, this approximation is very

robust over the entire range of model parameters (as

shown from validations in Section 3).

A portion of the state space representation of the re-

fined Markov chain model, corresponding to partition

p, is shown in Figure 2. In this figure, the index p, in-

dicating the partition, has been omitted, therefore, a

state (i, j) in the figure corresponds to the actual state

(P, ij). A state (P, i,j), OSi SLp, OSj <fio-1,

38. Performance Evaluation Review, Vol. 20, No. 1, June 1992

represents an arbitrary buffer page of partition p having

a count i and at a distance of j misses from the clock

pointer. At any state (p, i, j), j # O,upon a miss, there

is a transition to the right, i.e., to state (p, i, j – 1). At

any state (p, i, j), i # O, j = O,upon a miss, there is a

transition down to the left, i.e., to state (p, i – 1, ho – 1).

At state (p, O,O),upon a miss, there is transition to state

(P, LP, ho–l), 1 S p S P, with probability rP~. At any

state (p, i, j), i # LP, upon a page request, an arbitrary
buffer page of partition p is hit with a probability ~,

thus causing a transition to state (p, LP, j). Notice that

a page hit does not bring it closer to the clock pointer,

only resets its count to the hit weight.

+“”’+

G.iK&
Figure 2: Refined Model

Let nP,i,j be the steady-state average number of pages

of partition p having a count i (O ~ i ~ LP) and at a

distance of j (O < j ~ ii. – 1) misses from the clock

pointer. Then

Lp ?Io-1

‘P= E E ‘plilj.
(6)

i=o j=o

We denote by noo = ~~=o nP,O,Othe steady-state aver-

age number of buffer pages, from all partitions, having a

zero count and at a zero distance from the clock pointer.

By definition of the GCLOCK algorithm, noo = 1, since

only one page with a count zero is replaced upon a miss.

The steady-state probability of being in state (p, i, j)

can be expressed as ~. As before, we write the bal-

ance equations of the Markov chain in terms of, only,

nP,;,j, O ~ i ~ LP, O < j < ii. – 1, since B cancels out

in all balance equations.

Balance at the aggregate states for each of the parti-

tions, yields

Tpmp
np,O,O= ~, l<p<P. (7)

Balance at the state (p, i, j), i # L,, j # Fio – 1, yields

np,i,j = (l+*)np,i,j-1, O~i~LP–l, l<j<iio-l.

Balance at the state (p, i, ho – 1), i # LP, yields

np,i,o =(1+ ~)np,i-l,fi~-~, 1< i < L,.

From the above balance equations, we get

np,i,o =(1+ &)ifionp,O,O, 0< i < Lp. (8)

let 12P,.$j =
22’I np,i,j, O < j < iio – 1. Then from

the balance equations at the set of states (p,., j), O g

j ~ ho – 2, we have

= Tip,.,j-l, 1 ~ j < fio – 1.nPt.,3

It follows that

7%3-1

n, =
E ‘p,.,j = fio np,.,OJ
j =0

where, using Equation (8),

(9)

Lp

x

(1+ *)@ P+l)fio_ ~
np,.,O—

—
np,i,o =

(1 ~ &)fio – 1 np,o,o”i=o

From Equations (7) and (9) and m, = 1– ~, we finally

get the following expression for np

Sp
l<p <P,nP=l+fpl

where

(lo)

[

(1+ *)@P+l)fi” – 1 ‘1
fp= !?!% 1(l+_.#__)7h-l“

In the above expression for nP, the quantities m and

fio are not yet known. These can be determined by

substituting from Equation (10) in Equation (l). The

resulting set of nonlinear equations can be solved itera-

tively as follows:

1. Start with an initial guess for m (a very good

approximation can be obtained from the simple model

in Section 2.1)

2. Substituting in Equation (l), we get a nonlinear

equation which can be solved for ho using the bisection

method

3. New values for np, 1 < p < P, can now be com-

puted, and, hence, a new value form= ~~=17P(1– ~).

