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Abstract

In multiple myeloma, next-generation sequencing (NGS) has expanded our knowledge of genomic lesions, and highlighted a

dynamic and heterogeneous composition of the tumor. Here we used NGS to characterize the genomic landscape of 418

multiple myeloma cases at diagnosis and correlate this with prognosis and classification. Translocations and copy number

abnormalities (CNAs) had a preponderant contribution over gene mutations in defining the genotype and prognosis of each

case. Known and novel independent prognostic markers were identified in our cohort of proteasome inhibitor and

immunomodulatory drug-treated patients with long follow-up, including events with context-specific prognostic value, such

as deletions of the PRDM1 gene. Taking advantage of the comprehensive genomic annotation of each case, we used

innovative statistical approaches to identify potential novel myeloma subgroups. We observed clusters of patients stratified

based on the overall number of mutations and number/type of CNAs, with distinct effects on survival, suggesting that

extended genotype of multiple myeloma at diagnosis may lead to improved disease classification and prognostication.

Key points

1. Next-generation sequencing allows analysis of

the integrated spectrum of gene mutations, aneuploidies

and IGH translocations in multiple myeloma.

2. Karyotypic events have a stronger impact on prognosis

than mutations, but extended genotyping shows novel

prognostic categories.
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Introduction

Multiple myeloma (MM) derives from the neoplastic

transformation and proliferation of a post-germinal center

B-cell. Karyotypic events are the main drivers of early

stages of transformation [1–3], and most MM cases are

either hyperdiploid (HDMM) or harbor translocations of

the immunoglobulin heavy chain (IGH) locus [4]. In

addition, several additional recurrent translocations and

copy number abnormalities (CNAs) can be found [5],

although at diagnosis, their analysis is usually limited to

events that have an established prognostic role and may

guide treatment: del17p, t(4;14) and t(14;16) [6, 7]. Gene

mutations are thought to be secondary events associated

with tumor progression rather than initiation [2, 8]. Several

next-generation sequencing (NGS) studies to date have

expanded our knowledge on the spectrum of gene muta-

tions in MM [8–13]. However, such studies have also

highlighted substantial heterogeneity and low recurrence

rates as compared to other hematological malignancies.

Furthermore, the integrated spectrum of gene mutations,

rearrangements and CNAs of each case is composed of

alterations that may belong to different subclones, often in

dynamic and differential evolution during the various

stages of disease [14]. NGS technologies are ideally suited

to return information on those driver events, whose ana-

lysis and correlation with clinical and laboratory features

of the patient can impact prognosis and disease classifi-

cation. Initial efforts based on whole exome sequencing

(WES) have shown that integration of certain genomic

lesions into standard risk models can improve prog-

nostication in MM [13]. However, the full potential of

NGS studies has not been exploited so far. Custom target

pulldown (TPD) has significant advantages over WES in

that it allows analysis of a limited fraction of the genome,

thus reducing the cost and complexity of downstream

analysis per sample. The success of this methodology

in detecting gene mutations at diagnosis or relapse has

been illustrated in myeloid malignancies [15–18] and MM

[19–21]. We have previously shown that TPD panels can

be designed to interrogate the integrated spectrum of gene

mutations, CNAs and IGH translocations in MM, thus

providing a potential one-stop platform for prognostication

of newly diagnosed MM cases [22]. Here we applied our

custom TPD to a large cohort of multiple myeloma sam-

ples at diagnosis to understand MM genomic and clinical

interrelationships. We report our unbiased analysis of a

large set of MM driver events, leading to the identification

of novel prognostic factors and significant interactions

between genomic events, and suggesting that analysis of

the extended myeloma genotype in larger cohorts

can identify novel subgroups that are biologically and

clinically distinct.

Methods

Sequencing and identification of mutations

In total 10 ng of genomic DNA from CD138+ bone marrow

cells were subjected to whole-genome amplification.

