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Summary. We analyze a hierarchical Bayes model which is related to the usual empirical

Bayes formulation of James-Stein estimators. We consider running a Gibbs sampler on

this model. Using previous results about convergence rates of Markov chains, we provide

rigorous, numerical, reasonable bounds on the running time of the Gibbs sampler, for a

suitable range of prior distributions. We apply these results to baseball data from Efron

and Morris (1975). For a different range of prior distributions, we prove that the Gibbs

sampler will fail to converge, and use this information to prove that in this case the

associated posterior distribution is non-normalizable.
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1. Introduction.

Markov chain Monte Carlo techniques, including the Metropolis-Hastings algorithm

(Metropolis et al., 1953; Hastings, 1970), data augmentation (Tanner and Wong, 1986),

and the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990) have become

very popular in recent years as a way of generating a sample from a complicated probability

distribution (such as the posterior distribution in a Bayesian inference problem). A funda-

mental issue regarding such techniques is their convergence properties, specifically whether

or not the algorithm will converge to the correct distribution, and if so how quickly. In

addition to the many general convergence results (e.g. Tierney, 1991) and convergence

diagnostics (e.g. Roberts, 1992; Mykland, Tierney, and Yu, 1992) which have been devel-

oped, a number of papers have attempted to prove rigorous bounds on convergence rates

for these algorithms (Jerrum and Sinclair, 1989; Amit and Grenander, 1991; Frieze, Kan-

nan, and Polson, 1994; Meyn and Tweedie, 1994; Lund and Tweedie, 1993; Mengersen and

Tweedie, 1993; Frigessi et al., 1993; Rosenthal, 1993, 1995a, 1995b). However, most of the

results are of a quite specific and limited nature, and the general question of convergence

rates for these algorithms remains problematic and largely unsolved.

In this paper we investigate the convergence properties of the Gibbs sampler as applied

to a particular hierarchical Bayes model. The model is related to James-Stein estimators

(James and Stein, 1961; Efron and Morris, 1973, 1975; Morris, 1983). Briefly, James-Stein

estimators may be defined as the mean of a certain empirical Bayes posterior distribution

(as discussed in the next section). We consider the problem of using the Gibbs sampler

as a way of sampling from a richer posterior distribution, as suggested by Jun Liu (per-

sonal communication). Such a technique would eliminate the need to estimate a certain

parameter empirically and to provide a “guess” at another one, and would give additional

information about the distribution of the parameters involved.

We consider, in particular, the convergence properties of this Gibbs sampler. For a

certain range of prior distributions, we establish (Section 3) rigorous, numerical, reasonable

rates of convergence. The bounds are obtained using the methods of Rosenthal (1995b). We

thus rigorously bound the running time for this Gibbs sampler to converge to the posterior

distribution, within a specified accuracy (as measured by total variation distance). We

provide a general formula for this bound, which is of reasonable size, in terms of the prior

distribution and the data. This Gibbs sampler is perhaps the most complicated example

to date for which reasonable quantitative convergence rates have been obtained. We apply
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our bounds to the numerical baseball data of Efron and Morris (1975) and Morris (1983),

based on batting averages of baseball players, and show that approximately 140 iterations

are sufficient to achieve convergence in this case.

For a different range of prior distributions, we use the Submartingale Convergence

Theorem to prove (Section 4) that this Gibbs sampler will in fact not converge to the

desired posterior distribution (in any amount of time). On the other hand, standard

theory indicates that, if the model were well-defined, this Gibbs sampler in fact should

converge to this distribution. This apparent contradiction thus proves that the posterior

distribution for this model, with this range of (improper) prior distributions, is not well

defined, i.e. is itself improper. We have thus used the Gibbs sampler as a theoretical tool,

to establish properties of the model itself. This suggests that analyses of Markov chain

Monte Carlo algorithms may have important uses as analytical tools, in addition to their

benefit in facilitating sampling. Furthermore, the example provides a cautionary note

to the effect that naive use of the Gibbs sampler may lead to incorrect results (such as

claiming convergence when there is actually nothing to converge to).

The precise model and Gibbs sampler studied are defined in Section 2. The develop-

ment of rates of convergence is done in Section 3. The argument about improper posterior

distributions is given in Section 4. Finally, for ease of reading, the more computational

proofs are relegated to an Appendix.