Terminate if the new and old values of m are sufficiently

close. Otherwise, repeat from the first step with the new

value for m.

39. Performance Evaluation Review, Vol. 20, No. 1, June 1992

The above iterative procedure converges very quickly

in practice, particularly, with a good initial guess for

m, which can be obtained by solving the first approxi-

mate model. The good convergence properties were also

obtained for a larger number of partitions and a wide

range of weights. The reason is that, independent of

the number of partitions and the weights assigned to

them, the equations have been analytically reduced to

two equations in m and ho that are solved iteratively.

In the next section we perform experiments to vali-

date the refined model over a wide range of parameters.

As will be shown, the results are very accurate (less

than 170 of simulation results) in all cases examined.

This was also found to be true for a larger number of

partitions.

The results in this section hold for equal initial and

hit weights of the same partition. The analysis of the

refined model is extended in [14] to include the cases

where the initial and hit weights may be different. Fur-

ther, the refined model can be extended to capture

multi-node invalidation effect [7, 9]. For example, with

broadcast invalidation policies, a page update at one

node invalidates copies of that page (if it exists) in the

buffers of other nodes. In each node, invalidated buffer

pages are collected in a free-page list, which, on a miss,

is checked for page replacement. Only, if the free-page

list is empty, then the clock pointer advances in search

for a (valid) buffer page replacement. The refined model

can be easily modified to accommodate this scheme by

adding an extra state (say, “free” state) representing

the buffer page in the free-page list. A transition may

occur from any “valid” state to the “free” state if that

page is invalidated by another node. Due to space limi-

tations we do not present details of the analysis for the

extended model. However, in Section 4 we will present

some validation for the accuracy of this extension. De-

tails of this and other buffer coherency policies will be

reported in a forthcoming report.

3 Validation and Performance

In this section we will first validate our analyses by

comparison with estimates from a simulation model.

A discrete event simulation model is developed for the

GCLOCK buffer replacement scheme under IRM. In the

simulation there is buffer warm-up period after which

statistics are gathered. Each simulation is run long

enough so that the 95$?0confidence interval is within

270 of the mean. We use workload parameters simi-

lar to those derived from the TPC-A benchmark [18].

The relative access rate to various data types are fixed

under the TPC workload, which results in a particular

skewed access pattern. To provide further validation,

we will therefore choose workloads with various skewed

access patterns [7]. We will then compare the perfor-

mance of the GCLOCK replacement policy with that of

the LRU replacement policy and the optimal buffer al-

location policy [1]. Finally, we consider the selection of

weights for different partitions in the GCLOCK policy

so that its performance approaches that of the optimal

allocation policy.

TPC-A is a database benchmark workload for a debit-

credit banking application. The database consists of

three types of data; namely, BRANCH, TELLER, and

ACCOUNT. In addition, there are INDEX data sets

that are used to locate any tuples within the database.

Each transaction fetches and updates an account record,

and the corresponding branch and teller balances. TPC-

A specifies the absolute and relative sizes of the data

types. While the relative sizes remain constant, the ab-

solute size of each data type increases linearly with the

transaction rate. For instance, at 10 transaction/second

(TPS), there are 1 million accounts, 1000 tellers, 100

branches and a 90 day history. A hundred byte record

is associated with each branch, teller and account, For

clarity of presentation, we will assume that only the

three kinds of data (INDEX, TELLER and ACCOUNT)

are managed using the GCLOCK algorithm. Given the

relatively small number of branches, the BRANCH data

will rarely be replaced from the buffer even for a small

buffer size, and therefore are ignored. Assuming 4K

pages, and typical index sizes, the account, index and

teller partitions are 25,000, 2500 and 2.5 pages, respec-

tively. In order to have more significant impact of the

smallest partition, we will consider a teller partition of

size 250 pages (rather than 2.5 pages in the above TPC-

A example). Due to the latter assumption, we refer to

this as a TPC-A like workload. Note that the access

rate to pages in the three partitions is the same for the

TPC-A workload.