Patient-level tags were added and samples pooled before

custom target enrichment and sequencing, which was per-

formed on Illumina HiSeq2000 machines on a paired-end

75 bp protocol. Reads were aligned with BWA-mem and

variants called with in-house algorithms [23, 24] using a

previously described pipeline to filter out probable artifacts

and germline variants, and to rank somatic variants based on

their likely oncogenic potential [10, 15].

CNAs, IGH rearrangements and VAF adjustment

Coverage data were used to identify regions of aneu-

ploidies, after normalization to diploid samples. This was

performed at the whole-chromosome level, and from there

down to cytogenetic bands and gene loci. Hyperdiploid

samples were defined by a gain in at least two of the

following chromosomes: 3, 5, 7, 9, 11, 15, 19, 21.

Translocations were called as previously described [22].

Gene-level CNA information was also used to adjust the

variant allelic frequency (VAF) of each variant, to estimate

the number of cells bearing a given variant, as previously

described [16].

Statistical analysis

Pairwise association studies were performed using Fisher

test corrected for multiple hypotheses testing. For survival

analysis, both progression-free (PFS) and overall survival

(OS) were used as end-points, and log-rank tests were used

for univariate hypothesis tests after correction for multiple

hypothesis testing. For multivariate survival analyses,

sparse Cox regression was performed on the full set of

driver events. Further information on methodology can be

found in the online supplement.

Results

Patients and sequencing metrics of the study

We used TPD to sequence unmatched genomic DNA from

373 MM patients at diagnosis, and we added 45 patients

from a previously published WES study [10] for a total of

418 (Table 1). Mean age was 56.6 years. Most patients

(76.3%) received bortezomib-based induction treatment

followed by autologous hemopoietic stem cell transplant.

First-line bortezomib-treated patients had a younger median
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age (55.6 vs 59.8 years, p= 1 × 10−5, Student's t-test).

Median follow-up was 5.4 years. At the time of analysis,

85.9% of patients relapsed, and 48.3% died.

We sequenced an average of 1.46 Gb per sample to a

target region depth of 118.9× (Supplementary Figure 1).

The average on-target efficiency was 34.3%, including the

IGH locus that shows extensive deletions in plasma cells,

leading to underestimation of the actual on-target efficiency

[22]. Although coverage was lower than our previous WES

study (Supplementary Figure 2A), the distribution of gene

mutations did not show any significant differences (Sup-

plementary Figure 2B), suggesting that the overall perfor-

mance of our TPD was comparable to the previous WES

study.

Analysis of gene mutations in multiple myeloma

After excluding artifacts and likely germline single-

nucleotide polyorphisms, we identified 2269 high-con-

fidence, likely somatic variants in 215 of the 246 genes

included in the design in 412 out of the 418 patients ana-

lyzed (Supplementary Table S1). We then compared the

expected pattern of mutations in each given gene derived

from the literature—typically inactivating mutations for

tumor suppressor genes and hot-spot mutations for onco-

genes—to the pattern observed in our series to triage each

variant into “oncogenic”, “possible oncogenic”, or

“unknown” classes (see Supplemental Methods for further

details). Looking at oncogenic mutations only, we found

695 variants in 106 genes in 342 patients (Fig. 1a). Num-

bers increased to 1250 variants in 177 genes in 395 patients

with the addition of possible oncogenic variants. At least

one oncogenic or possible oncogenic variant was found in

94.5% of patients, with a median of two per patient. The list

of most commonly mutated genes closely recapitulated

previously published data (Fig. 1b, top) [9–13]. Clustered

missense mutations were prevalent in known driver onco-

genes such as KRAS, NRAS and BRAF, whereas an excess

of truncating mutations was found in known tumor sup-

pressors such as TP53, FAM46C, SP140 (Fig. 1b, bottom).

