
Bulletin of Mathematical Biology (2022) 84:94
https://doi.org/10.1007/s11538-022-01050-2

SPEC IAL ISSUE : MATHEMATICS AND COVID-19

Analysis of the Geographic Transmission Differences of
COVID-19 in China Caused by Population Movement and
Population Density

Yi Hu1 · Kaifa Wang1 ·Wendi Wang1

Received: 28 May 2021 / Accepted: 4 July 2022 / Published online: 1 August 2022
© The Author(s), under exclusive licence to Society for Mathematical Biology 2022

Abstract
The coronavirus disease (COVID-19) has led to a global pandemic and caused huge
healthy and economic losses. Non-pharmaceutical interventions, especially contact
tracing and social distance restrictions, play a vital role in the control of COVID-19.
Understanding the spatial impact is essential for designing such a control policy. Based
on epidemic data of the confirmed cases after the Wuhan lockdown, we calculate the
invasive reproduction numbers of COVID-19 in the different regions of China. Sta-
tistical analysis indicates a significant positive correlation between the reproduction
numbers and the population input sizes from Wuhan, which indicates that the large-
scale population movement contributed a lot to the geographic spread of COVID-19
in China. Moreover, there is a significant positive correlation between reproduction
numbers and local population densities, which shows that the higher population den-
sity intensifies the spread of disease. Considering that in the early stage, there were
sequential imported cases that affected the estimation of reproduction numbers, we
classify the imported cases and local cases through the information of epidemiological
data and calculate the net invasive reproduction number to quantify the local spread
of the epidemic. The results are applied to the design of border control policy on the
basis of vaccination coverage.
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1 Introduction

In this ongoing epidemic of COVID-19, the implementation of non-pharmaceutical
interventions (NPIs) can help to curb the spread of the epidemic, even if vaccines are
available. NPIs include early case identification and isolation, banning public gather-
ings, personal contact restrictions, social alienation measures and personal protection
actions. Many countries have implemented full or partial blockade measures to restrict
gathering activities (Block et al. 2020; Ferguson et al. 2020;Gatto et al. 2020). Because
Wuhan was the first city in China where the epidemic occurred, to prevent the further
spatial spread of COVID-19 in China, Wuhan started to lockdown on January 23,
2020 (Tian et al. 2020). Afterward, all provinces started to implement prevention and
control measures such as inter-city travel restrictions and encouraging the public to
wash their hands, wear masks. China has implemented a series of public health and
medical measures, such as building Fangcang Shelter Hospitals, reasonably allocated
medical resources and achieved complete treatment for patients.

Data analysis and mathematical modeling can help to understand the spread of
COVID-19 and provide important theoretical supports and decision-making basis for
epidemic prevention and control. After the outbreak of COVID-19, compartmentmod-
els are established (Zhao and Feng 2020; Huang et al. 2020; Roda et al. 2020; Song
et al. 2020; Tang et al. 2020a, c; Yu et al. 2020; Zhang et al. 2020a) to estimate impor-
tant parameters, such as the basic reproduction number (R0), epidemic time, number
of cases (Huo et al. 2021) and the final size. As an important indicator to characterize
the spread of infectious diseases, R0 is defined as the average number of new infec-
tions caused by a typical individual (Dietz 1974; Hethcote 2000; van den Driessche
and Watmough 2002). Li et al. (2020) fit the initial case data in Wuhan and estimated
that the basic reproduction number is 2.2 (1.4–3.9). Many studies have evaluated the
control effect of NPIs on COVID-19 (Gatto et al. 2020; Ge et al. 2020; Jia et al. 2020;
Luo et al. 2021; Tang et al. 2020d; Xue et al. 2021), such as the effect of building
Fangcang Shelter Hospitals (He et al. 2021), wearing masks (Eikenberry et al. 2020).
In terms of monitoring and evaluation research on prevention and control strategies,
many articles have given valuable results (Fang et al. 2020; Huang et al. 2020). More-
over, Tang et al. (2020b) andWang et al. (2020) analyzed the best time to resume work
in Wuhan.

Population movement has a strong risk to diffuse the spread of the epidemic. Chen
et al. (2020) studied the distribution of cases of the early epidemic in Wuhan and
its relationship with population movement. Ye et al. (2020) analyzed the trend of
the epidemic situation in Guangdong Province based on population movement. In
addition, there is a strong positive correlation between the number of case and the
number of population outflow from Zhang et al. (2020c) and Zhou et al. (2020).

To the best of our knowledge, most of researches focus on the establishment of
a dynamic model in a fixed area and very few works have considered the spatial
effects of COVID-19 transmission. Indeed, before the lockdown of Wuhan, approx-
imately 5 million people flowed to other regions of China due to Chinese New Year
(https://news.163.com/20/0126/22/F3ROV3FU0001899O.html) and caused the epi-
demic outbreaks in these sites. Notice that input numbers of migrants from Wuhan
were different for different cities and provinces. Furthermore, the local population
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densities (PD) vary greatly in different regions. These spatial differences may result in
different epidemic risks, because each individual in a regionwith a higher PD probably
has a larger social network with each other and sites near the epidemic center are easier
to get more infectious inflows, which means more infectious contacts. Therefore, it is
important to consider how the population migration and population density contribute
to the outbreaks of COVID-19.