Our emphasis throughout is on the theoretical analysis of this Gibbs sampler (with

the hope that similar analyses will be applied to other models), rather than on specific

implications for James-Stein estimators or for the particular statistical model at hand.

2. The model.

The empirical Bayes formulation of James-Stein estimators may be defined as follows.

For 1 ≤ i ≤ K, we observe data Yi, where Yi | θi ∼ N(θi, V ) and are conditionally

independent. Here θi are unknown parameters to be estimated, and V > 0 is assumed to

be known (or estimated directly from the data). Furthermore θi |µ,A ∼ N(µ,A) and are

conditionally independent.

The standard James-Stein estimator for θi can be obtained (cf. Efron and Morris,

1975) as the posterior mean E(θi |Yi), where µ is taken to be an “initial guess” at the θ’s,

and where (1 + A2)−1 is replaced by its (unbiased) estimate (K − 2)/
∑

(Yi − µ)2.

In this paper we follow the suggestion of Jun Liu (personal communication) to regard

µ and A as further parameters to be estimated. The Bayesian approach then involves
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putting priors on µ and A, thus defining a posterior distribution

π(·) = L(A,µ, θ1, . . . , θK |Y1, . . . , YK) .

To be specific, we use a flat prior for µ, and use a conjugate prior of the form IG(a, b)

for A (where IG(a, b) is the inverse gamma distribution with density proportional to

e−b/xx−(a+1)). We shall see that the chosen values of a and b can greatly affect the

properties of π(·).
The remainder of this paper is thus concerned with the problem of sampling from the

distribution π(·) defined above, with

Yi | θi ∼ N(θi, V ) (1 ≤ i ≤ K)

θi |µ,A ∼ N(µ,A) (1 ≤ i ≤ K)

µ ∼ flat prior on R

A ∼ IG(a, b) .

To accomplish this sampling, we use a Gibbs sampler on (A,µ, θ1, . . . , θK). After

choosing initial values A(0), µ(0), θ
(0)
i from some initial distribution, we follow the suggestion

of Jun Liu (personal communication) by letting the Gibbs sampler update these variables

repeatedly (for iterations k = 1, 2, 3, . . .) by the (easily-computed) conditional distributions

A(k) ∼ L(A | θi = θ
(k−1)
i , Yi) = IG

(
a +

K − 1
2

, b +
1
2

∑
(θ(k−1)

i − θ
(k−1)

)2
)

;

µ(k) ∼ L(µ |A = A(k), θi = θ
(k−1)
i , Yi) = N(θ

(k−1)
, A(k)/K) ;

θ
(k)
i ∼ L(θi |A = A(k), µ = µ(k), Yi) = N

(
µ(k)V + YiA

(k)

V + A(k)
,

A(k)V

V + A(k)

)
;

where θ
(k)

= 1
K

∑
θ
(k)
i . [From the point of view of the Gibbs sampler, this corresponds

to treating (A,µ) as a single variable, and jointly updating (A(k), µ(k)) ∼ L(A,µ | θi =

θ
(k−1)
i , Yi).]

This definition specifies the distribution of the random variables A(k), µ(k), θ
(k)
i , for

k = 1, 2, 3, . . .. The Gibbs sampler is said to converge (in total variation distance ‖ · ‖) to

the distribution π(·), if

lim
k→∞

‖L(x(k)) − π(·)‖ := lim
k→∞

sup
S⊆RK+2

|P (x(k) ∈ S)− π(S)| = 0 ,
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where we have written x(k) as shorthand for (A(k), µ(k), θ
(k)
1 , . . . , θ

(k)
K ). If the Gibbs sampler

does converge, then quantitative bounds on ‖L(x(k)) − π(·)‖ are important because they

can determine how long the algorithm should be run (i.e. how large k needs to be) before

x(k) can be regarded approximately as a sample from π(·).
We note that this Gibbs sampler is similar in form to the Gibbs sampler for variance

components models, as suggested in Gelfand and Smith (1990), and partially analyzed

(though not numerically) in Rosenthal (1995a). It is thus a realistic example of an applied

use of the Gibbs sampler. However, like most uses of the Gibbs sampler, its convergence

properties are not at all clear.