Most oncogenic mutations (63%) were accounted for by

nine of the top driver genes previously identified, i.e.,

KRAS, NRAS, TP53, FAM46C, BRAF, DIS3, TRAF3,

SP140, IRF4 (Fig. 1b). A mutation in at least one of these

nine genes was found in 64% of patients. Conversely, many

genes showed a large excess of variants of unknown or

possible oncogenic potential. Among these, large genes like

FAT1, FAT3, FAT4, DNAH9, DNAH11, PCLO, whose role

in myeloma pathogenesis remains unclear [10, 13, 25]. Last,

we found sporadic oncogenic mutations with potential

clinical impact in CRBN and IKZF1, previously associated

with resistance to immunomodulatory drug [19, 26] in <1%

of patients each. Our mixed confirmation/discovery effort

did therefore not identify novel genes mutated at a sig-

nificant recurrence rate in MM, but at the same time we

showed how the long tail of uncommonly mutated genes

contributed a significant fraction of the heterogeneous

genomic landscape of MM. Given the possible inclusion of

artifacts and/or germline variants in mutations of

“unknown” class, we only considered variants of oncogenic

or possible oncogenic classes as driver mutations for sub-

sequent analysis.

Table 1 Overall clinical features of cases included in the study

Variable Baseline

distribution

in cohort

Sample

Sample size for

sequencing

418

Sample size for

outcome data

418

Median (range)

follow-up

5.4

(0.1–11.5)

years

Demographics

Sex

Male 243 (58.1%)

Female 171 (40.9%)

NA 4 (1%)

Age, mean ±

SD

56.6 ± 8.4

years

Biochemical

β2

microglobulin,

mean ± SD

7.8 ± 9.6

(mg/L)

MM staging

ISS I 150 (35.9%)

ISS II 102 (24.4%)

ISS III 86 (20.6 %)

NA 80 (19.1%)

Treatment

VD-HDM 266 (63.6%)

VTD-HDM 53 (12.7%)

VAD-HDM 67 (16.0%)

MPV/KMP 5 (1.2%)

MPT 10 (2.4%)

RD 5 (1.2%)

SMM 1 (0.2%)

NA 11 (2.6%)

Outcome

Relapse 359/418

(85.9%)

Death 202/418

(48.3%)
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Overall, 56% of patients displayed activation of the

RAS/MAPK pathway, as clustered missense mutations of

KRAS, NRAS, BRAF, and truncating mutations of NF1 and

RASA2. The NF-kB pathway was recurrently hit as well,

with mutations—mostly inactivating—of TRAF3,CYLD

and LTB in 12% of patients. Last, mutations or deletions of

genes broadly implicated in the DNA damage response

(TP53, ATM, ATR, BRCA2) were observed in 22% of

patients. Although the mutational spectrum was hetero-

geneous and most genes showed low recurrence rates, fre-

quent involvement of these pathways confirms their

functional relevance in MM pathogenesis.

Identification of copy number changes and IGH
translocations allows analysis of the integrated
genomic landscape of myeloma

With most MM patients displaying prognostically relevant

structural abnormalities by karyotype or fluorescence in situ

hybridization (FISH) analysis, we sought to derive this

information from our NGS data [22]. Recurrent IGH

translocations were identified in 135 out of 418 patients.

FISH validation for t(4;14) on 119 of them showed our

approach had 91% sensitivity and 98% specificity (Sup-

plementary Table S2). We identified 57% of patients as

HDMM and 32% as IGH-translocated (Fig. 2a). 9% of

patients harbored both an hyperdiploid karyotype and an

IGH translocation, and t(4:14) was the most prevalent in

this subgroup [27]. We then identified segmental chromo-

somal aneuploidies with prognostic significance in 61% of

patients, at rates comparable to previous studies based on

SNP arrays [28]. Furthermore, we identified gene-level

gains and losses. Many gene amplifications were con-

cordant with whole-chromosome trisomies in hyperdiploid

cases, such as CCND1 in chromosome 11, prompting

exclusion of these events from further analysis. The most

frequent gene deletions instead consisted of known tumor

suppressors, and for TP53, CYLD, SNX7 these coexisted so
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Fig. 1 Absolute number of mutations in the study: a Left: absolute

numbers of genes with at least one mutation of the specified class

found in the study. Right: Number of patients carrying at least one

mutation of the specified class. Oncogenic variants: light blue. Possible

oncogenic variants: dark blue. Variants of unknown significance:

orange. No variants identified: green. b Top: stacked bar chart of

mutations in the study, limited to genes with >2 oncogenic mutations,

broken down by mutation class. Bottom: For the same genes, missense

variants are in red, truncating variants are in gray
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frequently with larger segmental chromosomal deletions

that we aggregated loss of the gene locus and loss of the

chromosome segment as one variable for further analysis.