In the present paper, based on the reported epidemic data before the lockdown
of Wuhan, we estimate the reproduction numbers of COVID-19 for the provinces
and cities of China. Through correlation analysis and multiple linear regression, we
reveal the relation between the reproduction numbers and population densities, and the
relation between the reproduction numbers and population migrations. These results
are helpful for the formulation of prevention and control measures.

The organization of the remaining paper is set as follows. Section 2 presents data
collection and analysis. Section 3 introduces themainmethods, including reproduction
number and data smoothing method. In Sect. 4, we calculate the invasive reproduction
numbers and show the correlation analysis results. We also analyze the spread of the
local epidemic through the net invasive reproduction number. The paper ends with a
brief discussion.

2 Data Collection and Analysis

The daily epidemic report data of 31 provinces (municipalities and autonomous
regions) in China are obtained from the website of Chinese Center for Disease Control
and Prevention (http://2019ncov.chinacdc.cn/2019-nCoV/global.html). The epidemic
data of each city in Hubei Province are obtained from the Health Commission of
Hubei Province (http://wjw.hubei.gov.cn/fbjd/dtyw/). The data for calculating popu-
lation movement sizes come fromBaiduMigration website (https://qianxi.baidu.com/
2020/).

Notice that the Spring Festival travel season began on January 10, 2020, andWuhan
started to lock down at 10 a.m. on January 23, 2020. We select the time period of
data from January 10 to January 24, 2020, a total of 15 days. The population flows
among the regions except for Wuhan are ignored because the dispersal individuals
were susceptible and had little influence on disease transmissions and local population
densities. Thus, we focus only on the emigration flows ofWuhan. The specific formula
for computing the population input size (PIS) of each site (province or large city),
coming from Wuhan during this period, is given by

PIS =
∑

i

IPi × indexi∑
i indexi

× Ntotal.

Here, IPi represents the inflowproportion fromWuhan on the i th day, indexi represents
the migration index inWuhan on the i th day, reflects the scale of migration population,
which can be horizontally compared between cities, i = 1, . . . , 15, Ntotal represents
the total number of migrants from Wuhan, which is 5 million (https://news.163.com/
20/0126/22/F3ROV3FU0001899O.html).
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Table 1 The PIS from Wuhan and PD at provincial level in China

Region PIS PD Region PIS PD

Anhui 113,921 451 Jiangsu 73,842 751

Beijing 44,544 1313 Jiangxi 106,634 278

Chongqing 63,249 376 Jilin 8461 144

Fujian 45,271 325 Liaoning 16,595 295

Gansu 17,501 62 Ningxia 4228 104

Guangdong 95,756 631 Shaanxi 36,249 188

Guangxi 40,099 207 Shandong 55,151 636

Guizhou 28,261 204 Shanghai 33,914 3823

Hainan 18,667 264 Shanxi 29,857 237

Hebei 47,177 400 Sichuan 62,244 172

Heilongjiang 14,010 80 Tianjin 7641 1304

Henan 283,921 575 Xinjiang 10,440 15

Hunan 174,886 326 Yunnan 26,756 123

Inner Mongolia 8964 21 Zhejiang 54,315 564

PIS, population input size, person; PD, population density, person/km2

Fig. 1 Geographic distribution of Wuhan’s population outflow sizes from January 10 to January 24, 2020
(Color figure online)
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Table 2 The PIS from Wuhan
and PD at prefecture-level cities
in Hubei Province

Region PIS PD Region PIS PD

Enshi 66,405 141 Suizhou 110,313 230

Ezhou 140,353 676 Tianmen 72,295 485

Huanggang 459,650 364 Xiangyang 137,432 286

Huangshi 132,239 539 Xianning 176,204 258

Jinmen 114,832 234 Xiantao 102,915 449

Jinzhou 228,290 396 Xiaogan 479,663 552

Qianjiang 39,730 482 Yichang 100,065 197

Shiyan 66,902 144

PIS, population input size, person; PD, population density, person/km2

The numbers of PIS at provincial level are shown in Table 1. Figure 1 shows the
geographic distribution of populationmovements. Outside Hubei Province, there were
large differences in the size of populationmovements.Henan,Hunan andAnhui,which
are the neighboring provinces of Hubei, ranked the top three in PIS, while Ningxia,
Qinghai and Tibet, which are far away from Wuhan, were in the bottom of PIS rank.
In addition, in order to describe the geographic distribution of population mobility on
a smaller scale, we further focus on the cities in Hubei Province. Before the lockdown
of Wuhan, nearly 70% of the total migrant population in Wuhan flowed into the
prefecture-level cities in Hubei Province every day, and the corresponding PISs at
prefecture-level cities in Hubei Province are shown in Table 2. The three prefecture-
level cities with the largest inflows were Xiaogan, Huanggang and Jingzhou, whereas
Shiyan City, Enshi Prefecture, Qianjiang City and Shennongjia Forest Region had
relatively small inflows.