3.1 Validation

We first use the TPC-A like workload with the param-

eters given above to validate the models. In the fol-

lowing experiments, it is assumed that the initial and

hit counts (weights) are the same. In Figure 3 we show

the buffer hit probabilities for the three partitions as a

function of the buffer size, for the case where the weight

for each of the partitions is zero. Note that this spe-

cial case is equivalent to the First In First Out (FIFO)

buffer replacement scheme, since then each page is re-

placed after one complete round of the clock pointer

regardless of whether the page was re-referenced in the

interim. Since the weights are the same, each of the

partitions is treated equally. The figure shows the es-

timates from the approximate, refined and simulation

models. For this case, the estimates from both the ap-

proximate and the refined models match well with the

simulation results. As explained earlier in Section 2,

40. Performance Evaluation Review, Vol. 20, No. 1, June 1992

q
0 -

+ TELLER SIMULATION

+ INDEX SIMULATION

+ ACCOUNT: SIMULATION

5
.- REFINED ANALWS

~~

------ APPROXIMATE ANALYSIS

&

k
=? -

g“ -

m

g

0

0 1000 2000 moo 40Q0

BUFFER SIZE

Figure 3: Buffer hit probability with WEIGHTS(O,O,O)

$

a

$

gs ~ TELLER SIMULATION

+ INDEX SIMULATION
m + ACCOUNI SIMULATION

g -
. REflNEO ANALYSIS

------ APPROXM4TE ANALYSIS

0

0 1000 2000 ?lcca 40Q0

BuFFER SIZE

Figure 4: Buffer hit probability with WEIGHTS(l,l,O)

the approximate model does not capture the effect of

resetting a page count to a non-zero value if it is a hit

in buffer. Note however, that with a weight of zero, in

the case of a buffer hit, the count is unchanged at zero.

Therefore, the approximate model is also rather accu-

rate for this case. Note from the figure that, with these

weights, even the hit probability for the relatively small

teller partition with only 250 pages does not saturate

(i.e., approach unity) until the buffer is several thou-

sand pages. The index partition does not evidence any

saturation in the figure.

Figure 4 is analogous to Figure 3 except that the

weights for the teller, index and account partitions are

chosen as 1, 1 and O, respectively. That is, the cold ac-

count partition is effectively given a lower priority than

the other partitions. The estimates from the simple

approximation are pessimistic for the teller partition,
while it is reasonably accurate for the larger partitions.

The reason for this error, as pointed out in the previ-

ous section, is that the approximate model assumes that

Q

“1
. ..+--4--+--*-

is-
n

~

iy

+ TELLER: SIMULATION

+ INDEX SIMULATION

m + ACCOUNT SIMULATION

~
--------- REFINED ANALYSIS

0 - ------ APPROXIMATE ANALYSIS

0

0 1000 20WI sooo 40W

BUFFER SIZE

Figure 5: Buffer hit probability with WEIGHTS(2,1,0)

the average number of buffer pages with zero count of

a given partition is equal to the average number of re-

placed buffer pages of the same partition that the clock

encounters in one rotation around the buffer. For the

small partition, the likelihood that a zero count page is

re-referenced, before the clock revisits it, is significant,

and therefore the number of zero pages of that parti-

tion seen by the clock is significantly smaller than the

steady-state average number in the buffer. Therefore,

the approximate model estimates that more pages of

the small partition are replaced in a clock rotation than

what actually occurs, thus leading to a pessimistic es-

timate of the buffer hit probability. The refined model,

by accounting for the above described phenomenon, is

more accurate. In fact, it is barely distinguishable from

the simulation for each of the partitions. Comparing

Figures 3 and 4, we note that, with the higher weights,

the buffer hit probabilities of both the teller and index

partitions increase significantly, with a small degrada-

tion in the account hit probability.