After these adjustments, genuine gene-level copy number

alterations were found in 51% of patients.

Considering recurrent translocations and aneuploidies,

deletions of tumor suppressor genes, amplification of

oncogenes, and mutations pertaining to “oncogenic” or

“possible oncogenic” classes, at least one such driver event

was present in >99% of patients (Supplementary Fig-

ure 3A). Overall, a median of 6 events were present in each

patient (Fig. 2b). KRAS and NRAS were the only point

mutations present in the 15 most frequent driver events,

highlighting how karyotypic events dominate the integrated

genomic landscape of MM (Fig. 2c). In addition, we

interestingly found frequent deletions in genes required for

plasma cell development such as XBP1 and PRDM1

(Fig. 2c) that also show recurrent mutations, often truncat-

ing, suggesting they may represent novel tumor suppressors

in MM (Supplementary Table S1). Hyperdiploid cases

showed a small but significantly higher average number of

mutations than cases with IGH translocations (2.75 vs 2.5,

chi-square test p= 0.002) (Supplementary Figure 3B),

suggesting that while additional genetic events are required

for disease progression, the evolutionary trajectory of each

myeloma case may vary based on the initiating event.

Predictive and prognostic value of individual
genomic events

We asked whether genomic features were correlated with

clinico-laboratoristic features. Using linear models, we

found only two associations. 17p deletions presented a

modest but significant (p= 0.001, likelihood ratio test)

correlation with increasing age. Unlike myeloid disorders

[15, 16] and clonal hemopoiesis [29–33], here TP53

mutations were not correlated with age (Supplementary

Figure 4A, B), suggesting a different evolutionary trajec-

tory. Furthermore, 1q amplification was significantly cor-

related with higher beta-2 microglobulin levels (p= 0.003,

;
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Supplementary Figure 4C). Among disease-independent

predictors of survival, older age was associated with poorer

survival as previously reported (Cox p= 0,019, Supple-

mentary Figure 4D) [34]. First line proteasome inhibitor

(PI) treatment was associated with improved PFS, and with

a trend towards improved overall survival (OS, Supple-

mentary Figure 4E), whose impact was more difficult to

evaluate given the availability of PI-based salvage treatment

in the non-PI induction cohort. Finally, we found no sig-

nificant association between genomic lesions and survival

for PI-treated patients, including no significant benefit from

bortezomib in t(4;14) [7]. The low frequency of most driver

events, and the likely modest size of the effect of a given

treatment on a driver event, warrant larger cohorts are

analyzed to answer this question in a comprehensive way.

We performed a univariate Cox analysis to infer the

prognostic value of each genomic feature for PFS and OS

(Supplementary Table S3). We found 12 variants sig-

nificantly associated with poorer PFS and/or OS (Supple-

mentary Figure 5). Interestingly, most gene mutations were

not relevant for prognosis. The only mutated gene with a

clear prognostic impact on both PFS and OS was TP53,

while DNAH11 mutations conferred worse OS only (Log-

rank test, p= 6.9 × 10−4 and 7.3 × 10−3 for OS, respec-

tively). Looking at gene-level gains and losses, we found 5

events conferring shorter OS, including losses of TP53/17p,

CYLD/16q, FAT1, and amplifications of MYC and NRAS.

We could confirm the negative impact on survival of t(4;14)

[4] and that of regions of recurrent CNAs [28] (that were

selected for their prognostic impact in the first place).
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Despite this selection bias, the lack of prognostic value of

most gene mutations and their overall lower level of

recurrence compared to cytogenetic changes underscores

the relevance of karyotypic events in shaping the clinical

behavior of MM.