The PDof each province or city comes from the 2019 Statistical Yearbook (National
Bureau of statistics 2020), which lists the population numbers of the regions at the end
of 2018 and the areas of the administrative divisions of China. The results are shown
in Tables 1 and 2, where the PD is the ratio of population numbers to area in the unit
of person/km2.

3 Method

3.1 Lotka–Euler equation

Our objective is to use the data of daily reported cases to estimate the reproduction
numbers of COVID-19 in the regions of China. As usual, we consider the case that
the daily counts of new cases in the initial phase increase exponentially at a rate r . Let
b(t) be the total number of infectious inputs and local new infections at time t . Under
the assumption that the infection process is stationary, we have

b(t) = b(t − a)era (1)
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for a > 0.
If F(a) is the infection rate and S(a) is the proportion of infectious individuals at

time a since local infection or arrival time for an infectious immigrant, then F(a)S(a)

is the expected rate of secondary cases at time a. It follows fromWallinga and Lipsitch
(2007) that

b(t) =
∫ ∞

0
b(t − a)F(a)S(a)da.

In view of (1), we get the Lotka–Euler renewal equation

1 =
∫ ∞

0
e−ra F(a)S(a)da. (2)

Let us define the invasive reproduction number R0 by

R0 =
∫ ∞

0
F(a)S(a)da.

The invasive reproduction number is an appropriate quantity to measure the transmis-
sion risk as the number of new cases increases exponentially with a rate r > 0 when
R0 > 1, and decline exponentially with a rate r < 0 when R0 < 1. In addition, it
includes the influences of continuous infectious inputs, whereas the classical basic
reproduction number considers only the local new transmissions. More importantly,
it can be estimated by direct fitting the data of daily reported cases. Indeed, the rate
F(a)S(a) can be normalized to a distribution g(a):

g(a) = F(a)S(a)∫ ∞
0 F(a)S(a)da

= F(a)S(a)

R0
.

This is a distribution of serial interval, which is defined as the mean duration between
the time of infection of a secondary infector and the time of infection of its primary
infector (Wallinga and Lipsitch 2007). Substituting this expression into (2), we get

1

R0
=

∫ ∞

0
e−rag(a)da.

Note that the right-hand side of this equation is the Laplace transform of function g(a).
IfM(z) = ∫ ∞

0 ezag(a)da, which is themoment generating function of the distribution
g(a), it follows from Wallinga and Lipsitch (2007) that the invasive reproduction
number R0 can be computed by

R0 = 1

M(−r)
. (3)
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3.2 Distribution of Serial Interval

The estimation of the reproduction number under a given growth rate depends on the
specific distribution of the serial intervals (Wallinga and Lipsitch 2007). The gamma
distribution is rich in shape and is very effective in fitting the data of serial interval of
COVID-19 (Li et al. 2020; Zhang et al. 2020b). Thus, we fix the distribution of serial
interval as a gamma distribution. The probability density function is

g(x) = βα

�(α)
xα−1e−βx ,

where α is the shape parameter, and β is the scale parameter. Exponential distri-
bution and chi-square distribution are special cases of the gamma distribution. The
corresponding moment generating function of gamma distribution is

M(t) = βα

�(α)

∫ ∞

0
xα−1e(t−β)xdx . (4)

For t < β, by the transformation v = (β − t)x we obtain

M(t) = βα

(β − t)α�(α)

∫ ∞

0
vα−1e−vdv =

(
β

β − t

)α

. (5)

Fixing t = −r in (5), one obtains the formula of the invasive reproduction number

R0 = 1

M(−r)
=

(
β + r

β

)α

. (6)

3.3 Exponential Growth Rate

We estimate the exponential growth rate r from the time series of daily confirmed
cases (ti , xi ), i = 0, . . . , n−1. For the region like Guangdong Province, the epidemic
data in the early stage are well fitted by an exponential curve. Figure 2 shows the fitting
graph of the confirmed cases of Guangdong Province, where January 22 of 2020, the
date of the first reported case in Guangdong Province, is fixed as the initial date for
fitting.

For cities or provinces with a small number of cases, the fitting effect of exponential
growth is poor. This may result from the stochastic effects such as the errors of data
reports, the variation of infection progressions and environmental perturbations. In
order to filter the stochastic fluctuations, we ask the techniques of Earn et al. (2020)
and Ma et al. (2013) where a logistic model is first used to simulate the increase
in cumulative cases and the modified daily cases are extracted from the cumulative
cases. More specifically, we assume that c(t) (the total number of cases at t) satisfies
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Fig. 2 a Daily confirmed data in Guangdong Province and b fitting graph of exponential growth rate of
Guangdong Province (Color figure online)
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Fig. 3 a Daily confirmed data and smoothed data in Guangxi Province and b fitting graph of exponential
growth rate of Guangxi Province (Color figure online)

a Logistic equation:

dc(t)

dt
= rcc(t)

[
1 − c(t)

K

]
, (7)

where rc is the intrinsic growth rate of the epidemic and K represents the final scale of
the epidemic. After that, we fix x(ti ) = c(ti ) − c(ti−1) and then fit the filtered data by
an exponential curve. Take Guangxi Province as an example, the actual data fluctuate
largely because the sizes of new cases are small, as shown in Fig. 3a. Through the
filtration, the random fluctuation of data is eliminated to get a better exponential fit,
as shown in Fig. 3b.
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3.4 Statistical Analysis

Shapiro–Wilk test is used to test the normality of the PD, PIS and reproduction num-
ber. If variables obey the normal distribution, then Pearson correlation coefficient
is selected. Otherwise, Spearman correlation coefficient is selected. Multiple linear
regression is selected to explore the relationships among R0, PD and PIS. Results are
considered as statistically significant when the p value is less than 0.05.