Figure 5 is similar to the previous two figures with

the weights for the teller, index and account now set to

2,1,0, respectively. That is, the weights are now set to

discriminate between each pair of the partitions. Com-

paring Figures 5 and 4, the buffer hit of the teller par-

tition improves further, with an imperceptible change

in the other two partitions. This is the effect of the

increased discrimination between the partitions. Later

we will examine whether further discrimination by these

weight results in a near optimal performance. From a

validation point of view, the agreement between the re-

fined analysis and the simulation is striking.

We now consider other cases of skewed access, where

the access frequencies of the partitions are different. In

the following experiments we will only show the esti-

mates from the refined model. In Figure 6 we focus

on a case with two partitions with 80~0 of the page

41, Performance Evacuation Review, Vol. 20, No. 1, June 1992

BUFFER SIZE

Figure 6: Buffer hit probability for the 80-20skewedaccess
pattern

~

~ .

e’?=0 -

E -~: ~ SKEW(80-20}SIMULATION

+ SKEW(50-5)SIMUW’ION

== V’x=:!%ti%’:
. ANALYSIS CASES

~

20U 400 Soo Sao

SUFFER SIZE

Figure 7: Buffer hit probabilityy for different skewedaccess

patterns

accesses going to 20% of the pages. The number of

pages in the database is fixed at 1000 pages. We vary

the weights assigned to the two partitions. The legend

WEIGHT(X,Y) represents a weight of X to the hot par-

tition and Y to the cold partition. For instance, in the

figure, WEIGHT(2, 1) represents a weight of 2 to the

hot partition and a weight of 1 to the cold partition.

The figure shows that an increased weight to the hot

partition results in better discrimination between the

partitions. Consequently, we see an increasing hit prob-

ability for the hot partition, and a corresponding but

smaller decrease in the hit probability to the cold par-

tition. Again, there is excellent agreement between the

estimates from the refined analysis and the simulation.

In Figure 7, the overall buffer hit probability versus

buffer size is shown for four casesof skewed access. The

number of pages in the database is again fixed at 1000

pages. The legend of this figure uses the notation of

o loco 20s0 Xb30 4000

BUFFER SIZE

Figure 8: Comparison with LRU and Optimal Allocation

with Equal Weights to Partitions

SKEW(X-Y) to represent that X% of the aocessesgo

to Y% of the pages. For instance, in the case labelled

SKEW(80-20), 80% of the page requests are to 20%

(i.e., 200 of the 1000 database pages). In all the curves,

the hot partition is given a weight of 1, and the cold

partition is given a weight of O. For all of these cases,

the estimates from the refined analysis are almost in-

distinguishable from the simulation. The higher skew

cases (i.e., SKEW(80-20) and SKEW(50-5)) clearly ex-

hibit two regions with different slopes, corresponding to

saturation of the hottest partition.

3.2 Comparison with LRU and Optimal

Static Allocation

We now compare the buffer hit probability using the

GCLOCK algorithm with that of the LRU buffer re-

placement and optimal allocation policies. Figure 8 is

for TPC-A like parameters used in Figures 3 through 5.

The figure shows the overall buffer hit probability for

the GCLOC!K algorithm with equal weights for all par-

titions (set to O, 1 and 5). Also shown on the figure is

the buffer hit probability for the LRU policy and opti-

mal buffer allocation. For optimal buffer allocation, the

entire buffer is allocated to the hotte8t partition (the

teller partition in this case) until the buffer size equals

the size of the hottest partition. After this point, which

we will refer to as the first break-point, additional buffer

space is allocated to the next hottest partition (the in-

dex partition in this case), until this partition fits in

buffer, and 80 on. This gives rise to a series of break-

points at which the dope of the buffer hit probability

versus buffer size characteristic changes. The optimal

allocation characteristic represents a bound on the per-

formance of the more general buffer allocation policies.