We analyze this Gibbs sampler in two different ways, corresponding to different ranges

of values of a and b above. In Section 3, for certain ranges of a and b, we use results from

Rosenthal (1995b) to get quantitative bounds on ‖L(x(k))−π(·)‖ which converge to 0, and

thus provide bounds on the required running times. In Section 4, we show that for certain

other ranges of a and b, this Gibbs sampler will not converge to π(·) at all. We use this to

prove that, for these values of a and b, the above model is improper.

3. Rates of convergence.

To get bounds on the rate of convergence of this Gibbs sampler, we recall a result

from Rosenthal (1995b, Theorem 12).

Proposition 1. Let P (x, ·) be the transition probabilities for a Markov chain X0, X1, X2, . . .

on a state space X , with stationary distribution π(·). Suppose there exist ε > 0, 0 < λ < 1,

0 < Λ < ∞, d > 2Λ
1−λ , a non-negative function f : X → R, and a probability measure Q(·)

on X , such that

E (f(X1) |X0 = x) ≤ λf(x) + Λ , x ∈ X (1)

and

P (x, ·) ≥ ε Q(·) , x ∈ fd (2)

where fd = {x ∈ X | f(x) ≤ d}, and where P (x, ·) ≥ ε Q(·) means P (x, S) ≥ ε Q(S) for

every measurable S ⊆ X . Then for any 0 < r < 1, we have

‖L(Xk) − π(·)‖ ≤ (1− ε)rk +
(
α−(1−r)γr

)k
(

1 +
Λ

1− λ
+ E (f(X0))

)
,

where

α−1 =
1 + 2Λ + λd

1 + d
< 1 ; γ = 1 + 2(λd + Λ) .
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Equation (1) above is called a drift condition, while equation (2) above is called a

minorization condition. These two conditions are surprisingly difficult to verify for com-

plicated Markov chains, and although the above proposition appears to be quite general,

it has been applied to date only in a few very specific examples.

To apply this result to the Gibbs sampler at hand, we need to choose a function f(x).

Intuitively, we need this function to have the dual properties that (1) if it is very large at

one iteration, it tends to get smaller at the next, and (2) all values of x for which f(x)

is small have similar transition probabilities for the next iteration. We thus choose the

function

f(x) = f(A,µ, θ1, . . . , θK) =
K∑

i=1

(θi − Y )2 = K(θ − Y )2 +
K∑

i=1

(θi − θ)2 ,

where Y = 1
K

∑
i Yi. Intuitively, f(x) is small if the values of θi are close to the average

Y of the data values.

For this function, we have the following two key computational lemmas (proved in the

Appendix).

Lemma 2. Assume that b > 0 and a > −K−1
2 . Then

E
(
f(x(k)) |x(k−1) = x

)
≤ λ f(x) + Λ ,

where

λ = E
(

1 +
W

V

)−2

with W ∼ IG

(
a +

K − 1
2

, b

)
=
∫ ∞

0

ba+ K−1
2 e−b/w

Γ(a + K−1
2 )wa+ K+1

2

(
1 +

w

V

)−2

dw

and Λ = ∆ + (K + 1
4 )V , with ∆ =

∑
(Yi − Y )2.

Lemma 3. Assume b > 0 and a > −K−1
2 . Then there exists a probability measure Q(·)

such that

P (x, ·) ≥ ε Q(·), x ∈ fd

where

ε = 2

∞∫
0

dA min
[
IG

(
a +

K − 1
2

, b;A
)

, IG

(
a +

K − 1
2

, b +
d

2
;A
)] ∞∫

0

dµ N

(√
d

K
,
A

K
;µ

)
,

with IG(a, b; t) = bae−b/t

Γ(a)ta+1 and N(m, v; t) = 1√
2πv

e−(t−m)2/2v the density functions for the

inverse gamma and normal distributions, respectively.
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Putting the above three results together, we obtain

Theorem 4. Assume b > 0 and a > −K−1
2 . Then for any d > 2Λ

1−λ , and any 0 < r < 1,

the Gibbs sampler defined in Section 2 satisfies

‖L(x(k)) − π(·)‖ ≤ (1− ε)rk +
(
α−(1−r)γr

)k
(

1 +
Λ

1− λ
+ E

(
f(x(0))

))
,

where ε, λ,Λ, α, γ are as defined above.