4 Results

In the epidemic spread, a considerable part of the cases were imported at the initial
phase and the cases due to local transmissions occurred over time. Notice that the
confirmed data do not distinguish the imported cases from the local cases. Therefore,
we define the invasive reproduction number on the basis of confirmed data as R0,
and the reproduction number from the local case data as the net invasive reproduction
number (Rnet

0 ), which describes the local transmission risk of the epidemic after the
arrival of imported cases.

4.1 The Invasive Reproduction Number

First, we use the data of confirmed cases in the early stage of COVID-19 spread from
January 20, 2020, to February 20, 2020, to fit the exponential growth rate of each
region. Second, based on the data of 425 cases in Wuhan, we previously used the
maximum likelihood method to estimate the gamma distribution of serial interval, and
our results in Hu et al. (2020) are in good agreement with Li et al. (2020) and Zhang
et al. (2020b). Taking the estimated parameters α = 5.3183, β = 0.6010 in Hu et al.
(2020), by (6) we obtain the calculation formula for invasive reproduction number:

R0 =
(
1 + r

0.601

)5.3183
. (8)

Table 3 shows the results of invasive reproduction numbers at provincial level in
China. Similarly, we also obtain the reproduction numbers at prefecture-level cities in
Hubei Province, which are shown in Table 4. On the whole, the reproduction numbers
in the early stage of the epidemic transmissions in the regions (cities) are between 2.0
and 6.6. Therefore, there was a high risk of epidemic outbreak.

In order to reveal how population movement and local population size influence the
risk of COVID-19 outbreaks, we conduct the correlation analysis between invasive
reproduction number and PIS, and the correlation analysis between invasive reproduc-
tion number and PD. After the test of normality, we find that the Pearson correlation
is selected for the first one, and the Spearman correlation is appropriate for the sec-
ond case. These correlation analyses show that the invasive reproduction number of
a province (city) in China (except Hubei Province) has a significant correlation with
the PIS (the correlation coefficient r = 0.628, P < 0.0001) and has also a signifi-
cant correlation with the local PD (r = 0.650, P < 0.0001). Furthermore, in Hubei
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Table 3 Estimations of invasive reproduction numbers and their 95% confidence interval (CI) at provincial
level in China

Region R0 95% CI Region R0 95% CI

Anhui 4.16 (3.65, 4.73) Jiangxi∗ 3.65 (3.02, 4.38)

Beijing 3.69 (3.29, 4.14) Liaoning 3.39 (1.84, 4.01)

Fujian 2.90 (2.32, 3.60) Inner Mongolia 2.54 (1.88, 3.38)

Gansu 2.65 (2.21, 3.16) Ningxia 2.46 (2.23, 2.69)

Guangdong∗ 4.80 (4.25, 5.40) Shandong∗ 3.66 (3.27, 4.08)

Guangxi 2.57 (2.24, 2.93) Shanxi 3.76 (3.16, 4.44)

Guizhou 3.16 (2.67, 3.72) Shaanxi 3.36 (2.74, 4.09)

Hainan 2.85 (2.55, 3.17) Shanghai∗ 3.91 (3.39, 4.50)

Hebei 3.42 (3.13, 3.73) Sichuan∗ 2.95 (2.67, 3.25)

Henan∗ 4.53 (3.98, 5.13) Tianjin 3.24 (3.01, 3.47)

Heilongjiang∗ 3.55 (3.06, 4.11) Xinjiang 2.58 (2.39, 2.80)

Hunan∗ 4.11 (3.55, 4.76) Yunnan∗ 3.40 (2.72, 4.23)

Jilin 3.38 (2.55, 4.41) Zhejiang∗ 4.10 (3.24, 5.14)

Jiangsu∗ 3.56 (3.17, 3.99) Chongqing 2.70 (2.36, 3.08)

Hubei 5.81 (5.76, 5.86)

The province with ∗ means its R0 is computed by raw data, the others are calculated by filtered data

Table 4 Estimations of invasive reproduction numbers and their 95% CI at prefecture-level cities in Hubei
Province

Region R0 95% CI Region R0 95% CI

Enshi 2.29 (2.04, 2.57) Suizhou∗ 4.03 (3.28, 4.91)

Ezhou∗ 4.29 (4.01, 4.59) Tianmen 3.62 (3.33, 3.93)

Huanggang∗ 3.65 (3.13, 4.23) Xiangyang 3.49 (2.69, 4.47)

Huangshi∗ 3.62 (2.95, 4.41) Xianning 2.32 (2.18, 2.46)

Jinmen 3.58 (3.31, 3.86) Xiantao 3.42 (2.91, 4.01)

Jinzhou∗ 4.54 (4.20, 4.89) Xiaogan∗ 4.73 (4.13, 5.30)

Qianjiang 3.02 (2.84, 3.20) Yichang∗ 3.69 (3.08, 4.40)

Shiyan∗ 3.26 (2.90, 3.65) Wuhan∗ 6.26 (5.99, 6.54)

The city with ∗ means its R0 is computed by raw data, the others are calculated by filtered data

Province, there are a significant correlation between the reproduction number and
PIS (r = 0.595, P = 0.019), and a significant correlation between the reproduction
number and local PD (r = 0.516, P = 0.049).