In Figure 8, we note that, with equal weights of zero

assigned to the different partitions, the overall buffer hit

42. Performance Evaluation Review, Vol. 20, No. 1, June 1992

I

--T.. WEIGHT$TELLER

---1-- WEIGHT4NDSX
+ SW?CH/MISS

~

BUFFER SIZE

Figure 9: Comparison with LRU and Optimal Allocation

with Different Weights to Partitions

probability of the GCLOCK algorithm is significantly
BUFFER SIZS

worse than that of the LRU policy, With the weights at Figure 10: Weight assignmentsfor performance within 90%
1 for each partition, the buffer hit probability improves of Optimal Allocation
considerably and is slightly worse than LRU. The rea-

son is that, although the weights are equal, when the

hotter partition pages are re-referenced, their count is

reset to being greater than zero and therefore they are

not replaced in the next clock sweep. For weights of

zero, a larger hit probability y does not give the hot par-

titions any advantage. As the weight for all partitions

is increased further to five, the buffer hit probability

gets closer to LRU, as shown in the figure. For larger

weights, the curves for the GCLOCK policy approach

that of the LRU policy.

We now turn to the case with different weights to

different partitions. Figure 9 shows the overall buffer a

hit probability for the GCLOCK algorithm with the

weights used in figures 3 through 5. The overall buffer
.-.?-- ~lG~TSLLER - Q
---}-- WEIG~lNDEX

hit probability is better than that of the LRU policy, ex-
+ SSARCH/MISS

cept for the case with zero weights. The reason is clearly ~ -i

that the higher weights discriminate between the par-
- $8

!18 -j s
titions to some degree, and tend to keep a larger frac- ~ -;

tion of the hot partitions in the buffer than with equal E* i

weights. However, comparing these cases with the per-

formance of optimal buffer allocation shows that, while 8 -
the different weights improve performance, the overall

buffer hit probability even with the weights set at (2,1,0) ~~++-,
is far from optimal. This is particularly so at the break- 0 IMo 2000 .100Q 4000

points.
BUFFER SIZE

Figure 11: Weight assignmentsfor performance within 95%

3.3 Weight Assignment of Optimal Allocation

The deviation from optimal allocation for the GCLOCK

algorithm raises the question as to whether the weights

of the different partitions can be chosen for close to

optimal performance. We use the refined analysis to

examine this question. The objective is to determine

43. Performance Evaluation Review, Vol. 20, No. 1, June 1992

partition weights that result in a buffer hit probabil-

ity that is within some tolerance of that for optimal

buffer allocation. Let (WI, WP) denote the weights

assigned to the different partitions. For any buffer size,

we start with an equal weight for each partition. We

compute the buffer hit probability for the weight as-

signments (WI, Wt-I- 1, TVP), 1 < i < P, using the

refined analysis. We then pick the partition i that leads

to the largest buffer hit probability and increment its

weight. If the estimated average buffer hit probability y

is within the desired tolerance from that for optimal al-

location, the procedure is terminated. Otherwise, the

procedure is repeated.

Figure 10 shows the weights determined using this

method for the TPC-A like case (considered in Figures 3

through 5), where the overall buffer hit probability is

required to be greater than 90% of that using optimal

buffer allocation. Referring back to Figure 9, the de-

viation of the buffer hit probability for the GCLOCK

algorithm from that of optimal allocation is large for

small buffer sizes and for the weights chosen. There-

fore, for small buffer sizes, a larger weight is needed for

the hottest partition. Figure 10 indeed shows this to be

the case. For buffer sizes less than the first break-point

a large weight must be assigned to the hottest parti-

tion (i.e., the teller partition in this case). At the first

break-point, the weight that must be assigned to the

hottest partition is surprisingly large (about 40 in this

case). The explanation is that for optimal allocation,

the entire buffer must be allocated to the hottest parti-

tion, and in order to approach this, the GCLOCK pol-

icy needs an inordinately large weight for this part it ion.