Independent prognostic value of driver genomic
lesions and their interaction

We next performed a multivariate sparse Cox regression on

the full set of genomic variables. For PFS, 18 features had

non-zero coefficients, with 9 of them being significant in a

second multivariate Cox regression restricted to the first

shortlist of 18 variables. Among these, mutations in

ATP13A4 and deletions in ARID4B had a favorable impact,

whereas mutations in SP140 and NRAS, t(4;14), amp(1q),

del(17p13) and deletions of FAT1 and PRDM1 had a

negative impact (Fig. 3a, left). For the OS regression, 13

features had non-zero coefficients with 7 of them being

significant in the restricted analysis: mutations in ATP13A4,

KDM6A and PRDM9 had a favorable impact, while t(4;14),

amp(1q), del(17p13), del(1p) had a negative impact

(Fig. 3a, right). Finally, because our cohort was hetero-

geneous in demographics and treatment received, we used

multivariate linear regression models to exclude a con-

founding effect of clinical features on the prognostic value

of each of these genomic variables, confirming they can be

considered as independent prognostic events (Supplemen-

tary Figure 6).

Subsequently, we systematically looked for significant

interactions between driver events, i.e. combinations where

the prognostic impact on OS of one is significantly altered if

another is co-occurring. Despite the large set of variables,

we found only two significant interactions: cases bearing

both t(4;14) and PRDM1 deletion had a dismal median OS

of 265 days (HR 9.05, p= 3 × 10−4 for interaction, Fig. 3b,

left); BIRC2/3 deletion and PRDM1 deletion conferred a

median OS of 666 days (HR 6.3, p= 0.04) (Fig. 3b, right).

0 500 1000 1500 2000 2500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

days

O
ve

ra
ll
s
u
rv
iv
a
l

n=19 n=32 n=20 n=18 n=121 n=35 n=100 n=45 n=45 n=20 n=13

0 500 1000 1500 2000 2500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

days

D
is
e
a
s
e
F
re
e
S
u
rv
iv
a
l

TP53 subclonal

TP53 Clonal

TP53 subclonal

TP53 Clonal

A

B C

p=0.66p=1

Fig. 4 Subclonal mutations:

a Stacked bar chart of the

clonality status of the top 11

mutated genes in our cohort:

bars refer to the left Y-axis and

plotted is the proportion of

variants that are subclonal

(orange), clonal (dark blue) and

presumed clonal (light blue)—

i.e., cases where confidence

intervals of aVAF are all

overlapping and low tumor

purity could lead to over-

estimation of clonality. The

yellow line refers to the right Y-

axis and represents, for each

gene, the ratio between

subclonal and clonal variants,

i.e., higher values correspond to

genes with more subclonal

variants. (b)Kaplan–Meier plot

of progression-free survival in

patients with subclonal (red) or

clonal (blue) TP53 mutations

with p-values from univariate

analysis (log-rank test) adjusted

for multiple hypotheses testing.

c Kaplan–Meier plot of overall

survival in patients with

subclonal (red) or clonal (blue)

TP53 mutations with p-values

from univariate analysis (log-

rank test) adjusted for multiple

hypotheses testing
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When analyzed in isolation, PRDM1 deletions had no effect

(Supplementary Table S3), implying that the prognostic

value of driver oncogenic events in MM may differ based

on their genomic context.

We also looked for combinations of variables that could

be relevant for OS, even if not significant for interaction,

across the whole dataset. We first analyzed the association

of TP53 mutations and chr17p deletions, two events that are

known to co-occur [10], and the prognosis was slightly

worse for the combination (20/418 patients), in a trend

suggestive of an additive effect (Supplementary Figure 7A).

However, the shortest OS was that of t(4;14) and TP53

mutations (Supplementary Figure 7B), conferring a dismal

228 day median overall survival to patients bearing both

events. HDMM patients bearing an IGH translocation

showed a worse OS compared to those without (Supple-

mentary Figure 7C). On the same lines, OS was negatively

affected by the total number of driver oncogenic events,

irrespective of their nature, in a stepwise decline (Supple-

mentary Figure 7D), mainly supported by karyotypic events

(Supplementary Figures 7E-F). This reinforces the notion

that myeloma evolution toward more aggressive disease is

driven by acquisition of additional driver events.