Though the above-mentioned correlations are statistically significant, the scatter
plots indicate that the linear correlations are weak, which are shown in Fig. 4. This
should be the case because a variety of control measures were adopted to reduce social
activities in China from the beginning. In addition, people were urged to wear surgical
masks for protection. These NPIs decreased the correlations.
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Fig. 4 Scatter plots and correlation coefficients of the invasive reproduction numbers versus PIS or PD. a
Scatter plot and correlation coefficient of invasive reproduction numbers versus PIS at provincial level in
China; b scatter plot and correlation coefficient of the invasive reproduction numbers versus PD at provincial
level in China; c scatter plot and correlation coefficient of the invasive reproduction numbers versus PIS
at prefecture-level cities in Hubei Province; and d scatter plot and correlation coefficient of the invasive
reproduction numbers versus PD at prefecture-level cities in Hubei Province. PIS population input size, PD
population density (Color figure online)

With the development of epidemics, the vaccination program (Kaur and Gupta
2020) and the border reopening measures (Nali et al. 2021) are implemented, which
cause a variety of influences on PD and PIS. First, the PD of susceptible population
becomes lower because the vaccination of COVID-19 provides a barrier for those
vaccinated individuals. In addition, the border reopened policy results in the increase
in PIS. In order to figure out how much the PD and PIS contribute to the disease
transmission risk, we fit the values of R0 by the PD and PIS. Notice that the disease
transmissions in one site are attributed to local transmission and infectious contacts
with imported individuals. We select

R0 = a ∗ PD + b ∗ PIS ∗ PD (9)
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Table 5 Parameter estimations of regression model

Model Unstandardized coefficients Standardized coefficients t P

B Standard error

PD 1.632 × 10−3 6.310 × 10−4 0.344 2.588 0.013

PIS*PD 2.498 × 10−8 6.964 × 10−9 0.477 3.587 0.001

PIS population input size, PD population density
∗ F = 24.897, R2 = 0.548

to fit the data, where a and b are constants to measure the intensities of local transmis-
sion and the transmission with imported individuals, respectively. Using the data in
Tables 1, 2, 3 and 4 and multiple linear regression, we obtain the regression model, in
which R0 is the dependent variable, and the two indicators (PD and PIS) are explain-
ing variables. Table 5 shows the results of the parameter estimation of the regression
model, including regression coefficients, standard errors, standardized coefficients and
the results of hypothesis test.

We consider a scenario where PIS varies from 1 to 105 and PD varies from 1 to
1000. Then numerical computations of invasive reproduction number on the basis of
(9) and Table 5 yield Fig. 5a where the green plane corresponds to R0 = 1. This
figure indicates that suitable sizes of PIS and PD can drive the reproduction number
below unity to control the epidemic disease. To demonstrate this, we let the vaccination
ratio be α and assume that the vaccine is 100% effective. Then the susceptible PD is
(1 − α) ∗ PD and (9) become

R0 = a ∗ (1 − α) ∗ PD + b ∗ (1 − α) ∗ PIS ∗ PD. (10)

If PD = 1000 and α = 0.6, we get a relation between R0 and PIS, which is shown in
Fig. 5b. From this function, we see that R0 < 1 when PIS < 23,170. This means that
the daily input number should be less than 23,170/15 ≈ 1544 to control the epidemic.
In other words, the control strategy should be selected from the green region in Fig.
5b.

Let us fix R0 = 1 in (10). Then the blue surface in Fig. 5c shows the surface of
critical vaccination ratio as PIS and PD vary, that is, if the vaccination ratio is above
this surface, the epidemic is controlled because R0 < 1. In order to consider border
reopening scenario under vaccination, we fix PD = 800 and R0 = 1. Then we get a
curve in the surface to describe the critical relation between the vaccination ratio and
PIS, which is marked by red color in Fig. 5c. To be clearer, we present Fig. 5d to show
the curve in the PIS-α-plane, in which the green region means that the epidemic is
controlled. It reveals that only when vaccination ratio exceeds a certain critical value
(here is 23.4% in this scenario, see blue pentagram in Fig. 5d), can the border be
reopened, and a higher vaccination ratio leads to the more openness.
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Fig. 5 a Numerical simulation of (9), b relation between PIS and R0 when α = 0.6 and PD = 1000, c
surface of vaccination ratio versus PIS and PD, which is defined by (10) in the case of R0 = 1 and d graph
of border reopening region for (α, PIS) when R0 = 1, PD = 800 (Color figure online)