Beyond the first break-point, the weight that needs to

be assigned to the hottest partition falls sharply. For

instance, for a buffer size of 500 pages (i.e., twice the

size of the hottest partition), a weight of 4 needs to

be assigned to this partition to meet the objective of a

buffer hit probability greater than 90% of that for opti-

mal allocation. As the buffer size increases further, the

weight assigned to the hottest partition falls slowly.

Turning now to the weight assigned to the second

hottest (i.e., the index partition), Figure 10 shows that

for smaller buffer sizes, this partition is assigned a low

weight. This is because the hottest partition must be

well discriminated from the next hottest partition until

a little beyond the first break-point. As the buffer size

increases, a larger weight must be assigned to this parti-

tion, and the assigned weight peaks at the second break-

point (buffer size of 2750). An interesting aspect is that

the weights assigned to the hottest and the next hottest

partition cross beyond a certain buffer size, as the figure

shows. The reason is that, beyond a certain buffer size,

the hottest partition easily fits in the buffer, and due

to re-references continues to reside in the buffer. For

example, with 250 teller pages and a buffer size of 2000,

the teller page is very likely to be re-referenced before

the clock gets back to it and it is no longer necessary

to give it a high weight. By comparison, for this buffer

size, the 2500 page index partition does not fit in the

buffer, and a high weight must be assigned to the index

partition in order to favor it over the account partition.

Note also from Figure 10 that the weights assigned at

the second break-point are much lower than that of the

first break-point. The explanation is that for the same

tolerance (relative to the optimal) the clock rotates at a

slower rate for larger buffer sizes, thus allowing for the

same discrimination with a lower weight.

One potential problem with the clock algorithm,

when high weights are assigned, is that on a buffer miss

the clock must search through many buffer pages be-

fore finding a page with a zero count. This could lead

to large overheads. Therefore, in Figure 10 we have also

shown the average number of buffer pages that must be

searched for each buffer miss. Notice that the num-

ber of pages that must be searched per miss increases

significantly at the break-points where a large weight

is assigned to some partitions. However, the average

number of pages searched per miss is less than 10 for

all cases. Since a search merely involves accessing and

updating a data structure in memory, and a compari-

son, the overhead per search is a few instructions, and

is probably acceptable.

Figure 11 is similar to Figure 10 except that the objec-

tive is that the buffer hit probability should be greater

than or equal to 95% (rather than 90%) of that for

optimal allocation. The general trends are the same as

in the previous figure, except that the weights required

are much larger (about twice) the previous weights, par-

ticularly at the break-points. The reason is that tighter

tolerance requires more discrimination between the par-

titions and consequently larger weights. However, the

figure also shows that the overhead in terms of the num-

ber of buffer pages searched per miss approximately

doubles, as compared to the previous case.

The overall buffer hit probability resulting from the

weight assignments of the previous two figures, along

with that for optimal allocation and the LRU policy, is

shown in Figure 12. The figure shows the tolerance ob-

jectives, relative to optimal allocation, being met by the

weights selected for the GCLOCK algorithm. Changes

in weight assignment in Figures 10 and 11 cause jumps

in the buffer hit probabilities in Figure 12, however, the

tolerance objectives are still met.

These experiments lead to the question of whether

weights can be assigned to the GCLOCK scheme so as

to bring its performance arbitrarily close to that of the

optimal allocation policy. The problem with attempting

this is that the weights assigned become very large at

the breakpoints, and that the overhead in terms of the

searches per miss also shoots up at the break-points.