We apply this to the baseball data in Efron and Morris (1975) and Morris (1983).

From the (modified) data of Table 1 of Morris (1983), we compute that K = 18, that

V = 0.00434, and that ∆ = 0.0822, so that Λ = 0.161. We assign arbitrarily the prior

values a = −1 (the same as for a flat prior) and b = 2 (since it has to be positive). We

then compute, using numerical integration, that λ = 0.000289, Choosing d = 1, we then

compute (using numerical double integration) that ε = 0.0656.

From the formulas in Proposition 1, we compute that α−1 = 0.662 and γ = 1.32.

Hence, choosing r = 0.5 in an effort to “balance” the two terms involved, and noting that
Λ

1−λ < 0.17, we conclude that

‖L(x(k)) − π(·)‖ ≤ (0.967)k + (0.935)k
(
1.17 + E

(∑
(θ(0)

i − Y )2
))

.

For example, if (say) we begin with θ
(0)
i = Y for all i, and run the Gibbs sampler for

k = 140 iterations, this bound is less than 0.009. We have thus proved that, in this case,

140 iterations suffice to achieve approximate convergence.

Remark. In principle, the method of proving rates of convergence used here could be

used in any Markov chain Monte Carlo situation. However, the computations necessary to

establish the drift and minorization conditions can be quite difficult in more complicated

examples. It is to be hoped that, with time, these methods can be applied to more and

more complicated Markov chains.
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4. Improper posterior distributions.

In this section we prove that for a certain range of values of a, b, ∆, and V , the Gibbs

sampler defined in Section 2 will in fact not converge to π(·) at all. We then use this to

prove that for this range of values, the posterior distribution π(·) is in fact improper.

The key computation is the following.

Lemma 5. Assume that b ≤ 0, that a ≥ 1, and that ∆ ≤ V . Then for any t > 0,

E
(
A(k) |A(k−1) = t, x(k−2), x(k−3), . . .

)
≤ t− t3

(V + t)2
< t .

This lemma says that, under these hypotheses, the process {−A(k)}∞k=0 is a submartin-

gale. Since the A(k) are non-negative, it follows from the Submartingale Convergence The-

orem (see e.g. Billingsley, 1986, Theorem 35.4) that A(k) converges almost surely. That is,

the values of A(k) actually converge to a fixed random variable (as opposed to converging

in distribution). Since the correction term t3

(V +t)2 in the above lemma only goes to 0 as

t → 0, it must be that A(k) actually converges to 0 almost surely, so that L(A(k)) becomes

more and more concentrated around 0.

On the other hand, if ν(·) is any absolutely-continuous probability distribution on

RK+2, then ν{A = 0} = 0. Hence, it cannot be that L(x(k)) converges in distribution to

ν(·). We have thus proved

Proposition 6. If b ≤ 0, a ≥ 1, and ∆ ≤ V , and ν(·) is any absolutely-continuous

distribution, then the Gibbs sampler does not converge to ν(·) from any initial distribution.

In fact, lim
k→∞

‖L(x(k)) − ν(·)‖ = 1.

On the other hand, the density of π(·) is everywhere-positive. It follows from stan-

dard theory (see e.g. Tierney, 1991, Theorem 1; for related convergence-rates results, see

Schervish and Carlin, 1992; Liu, Wong, and Kong, 1991a, 1991b; Baxter and Rosenthal,

1995) that, if π(·) were proper (i.e. normalizable), we would necessarily have L(x(k)) con-

verging to π(·) in distribution, from almost every initial point. Since such π(·) would be

absolutely continuous, the above proposition implies that this is impossible. This proves

Theorem 7. If b ≤ 0, a ≥ 1, and ∆ ≤ V , then the posterior distribution π(·) of the model

defined in Section 2 is improper, i.e. the integral of the density function (∗) is infinite.
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Remarks.

(i) It is to be admitted that the choice of priors implied by a ≥ 1 is not as natural as

a flat prior (with a = −1 and b = 0). However, this theorem is interesting in that

it indicates how rigorous theoretical analysis of a Gibbs sampler, associated with a

given model, can imply information about the model itself. Furthermore, priors with

a ≥ 1 may sometimes occur as marginals of higher-dimensional priors, such as those

for estimating covariance matrices (cf. Eaton and Sudderth, 1993).