4.2 The Net Invasive Reproduction Number

Since there were sequential inputs of imported cases in the early stage of COVID-
19 spread, which affect the estimation of invasive reproduction numbers, we classify
the imported cases and local cases through the information of epidemiological data
and calculate the net invasive reproduction number to quantify the local spread of the
epidemic. The cities or provinces with the full epidemiological information include
Shanghai, Yunnan, Guizhou, Shaanxi, Beijing, Liaoning, Sichuan and Henan. The
daily reported epidemiological data of these regions are collected through the websites
of the Health Commissions or from the literature (Cheng et al. 2020b; Liu et al. 2020).
The infected persons are divided as imported cases and local cases. An imported case
is defined as a patient who had a history of living in Hubei Province within 14 days
before the onset of illness. Otherwise, it is classified as a local case (Cheng et al.
2020a).
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Table 6 The net invasive reproduction numbers and their 95% CI

Region Rnet
0 95% CI Region Rnet

0 95% CI

Shanghai 4.48 (3.65, 5.45) Sichuan 2.23 (2.07, 2.44)

Yunnan 1.65 (1.53, 1.79) Beijing 2.78 (2.42, 3.19)

Guizhou 3.23 (2.53, 4.08) Liaoning 2.99 (2.45, 3.61)

Shaanxi 3.12 (2.57, 3.76) Henan 3.39 (2.80, 4.08)

Based on the data of local cases and (8), the net invasive reproduction numbers
are shown in Table 6. Compared with Table 3, the net invasive reproduction number
in most areas is less than the total invasive reproduction number. This means that
the reproduction number decreases with the removal of imported cases. Hence, the
total invasive reproduction number could cause an overestimation of local disease
transmission risk. Especially, this is the case for a city or a province with the strict
prevention measures or the lower PD, such as Southwest China, Beijing and Liaoning.

However, an attention should be paid to Shanghai’s net invasive reproduction num-
ber Rnet

0 = 4.48 (95%CI 3.65−5.45), which is larger than the invasive reproduction
number and indicates the risk of local spread of the epidemic in Shanghai is relatively
higher. This weird paradox may be caused by the following reasons. In early 2020,
similar to other provinces and cities, the outbreak of COVID-19 in Shanghai origi-
nated from the imported cases inWuhan. Approximatively, the spread of disease could
be roughly divided into two stages: imported case transmission and local case trans-
mission. As an international large city, Shanghai had the ability to quickly identify
and isolate these imported cases through information means to block their transmis-
sion. This reduced the invasive reproduction number in the period of imported case
transmission. However, for the stage of local transmission, the local asymptomatic
individuals and local exposed individuals contributed much more than the imported
members, but they could not be isolated as rapidly as the imported individuals because
there was no massive nucleic acid test during that time. This, together with the highest
population density in China, intensified the net reproduction number.

Furthermore, the Rnet
0 in Yunnan and Henan dropped significantly because of geo-

graphic reasons or control measures. In fact, Yunnan is far from Wuhan, the center
of the epidemic, and has a relatively small PD. Henan took the lead in adopting pre-
vention and control measures in the early stage of the epidemic because it neighbors
Wuhan, which had a greater advantage in preventing the spread of COVID-19.

5 Discussion

In this paper, we have calculated the invasive reproduction number in each province
(large city) of China, studied the relationship between the reproduction numbers and
PIS, and the relations between the reproduction number and local PD. These results
reveal how the population migration and PD contribute to the outbreaks of COVID-
19 in China, which are important for guiding the policy of NPIs. First, since there
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is a significant correlation between PD and reproduction number, it is crucial to take
more stringent prevention measures, such as reduction of vaccination hesitancy (Razai
et al. 2021), home isolation and community control measures, for the region with the
higher PD. Second, since the PIS intensifies the reproduction number, it is important
to conduct the lockdown policy to curb the spread of COVID-19, and it is necessary
to strengthen import and export quarantine when the border is reopened. Moreover,
we have calculated the net invasive reproduction numbers based on local cases and
analyzed the characteristics of local transmission of COVID-19, which indicates that
the total invasive reproduction number in most cases, could cause an overestimation
of local disease transmission risk.

Though this paper has obtained some results in the assessment of the transmission
capacity of COVID-19, there are some limitations. First, the lack of understanding of
COVID-19 in the early stage and the limited detection capabilities have led to large
fluctuations in the number of daily reports. And there are asymptomatic infections
and incubation cases, which affects the estimation of reproduction number. Second,
the Lotka–Euler equation is used to calculate the reproduction number for the phase
of early epidemic growth. It is interesting to consider how the geographic differences
affect the outcomes of COVID-19 spread in the later stage when a variety of interven-
tion measures are used. Third, the epidemic of COVID-19 is still prevalent all over the
world. A variety of mutant viruses have occurred, such as α-virus in British (Davies
et al. 2021), β-virus in South Africa (Tegally et al. 2020), γ -virus in Brazil (Faria et al.
2021), δ-virus in India (Campbell et al. 2021) and the latest Omicron-virus (Karim and
Karim2021).Various researches show that these variants have the ability toweaken the
efficacy of vaccination. Therefore, it might be an attractable study to investigate how
the mutations influence the vaccination and further impact the reproduction numbers.
We leave these as future research.