44. Performance Evaluation Review, Vol. 20, No. 1, June 1992

~

5
#

~ — OPTIMAL ALLOlxlloN

—-—- LRu POLCY

,----- CLOCK: .9 OF OPTIMA

--------- CLOCK .95 OF OPTIMAL
mN~

p 1 1 1 1 i 1 I 1

0 1000 2000 sooo 4000

BUFFER SIZE

Figure 12: Buffer Hit with Optimal Weight Assignments

+ PROB. OF UPOATE-O.O

+ PROB. OF UPDATE=O. 1
q

“[

--S- PROB. OF UPDATE=O.5

--..7 . . . ANALYSIS CASES

BUFFSR SIZE

Figure 13: Validation of Broadcast Invalidation Policy

3.4 Multi-Node Extension

Finally, we validate the extension of the refined model

to capture the broadcast invalidation policy in a multi-

node system. Figure 13 shows the buffer hit probability y

for the three partitions in the TPC-A like workload,

with weights set at (1,1,1). The probability y of update

per access is assumed to be the same for all partitions.

The figure corresponds to a system with four nodes and

different probabilities of update; namely, 0.0, 0.1, and

0.5. Note that the case of zero update probability im-

plies no buffer invalidation and, therefore, is the same

as the single node case. As the update probability in-

creases, the buffer hit probability of the hot partition

decreases and saturates at a considerably lower buffer

hit probability. The buffer hit probability of the other

partitions also decreases, but to a lesser extent.

4 Summary and Conclusions

In this paper we have developed approximate analytical

models for the GCLOCK buffer replacement policy, un-

der IRM. An exact model for a reasonable size buffer be-

comes intractable because a very large number of states

is required. We first developed a simple approximate

model that has a number of states equal to the sum

of the (maximum weight + 1) of all partitions. This

model ignores the distance of a buffer page from the

clock pointer. If there is a large difference between the

sizes and access frequencies of the partitions, then this

simple model underestimates the buffer hit probability

of the hottest partitions. A refined model is developed

that approximately takes into account the distance of a

buffer page from the clock pointer, and has the number

of states as the product of the sum of the (maximum

weight + 1) of all partitions and the average number of

misses in one rotation of the clock pointer around the

buffer. In the analysis of this model, the initial and hit

weights assigned to a partition may be different. By

comparison with simulation results, this refined model

is shown to be very accurate across a wide range of pa-

rameters. In fact, for all cases examined the estimates

from the refined model are virtually indistinguishable

from simulation results.

We apply the analysis to a case similar to the TPC-

A benchmark, and compare the performance of the

GCLOCK policy with that of the LRU policy and

optimal (static) buffer allocation. With zero weights

assigned to all partitions, the performance of the

GCLOCK algorithm is significantly worse than that of

the LRU policy. With equal weights assigned to all

partitions, the performance of the GCLOCK policy ap-

proaches that of the LRU policy as the weight is in-

creased. If knowledge of the partitions in the workload

is assumed, weights can be assigned to the partitions in

the GCLOCK policy so that its performance is better

than that of the LRU policy. We use the refined analy-

sis to determine partition weights that result in a buffer

hit probability within some tolerance of that for optimal

buffer allocation. For sufficiently small tolerance objec-

tives, large weights need to be assigned to the hot par-

titions. This is particularly true at the break points of

the optimal buffer allocation policy. At these points, a

weight of more than 100 may be required in some cases.

These large weights can lead to a larger overhead for the

GCLOCK policy, in terms of the number of pages that

must be searched on a buffer miss. This overhead was

also estimated, and shown to be modest for a tolerance

objective of 90% of that for optimal buffer allocation.

Tighter tolerances can result in-unacceptable overheads.

In practice, this limits how close the buffer hit proba-

bility for the GCLOCK policy can be made to approach

that of optimal buffer allocation.

45. Performance Evacuation Review, VO1. 20, No. 1, June 1992

The models considered in this paper can be extended

to capture the multi-node invalidation effect. We out-

lined the extension to model the broadcast invalidation
policy, and illustrated its accuracy. We are currently

investigating the performance of other buffer coherency
policies using further extensions of the refined model.