Clonal and subclonal driver mutations

Adjusted VAF (aVAF) can be used to infer the fraction of

cells carrying each mutation, so to time its order of acqui-

sition [15, 16]. Subclonal mutations in known driver genes

such as KRAS, NRAS, TP53 were identified in 19.8%, 26%

and 26.7% of cases, respectively (examples in Supple-

mentary Figure 8A). When ranked based on the fraction of

subclonal occurrences, all genes had evidence of both clonal

and subclonal mutations, but CYLD and ZFHX4 had a

Fig. 5 Pairwise association between variables: Heatmap showing

pairwise analysis of occurrence of the most frequent genomic events in

MM. The same variable is plotted in the X and Y axis, and the intensity

of color in the leading diagonal indicated the frequency of the variable

in the dataset. In the upper triangle, intensity of green indicates the

frequency of co-occurrence of any two variables. In the lower triangle,

associations are colored by odds ratio: non-significant ones are in gray,

while significant ones are in blue if co-occurring, and red if mutually

exclusive (p-value < 0.05, fisher test corrected for multiple hypothesis

testing). Events with false-discovery rate <0.1 are marked with a dot

and events with family-wise error rate <0.05 are marked with a star.

While only 47 variables are shown, statistical significance is computed

on the full dataset of 192 variables shown in Supplementary Figure 10
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Fig. 6 Clustering of myeloma samples based on genomic landscape: a

Bayesian Dirichlet clustering process of the 418MM cases (in col-

umns) based on genomic variables (in rows, top panel), with verticals

black lines showing separation between identified clusters. A zoomed

in view for the karyotypic abnormalities is provided in the bottom

panel. Cluster 1 is composed of three patients where no driver event

could be identified. b For each of the four clusters, the histogram of the

distribution of gene mutations (top) and that of the CNAs (bottom) are

provided. c Progression-free (left) and overall survival (right)

Kaplan–Meier analysis of the four clusters
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somewhat higher percentage of subclonal variants, sug-

gesting these mutations may preferentially be acquired later

in myeloma evolution (Fig. 4a). TP53 was also more fre-

quently subclonal, but was nevertheless clonal in 11% of

myeloma cases. Conversely, IRF4 and DIS3 mutations were

most likely to be clonal and therefore acquired earlier in

evolution. We then looked at recurrent precedencies in

pairwise analysis of mutated genes, and again found no

recurrent pattern suggesting that mutations of driver genes,

in our sample size, do not follow preferential evolutionary

trajectories (Supplementary Table S4). Interestingly, we

found that multiple mutated alleles of driver gene mutations

-up to 5 for TP53- could be found at the subclonal level in a

significant fraction of patients (Supplementary Figure 8B),

again highlighting the heterogeneous subclonal structure of

MM due to convergent evolution [35, 36].

The impact of clonal status on the prognostic value of gene

mutations is unclear for most cancers and has never been

studied in myeloma. Interestingly, we found that the clonality

status of mutations did not influence survival, with the

exception of a trend towards improved OS for TP53 subclonal

mutations (Fig. 4b, c, Supplementary Figure 9).