(ii) For this particular model, it is possible to verify the directly (through integration) that

the posterior distribution is improper. However, this might not be clear initially, so it is

useful to see how it can be inferred from the associated Gibbs sampler. Furthermore,

the analysis presented here may generalize to other situations in which the direct

integration is too complicated.

(iii) The contrasting results of Section 3 and Section 4 indicate the importance of the prior

distribution through the values of a and b, and in particular whether or not b > 0.

Evidence of similar importance of related prior values for variance components models

can be found in Gelfand et al. (1990, Figure 1).

5. Appendix: Proofs of computational lemmas.

The following lemma is easily verified, and we shall use it freely in the computations

which follow.

Lemma 8. Let Z1, . . . , Zn be independent random variables, and set Z = 1
n

∑n
i=1 Zi.

Then

E

(
n∑

i=1

(Zi − Z)2
)

=
(

n− 1
n

) n∑
i=1

Var(Zi) +
n∑

i=1

(
(EZi)− (EZ)

)2
.

We now proceed to the proofs of the computational lemmas.

Proof of Lemma 2. We compute the conditional expected value in three stages, as we

“peel away” those variables on which we are conditioning. We begin by noting that, using

Lemma 8, we have

E
(∑

(θ(k)
i − θ

(k)
)2 |A(k), µ(k), x(k−1)

)
=

[(
K − 1

K

)
K

(
A(k)V

V + A(k)

)
+

K∑
i=1

(
µ(k)V + YiA

(k)

V + A(k)
− µ(k)V + Y A(k)

V + A(k)

)2
]
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=

[
(K − 1)

(
A(k)V

V + A(k)

)
+
(

A(k)

V + A(k)

)2

∆

]
.

Also

E
(
K(θ − Y )2 |A(k), µ(k), x(k−1)

)
= K

[
Var(θ |A(k), µ(k), x(k−1)) +

(
E(θ − Y |A(k), µ(k), x(k−1))

)2
]

= K

[
1
K

A(k)V

V + A(k)
+ (µ(k) − Y )2

(
V

V + A(k)

)2
]

.

We next take the expected value over µ(k). We have that

E
(
(µ(k) − Y )2 |A(k), x(k−1)

)
= Var

(
(µ(k) − Y ) |A(k), x(k−1)

)
+
(
E
(
(µ(k) − Y ) |A(k), x(k−1)

))2

=
(
θ
(k−1) − Y

)2

+ A(k)/K .

Now, recalling that f(x) = K(θ − Y )2 +
∑

(θi − θ)2, and putting all of this together, we

obtain

E
(
f(x(k)) |A(k), x(k−1)

)
= K

(
A(k)V

V + A(k)

)
+
(

A(k)

V + A(k)

)2

∆

+
(
K(θ

(k−1) − Y )2 + A(k)
)( V

V + A(k)

)2

.

Our final step will involve taking expectation with respect to A(k). Before doing so, we

simplify the above (exact) formula using inequalities. By inspection we have A(k)

V +A(k) ≤ 1

and K(θ
(k−1) − Y )2 ≤ f(x(k−1)). Also by calculus we verify that a

(1+a)2 ≤ 1/4 for any

a ≥ 0, so that V 2A(k)

(V +A(k))2 ≤ V/4, for any value of A(k). (It may be possible to use more

sophisticated bounds.) We thus obtain

E
(
f(x(k)) |A(k), x(k−1)

)
≤
(

1 +
A(k)

V

)−2

f(x(k−1)) +
(

K +
1
4

)
V + ∆ .

Note that this expression is strictly decreasing as a function of A(k).

To complete the calculation, we need to take expected value over A(k). Now, L
(
A(k) |x(k−1)

)
=

IG
(
a + K−1

2 , b + 1
2

∑
(θ(k−1)

i − θ
(k−1)

)2
)
. Hence if W ∼ IG(a + K−1

2 , b), then A(k) is

stochastically larger than W , and hence

E
(
f(x(k)) |x(k−1)

)
≤ E

((
1 +

W

V

)−2
)

f(x(k−1)) +
(

K +
1
4

)
V + ∆ ,
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as desired.