Acknowledgement
We would like to thank Scott Leutenegger for useful
discussions.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Belady, L. A., “A Study of Replacement Algorithms for

a Virtual Storage Computer”, IBM Systems Journal,

VO1.5,No.2, 1966, pp. 78-101.

Carr, R. W., and J. L. Hennessy,“WSClock - A Simple
and Effective Algorithm for Virtual Memory Manage-

ment”, ACM SIGMETRICS, 1981, pp. 87-95.

Casas,R. I., and K. C. Sevcik, “A Buffer Management
Model for Use in Predicting Overall Database System

Performance”, 5th International Conference on Data

Engineering, Los Angeles, CA, Feb. 1989, pp. 463-469.

Chou, H. T., and D. J. Dewitt, ‘{An Evaluation of

Buffer Management Strategies for Relational Database

Systems”, llth International Conference on Very Large

Databases, Stockholm, Sweden, 1985, pp. 127-141.

Corbato, F. J., “A Paging Experiment with the Multics

System”, MIT Project MAC Report AIA C-M-384, May

1968.

Dan, A., and D. Towsley, “An Approximate Analysis

of the LRU and FIFO Buffer Replacement Schemes,”

ACM SIGMETRICS, Denver, CO, May 1990, pp. 143-

152.

Dan, A., D. M. Dias, and P. S. Yu, “The Effect of

Skewed Data Access on Buffer Hits and Data Con-

tention in a Data Sharing Environment,” 16th Interna-

tional Conference on Very Large Databases, Brisbane,

Australia, Aug. 1990.

Dan, A., D. M. Dias, and P. S. Yu, “Modelling a Hi-

erarchical Buffer for the Data Sharing Environment”,

ACM SIGMETRICS, San Diego, CA, May 1991.

Dan, A., and P. S. Yu, “Performance Comparisons of

Buffer Coherency Policies,” Ilth International Con-

ference on Distributed Computing Systems, Arlington,

TX, May 1991.

Dan, A., P. S. Yu and J. Y. Chung, “Characterization

of Database Access Skew of a Transaction Processing

Environment”, IBM Research Report RC 17436, York-

town Heights, NY, Sept. 1991.

Effelsberg, W. and T. Haerder, ‘(Principles of Dat abase

Buffer Management”, ACM Trans. Database Systemsj

Vol. 9, No. 4, Dec. 1984, pp. 560-595.

Kearns, J. P., and S. Defazio, “Diversity in Database

Reference Behavior”, Performance Evaiuatzon Review,

Vol. 17, No. 1, pp. 11-19.

[13]

[14]

[15]

[16]

[17]

[18]

King, W. F., “Analysis of Paging Algorithms”, Proc.

IFIP Congress, Ljublanjana, Yugoslavia, Aug. 1971,

pp. 485-490.

Nicola, V. F., A. Dan, and D. M. Dias, “Analysis of

the Generalized Clock Buffer Replacement Scheme for

Database Transaction Processing”, IBM Research Re-

port RC 17225, Yorktown Heights, NY, Sept. 1991.

Reiter, A., “A Study of Buffer Management Policies

for Data Management Systems”, Technical Summary

Report 1619, Mathematics Research Center, Univ. of

Wisconsin, Madison, March 1976.

Sacco, G. M., and M. Sckolnick, “Buffer Management in

Relational Database Systems”, ACM Trans. Database

Systems, Vol. 11, No. 4, Dec. 1986, pp. 473-498.

Smith, A. J., “Sequentiality and Prefetching in

Database Systems”, ACM Trans. Database Systems,

Vol. 3, No. 3, Sept. 1978, pp. 223-247.

“TPC Benchmark A Standard Specification”, Z’ransac-

tion Processing Council, 1989.

46. ~’erformance Evaluation Review, J70L 20, pJ~ 1, June 1992