Patterns of co-occurring and mutually exclusive
events

Patterns of co-occurrence of driver events were system-

atically analyzed to look for potential cooperativity in

pairwise associations and functional redundancy for

mutually exclusive variables. In the list of 197 driver

events we identified 843 significant interactions at p < 0.05

(Fisher Test), 15 at false-discovery rate <0.1 and 9 at

family-wise error rate <0.05 out of a total 19306 possible

interactions (Supplementary Figure 10, most frequent

events in Fig. 5). Among, significant pairwise interactions,

some were previously described, such as the positive cor-

relation between chr13 and known poor prognostic factors

such as t(4;14), amp1q, del12p13.31, del17p13, TP53

mutations. KRAS and NRAS mutations were mutually

exclusive between each other but not with BRAF muta-

tions. We found a general pattern where mutations in tumor

suppressor genes co-occurred with deletion of the wild-

type allele in a typical double-hit manner for TP53, CYLD,

and TRAF3 mutations, supporting that these bi-allelic

events not only underlie relapse but may be present at

diagnosis as well [37]. Hyperdiploid and IGH-translocated

cases showed significant differences in the spectrum of

associated genomic events. Chr13 deletions, chr1q ampli-

fications, DIS3 and ZFHX4 mutations were less frequent in

HDMM, which in turn was enriched for FAM46C muta-

tions. XBP1 deletions clustered with deletions of NF-kB

pathway genes TRAF3 and BIRC2/3, and with chromoso-

mal events such as chr12p, chr13, chr17p deletions and t

(4;14). Finally, t(11;14) and t(4;14) showed a diverse

spectrum of associated driver lesions, with t(4;14) cases in

particular being associated with chr13 deletions and chr1q

amplifications.

We then extended this analysis to uncover preferential

trajectories of cancer evolution highlighting different asso-

ciations of hotspot mutations within genes (Supplementary

Figure 11). We found a tendency for hotspot mutations in

KRAS, NRAS, BRAF, IRF4 to show a differential pattern of

co-occurrence, but none with a significant false-discovery

rate.

Genomic structure suggests new myeloma subtypes
with clinical impact

The identification of preferential patterns of associations or

mutual exclusivity of driver lesions, prompted us to explore

whether new myeloma subtypes could be identified based

on their extended genotype using a previously described

Bayesian model [16]. We could reliably identify four

clusters (Fig. 6a) of MM cases with good posterior prob-

ability of class assignment (Supplementary

Figure 12Ai–Aiii), albeit lower than acute myeloid leuke-

mia, which carry a simpler genomic structure [16]. Aside

from a small cluster 1 (3 patients) where no driver events

could be identified, most hyperdiploid and IGH-translocated

cases clustered together in the large cluster 3 (291 patients,

69.6%). We then identified two clusters, 2 and 4, composed

of 58 (13.9%) and 66 (15.8%) patients, respectively. Both

clusters were characterized by a significantly lower number

of mutations but showed opposing features otherwise.

Cluster 2 was enriched for IGH translocations, had the

highest number of CNAs, was enriched for amp(1q), del

(13), del(17p), deletions of BIRC2/3 and XBP1 and carried

more TP53 mutations (Fig. 6b, Supplementary Figure 12B).

On the contrary, cluster 4 was mostly composed of hyper-

diploid cases and showed fewest CNAs and mutations

overall (Fig. 6b, Supplementary Figure 12B). There was no

association between treatment (PI, ASCT) and subgroups,

while cluster 4 was characterized by a slightly lower age

(Supplementary Figure 12C).

Prognosis was different for both PFS (Fig. 6c, left) and

OS (Fig. 6c, right) across the clusters. Cluster 2 showed the

worse median OS—1973 days—whereas cluster 4 was

associated with longer survival (median OS not reached),

again showing concordance between the number of CNAs

and prognosis.

Discussion

We provide the first large-scale TPD effort in MM to

comprehensively describe its driver genomic landscape and
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how this impacts on clinical behavior. Compared to WES,

we reduced the amount of input DNA, the complexity of

downstream analysis and forwent the need for a matched

sample, to move this technology one step closer to the

clinic. Our approach was robust and conservative, and even

larger studies may allow re-classification of events dis-

carded in our list as non-driver.

Gene mutations were frequent in our cohort; however,

we found a preponderant contribution of the few highly

recurrently mutated genes that were already described.

Nevertheless in individual cases, rare gene mutations may

impact treatment decisions. For example, CRBN, IKZF1 or

IKZF3 mutations (totaling a combined 1.6% of patients in

our cohort) would predict resistance to immunomodulatory

drug [26], whereas XBP1 deletions could predict bortezo-

mib resistance [38], suggesting future clinical-grade tar-

geted platforms must include rare driver events that have

predictive value for treatment.