Proof of Lemma 3. Our proof is similar to Lemmas 3 and 4 of Rosenthal (1995b).

Recall that for x ∈ fd, we have in particular that
∑

(θi− θ)2 ≤ d and that K(θ−Y )2 ≤ d.

We define the (non-normalized) measure Q′(·) on X inductively, in terms of Lebesgue

measure, by

Q′(dA) =
(

inf
0≤r≤d

IG

(
a +

K − 1
2

, b +
r

2
;A
))

dA ;

Q′(dµ |A) =

(
inf

K(s−Y )2≤d
N

(
s,

A

K
;µ
))

dµ ;

Q′(dθi |µ,A) = N

(
µV + YiA

V + A
,

AV

V + A

)
,

for 1 ≤ i ≤ K, with the θi conditionally independent.

Intuitively, Q′(·) has been defined to mimic the transition probabilities P (x, ·) (as

defined by the conditional distributions in Section 2), but with appropriate infimums over

values of x ∈ fd. (Of course, once A and µ have been chosen, the distributions of the θi

are completely determined, so no further infima are necessary.) This construction ensures

that

P (x, ·) ≥ Q′(·), x ∈ fd .

Hence we can take Q(·) = Q′(·)
Q′(X ) and ε = Q′(X ), to get that

P (x, ·) ≥ ε Q(·), x ∈ fd ,

with Q(·) a probability measure on X .

On the other hand,

Q′(·) =

∞∫
0

Q′(dA)

∞∫
−∞

Q′(dµ |A)
K∏

i=1

∞∫
−∞

Q′(dθi |µ,A)

=

∞∫
0

(
inf

0≤r≤d
IG

(
a +

K − 1
2

, b +
r

2
;A
))

dA

∞∫
−∞

(
inf

K(s−Y )2≤d
N

(
s,

A

K
;µ
))

dµ .

Now, for fixed a and t, the function IG(a, b; t) is unimodal as a function of b. It follows

that

inf
0≤r≤d

IG

(
a +

K − 1
2

, b +
r

2
;A
)

= min
[
IG

(
a +

K − 1
2

, b;A
)

, IG

(
a +

K − 1
2

, b +
d

2
;A
)]

.

11



Also, by replacing µ by µ + Y in the inner integral, and then considering separately the

cases µ < 0 and µ > 0, it is easily seen that

∞∫
−∞

(
inf

K(s−Y )2≤d
N

(
s,

A

K
;µ
))

dµ = 2

∞∫
0

N

(
−
√

d

K
,
A

K
;µ

)
dµ .

The result follows.

Proof of Lemma 5. We again compute the expected value in stages. We note first

that, since the mean of IG(α, β) is β
α−1 for α > 1, we have

E
(
A(k) |x(k−1), x(k−2), . . .

)
=

b + 1
2

∑
(θ(k−1)

i − θ
(k−1)

)2

a + K−3
2

.

Hence, taking expectation over θ
(k−1)
i and using Lemma 8, we get that

E
(
A(k) |µ(k−1), A(k−1), x(k−2), . . .

)

=

(
1

a + K−3
2

)(
b +

1
2

[(
K − 1

K

)
K

(
A(k−1)V

V + A(k−1)

)

+
K∑

i=1

(
µ(k−1)V + YiA

(k−1)

V + A(k−1)
− µ(k−1)V + Y A(k−1)

V + A(k−1)

)2 ])

=

(
1

a + K−3
2

)(
b +

1
2

[
(K − 1)

(
A(k−1)V

V + A(k−1)

)
+
(

A(k−1)

V + A(k−1)

)2

∆

])
.

Since µ(k−1) does not appear in this last expression, it follows that E
(
A(k) |A(k−1), x(k−2), . . .

)
equals this same expression.

Now, if a ≥ 1, b ≤ 0, ∆ ≤ V , and A(k−1) = t > 0, we see that

E
(
A(k) |A(k−1) = t, x(k−2), . . .

)
≤
(

tV

V + t

)
+
(

t

V + t

)2

V

=
tV (V + t) + t2V

(V + t)2
=

t(V + t)2 − t3

(V + t)2
= t − t3

(V + t)2
,

as desired.
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