Acknowledgements The authors are very grateful to the editor and anonymous referees for their valuable
comments and suggestions.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Baidu migration. https://qianxi.baidu.com/2020/
Block P, HoffmanM, Raabe IJ et al (2020) Social network-based distancing strategies to flatten the COVID-

19 curve in a post-lockdown world. Nat Hum Behav 4:588–596
Campbell F, Archer B, Laurenson-Schafer H et al (2021) Increased transmissibility and global spread of

SARS-CoV-2 variants of concern as at June 2021. Euro Surveill 26(24):2100509
Chen Z, ZhangQ, LuY et al (2020)Distribution of the 2019-nCoV epidemic and correlationwith population

emigration from Wuhan, China. Chin Med J 133(9):1044–1055
Cheng C, Chen SY, Geng J et al (2020a) Preliminary analysis on COVID-19 case spectrum and spread

intensity in different provinces in China except Hubei province. Chin J Epidemiol 41(10):1601–1605
Cheng XW, Zhou LJ, Huang T et al (2020b) Epidemiological characteristics of the novel coronavirus

pneumonia in Sichuan province. J Prev Med Inf 36(8):947–958

123

https://qianxi.baidu.com/2020/


94 Page 16 of 17 Y. Hu et al.

Chinese Center for Disease Control and Prevention. Distribution of novel coronavirus pneumonia. http://
2019ncov.chinacdc.cn/2019-nCoV/global.html

Davies NG, Abbott S, Barnard RC et al (2021) Estimated transmissibility and impact of SARS-CoV-2
lineage B.1.1.7 in England. Science 372(6538):eabg3055

Dietz K (1974) Transmission and control of arbovirus diseases. In: Proceedings of the Society for Industrial
and Applied Mathematics. Epidemiology: Philadelphia, pp 104–121

Earn D, Ma J, Poinar H et al (2020) Acceleration of plague outbreaks in the second pandemic. Proc Natl
Acad Sci 117(44):27703–27711

Eikenberry SE, Mancuso M, Iboi E et al (2020) To mask or not to mask: modeling the potential for face
mask use by the general public to curtail the COVID-19 pandemic. Infect Dis Model 5:293–308

Fang LH, Hou JW, Lai JJ et al (2020) Mathematical modeling of COVID-19 spreading dynamics based on
a real megapolis map: an elementary study of computational simulations and intervention strategies.
Acta Math Appl Sin 43(02):241–259

Faria NR,Mellan TA,Whittaker C et al (2021) Genomics and epidemiology of the P.1 SARS-CoV-2 lineage
in Manaus, Brazil. Science 372(6544):815–821

Ferguson NM, Laydon D, Nedjati-Gilani G et al (2020) Report 9: impact of NPIs to reduce COVID-19
mortality and healthcare demand. https://doi.org/10.25561/77482

Gatto M, Bertuzzo E, Mari L et al (2020) Spread and dynamics of the COVID-19 epidemic in Italy: effects
of emergency containment measures. Proc Natl Acad Sci 117(19):10484–10491

Ge J, He DH, Lin ZG et al (2020) Four-tier response system and spatial propagation of COVID-19 in China
by a network model. Math Biosci 330:108484

He Q, Xiao H, Li HM et al (2021) Practice in information technology support for Fangcang Shelter Hospital
during COVID-19 epidemic in Wuhan, China. J Med Syst 45(4):830–841

Health Commission of Hubei Province. News. http://wjw.hubei.gov.cn/fbjd/dtyw/
Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653
Hu Y, Wang KF, Wang WD et al (2020) Analysis of transmissibility of COVID-19 and regional differences

in disease control. Acta Math Appl Sin 43(2):227–237
Huang SZ, Peng ZH, Jin Z et al (2020) Studies of the strategies for controlling the COVID-19 epidemic

in China: estimation of control efficacy and suggestions for policy makers (in Chinese). Sci Sin Math
50(06):885–898

Huo X, Chen J, Ruan S (2021) Estimating asymptomatic, undetected and total cases for the COVID-19
outbreak in Wuhan: a mathematical modeling study. BMC Infect Dis 21:476

Jia JS, Lu X, Yuan Y et al (2020) Population flow drives spatio-temporal distribution of COVID-19 in
China. Nature 582(7812):389–394

Karim SSA, Karim QA (2021) Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic.
Lancet 398(10317):11–17

Kaur SP, Gupta V (2020) COVID-19 vaccine: a comprehensive status report. Virus Res 288:198114
Li Q, Guan X, Wu P et al (2020) Early transmission dynamics in Wuhan, China, of novel coronavirus-

infected pneumonia. N Engl J Med 382(13):1199–1207
Liu Y, Yang DY, Dong GP et al (2020) The spatio-temporal spread characteristics of 2019 novel coronavirus

pneumonia and risk assessment based on population movement in Henan province: analysis of 1243
individual case reports. Econ Geogr 40(03):24–32

Luo XF, Feng SS, Yang JY et al (2021) Nonpharmaceutical interventions contribute to the control of
COVID-19 in China based on a pairwise model. Infect Dis Model 6:643–663

Ma J, Dushoff J, Bolker BMet al (2013) Estimating initial epidemic growth rates. BullMathBiol 76(1):245–
260