Confirming previous reports, the prognostic yield of

gene mutations was rather low in our large cohort as

compared to chromosomal events. PFS and OS were both

impacted only by TP53 mutations and by rare mutations

in ATP13A4, an ion transporter previously associated

with developmental disorders [39] but whose role in MM

was never reported before. We did not confirm a prog-

nostic role of genes such as IRF4, EGR1 and ZFXH4 [13],

possibly because of front-line PI treatment and longer

follow-up of our cohort (63 months here vs 25 in ref.

[13]). We identified subclonal mutations for all recurrent

driver genes, showing that lesions classically associated

with disease progression can spontaneously arise before

diagnosis. As these lesions can be positively selected by

treatment, sensitive methods must be employed for their

identification at diagnosis to achieve an accurate prog-

nostication. Some events had a strong, context-depen-

dent, prognostic value, such as deletions of PRDM1

coupled with either t(4;14) or BIRC2/3 deletions. These

interactions may be infrequent but are highly instructive

and clinically relevant, supporting the use of extended

gene panels in prognostic studies. However, to identify

more such instances, much larger sample sizes will be

needed given the heterogeneous genome of MM and the

expected modest effect of most interactions. In the future,

global risk calculators that incorporate extended clinical,

demographic, laboratoristic and genomic variables will

be able to address these points [40]. BIRC2/3 genes

deletions have been described in myeloma [41, 42],

whereas PRDM1 has only recently been identified as a

tumor suppressor based on recurrent truncating mutations

[11]. Truncations and deletions in PRDM1 were never-

theless previously described in lymphomas [43, 44],

where they are associated with poor prognosis [45].

Deletions of the 6q21 chromosome band containing the

PRDM1 locus are known to be recurrent in MM [46]. The

targeted nature of our study, however, did not allow us to

characterize the size of such deletions and thus we cannot

exclude that other tumor suppressors deleted in 6q con-

tributed to this observation.

Overall, driver events had an additive effect on

prognosis, showing that progressive accumulation of

abnormalities correlates with clinical aggressiveness,

almost independently of the nature of such events.

Therefore, our findings extend previous initial

observations on modulation of prognosis by additive

negative prognostic factors in FISH [47], and that

of aneuploidies in the prognosis of HDMM or IGH trans-

locations [48, 49].

Current MM classification based on IGH translocations

or hyperdiploidy is reliable and biologically relevant, as it is

based on known early driver events. Here, we report on the

first attempt toward a genomic classification of myeloma

using innovative clustering algorithms based on the exten-

ded genotype of each patient. Allowing for the hetero-

geneity of the disease, we could identify disease subgroups

characterized by a different spectrum of translocations,

CNAs and gene mutations, as well as different contribution

by each class of events. A cluster of hyperdiploid cases

characterized by the fewest gene mutations and CNAs

showed a relatively good prognosis, whereas non-

hyperdiploid cases carrying multiple segmental chromoso-

mal aneuploidies and fewer gene mutations carried a worse

prognosis. Again, specific gene mutations did not contribute

much to the clustering. Similar to our analysis, a report

integrating MM expression profiles with mutational data to

identify subgroups with biological and prognostic values

showed little contribution of gene mutations to the clus-

tering [50]. However, knowledge of the mutational status of

a large number of genes allowed us to perform a prog-

nostically relevant clustering of cases based on the overall

mutational burden, supporting the value of analysis of

infrequently mutated genes. Lastly, a recent study also

reported on the dissection of hyperdiploid cases with dif-

ferent prognosis based on specific additional cytogenetic

lesions, supporting the validity of extended genotyping for

prognostication of MM [51].

The increasing availability of novel drugs and the

better understanding of pathways involved in MM pro-

gression prompts the need for rationalized treatment

approaches and mandates that high-risk disease is diag-

nosed with accuracy [52,53]. Probably, future genomic

studies will provide not only improved prognostication, but

also predictive factors of response and actionable mutations

that will help in treatment choices. The methodology and

results described here represent an important advance that

can accelerate the introduction of genomics in the clinical

approach to MM.
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