Nali LHD, Salvador FS, Bonani GDSS et al (2021) Reopening borders: protocols for resuming travel during
the COVID-19 pandemic. Clinics (Sao Paulo) 76:e2723

National Bureau of statistics (2020) China Statistical yearbook-2019. China Statistics Press, Beijing
Netease News. Mayor of Wuhan: more than 5 million people left Wuhan and 9 million people stayed.

https://news.163.com/20/0126/22/F3ROV3FU0001899O.html
Razai MS, Chaudhry UAR, Doerholt K et al (2021) Covid-19 vaccination hesitancy. BMJ 373:n1138
Roda WC, Varughese MB, Han D et al (2020) Why is it difficult to accurately predict the COVID-19

epidemic? Infect Dis Model 5:271–281
Song PF, Lou Y, Zhu LP et al (2020) Multi-stage and multi-scale patch model and the case study of novel

coronavirus. Acta Math Appl Sin 43(2):174–199

123

http://2019ncov.chinacdc.cn/2019-nCoV/global.html
http://2019ncov.chinacdc.cn/2019-nCoV/global.html
https://doi.org/10.25561/77482
http://wjw.hubei.gov.cn/fbjd/dtyw/
https://news.163.com/20/0126/22/F3ROV3FU0001899O.html


Analysis of the Geographic Transmission Differences of… Page 17 of 17 94

Tang B, Bragazzi NL, Li Q et al (2020a) An updated estimation of the risk of transmission of the novel
coronavirus (2019-nCov). Infect Dis Model 5(1):248–255

Tang SY, Tang B, Bragazzi NL et al (2020b) Analysis of COVID-19 epidemic traced data and stochastic
discrete transmission dynamic model (in Chinese). Sci Sin Math 50(8):1071–1086

Tang B,WangX, Li Q et al (2020c) Estimation of the transmission risk of the 2019-nCoV and its implication
for public health interventions. J Clin Med 9(2):462–474

Tang B, Xia F, Tang SY et al (2020d) The effectiveness of quarantine and isolation determine the trend of the
COVID-19 epidemic in the final phase of the current outbreak in China. Int J Infect Dis 96:636–647

Tegally H, Wilkinson E, Giovanetti M et al (2020) Emergence and rapid spread of a new severe acute
respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in
South Africa. medRxiv. https://doi.org/10.1101/2020.12.21.20248640

Tian H, Liu Y, Li Y et al (2020) An investigation of transmission control measures during the first 50 days
of the COVID-19 epidemic in China. Science 368(6491):638–642

van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for
compartmental models of disease transmission. Math Biosci 180:29–48

Wallinga J, Lipsitch M et al (2007) How generation intervals shape the relationship between growth rates
and reproduction numbers. Proc R Soc B Biol Sci 274(1609):599–604

Wang X, Tang SY, Chen Y et al (2020) When will be the resumption of work in Wuhan and its surrounding
areas during COVID-19 epidemic? A data-driven network modeling analysis (in Chinese). Sci Sin
Math 50(07):969–978

Xue L, Jing SL, Sun W et al (2021) Evaluating the impact of the travel ban within mainland China on the
epidemic of the COVID-19. Int J Infect Dis 107:278–283

YeYY,WangCJ, ZhangHOet al (2020) Spatio-temporal analysis ofCOVID-19 epidemic risk inGuangdong
Province based on population migration. Acta Geogr Sin 75(11):243–256

Yu Z, Zhang G, Liu QZ et al (2020) The outbreak assessment and prediction of COVID-19 based on
time-varying SIR model. J Univ Electron Sci Technol China 49(03):357–361

Zhang JP, Li Y, Yao MP et al (2020a) Analysis of the relationship between transmission of COVID-19 in
Wuhan and soft quarantine intensity in susceptible population. Acta Math Appl Sin 43(02):20–31

Zhang J, Litvinova M, Wang W et al (2020b) Evolving epidemiology and transmission dynamics of coron-
avirus disease 2019 outside Hubei province, China: a descriptive and modelling study. Lancet Infect
Dis 20(7):793–802

ZhangH, ShenHL,Xia L et al (2020c) Construction of COVID-19 epidemic prevention and control capacity
based on big data perspective. Acta Math Appl Sin 43(02):468–481

Zhao H, Feng ZL (2020) Staggered release policies for COVID-19 control: costs and benefits of relaxing
restrictions by age and risk. Math Biosci 326:108405

Zhou CH, Pei T, Du YY et al (2020) Big data analysis on COVID-19 epidemic and suggestions on regional
prevention and control policy. Bull Chin Acad Sci 35(02):200–203

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123

https://doi.org/10.1101/2020.12.21.20248640

	Analysis of the Geographic Transmission Differences of COVID-19 in China Caused by Population Movement and Population Density
	Abstract
	1 Introduction
	2 Data Collection and Analysis
	3 Method
	3.1 Lotka–Euler equation
	3.2 Distribution of Serial Interval
	3.3 Exponential Growth Rate
	3.4 Statistical Analysis

	4 Results
	4.1 The Invasive Reproduction Number
	4.2 The Net Invasive Reproduction Number

	5 Discussion
	Acknowledgements
	References




