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Abstract The Host Identity Protocol (HIP) is an Internet security and multi-
addressing mechanism specified by the IETF. HIP introduces a new layer 
between the transport and network layers of the TCP/IP stack that maps host 
identifiers to network locations, thus separating the two conflicting roles that IP 
addresses have in the current Internet. This paper analyzes the security and 
functionality of the HIP base exchange, which is a classic key exchange 
protocol with some novel features for authentication and DoS protection. The 
base exchange is the most stable part of the HIP specification with multiple 
existing implementations. We point out several security issues in the current 
protocol and propose changes that are compatible with the goals of HIP. 

 

1 Introduction 
The Host Identity Protocol (HIP) is a multi-addressing and mobility solution for the 
IPv4 and IPv6 Internet. HIP is also a security protocol that defines host identifiers for 
naming the endpoints and performs authentication and creation of IPsec security 
associations between them. A new protocol layer is added into the TCP/IP stack 
between the network and transport layers. The new layer maps the host identifiers to 
network addresses and vice versa. This achieves the main architectural goal of HIP: 
the separation of identifiers from locations. In the traditional TCP/IP architecture, IP 
addresses serve both roles, which creates problems for mobility and multi-homing. 

The host identity (HI) in HIP is a public key. This kind of identifier is self-
certifying in the sense that it can be used to verify signatures without access to 
certificates or a public-key infrastructure. The host identity is usually represented by 
the host identity tag (HIT), which is a 128-bit hash of the HI. IPv4 and IPv6 addresses 
in HIP are purely locations. The protocol is composed of three major parts. The 
endpoints first establish session keys with the HIP base exchange [10], after which all 
packets are protected using IPsec ESP [9]. Finally, there is a readdressing mechanism 
to support IP address changes with mobility and multi-homing.   

In this paper, focus on the HIP base exchange as a cryptographic key-exchange 
protocol. We analyze its security with emphasis on denial-of-service (DoS) issues. 
Several protocol details were found to be vulnerable to DoS attacks or accidental 
deadlocking. Additionally, we point out a minor issue with key freshness. To fix these 
problems, we propose feasible solutions that are in line with the goals of the HIP 
protocol. (Note that this paper does not fully explain the thinking behind the HIP 
protocol [11] and we do not try argue in favor of or against adopting HIP as a part of 
the Internet protocol stack.) We start by introducing the HIP base exchange in Section 
2 and discuss the identified problems and solutions in the following sections. 



2 HIP Base Exchange 
The main building block of the HIP protocols is the HIP base exchange [10]. It is used 
to establish a pair of IPsec security associations (SA) between two hosts. The base 
exchange is built around a classic authenticated Diffie-Hellman key exchange but 
there are some unusual features related to DoS-protection. No certificates are required 
for the authentication because the HITs are self-certifying. The protocol can be 
compared with key exchange protocols like IKE [7] and IKEv2 [4] and evaluated 
against most of the same security requirements [13]. 

In this section, we outline the base exchange messages I1, R1, I2 and R2 shown 
in Figure 1. The Initiator first sends an empty message I1 to the Responder. It triggers 
the next message R1 from the Responder. All HIP packets contain the initiator and 
responder identity tags (HIT-I and HIT-R) in the header.  

Even before the Responder receives the I1 message, it precomputes a partial R1 
message. The precomputed R1 includes the HIT-R, the Responder’s Diffie-Hellman 
key, the Responder host identity HI-R (i.e., a public key), the proposed cryptographic 
algorithms for the rest of the base exchange (HIP transforms), the proposed IPsec 
algorithms (ESP transforms), and an Echo_Request field. The Echo_Request contains 
data that the Initiator returns unmodified in the following message I2. It is important 
that the responder sends R1 without creating any protocol state. The Echo_Request 
can be used to store some data in a stateless way. The responder signs the message. 
The HIT-I and the Puzzle field are left empty at this point. These two fields are 
populated after receiving an I1 and they are not protected by the signature. 

The Puzzle parameter in R1 contains a cryptographic puzzle [3,4], which the 
Initiator is required to solve before sending the following packet I2. The idea is that 
the Initiator is forced to perform a moderately expensive brute-force computation 
before the Responder commits its computational resources to the protocol or creates a 
protocol state. The puzzle has three components: the puzzle nonce I, the difficulty 
level K, and the solution J. It is easiest to explain how a puzzle solution is verified: 
First, concatenate I, the host identity tags HIT-I and HIT-R, and the solution J. Then, 
compute the SHA-1 hash of the concatenation. Finally, check that the K low-order 
bits of the hash are all zeros. 

Ltrunc( SHA-1( I | HIT-I | HIT-R | J ), K ) == 0 

Figure 1 HIP base exchange messages 

Initiator Responder
I1: HIT-I, HIT-R

R1: HIT-I, HIT-R, Puzzle(I,K), (DH-R, HI-R, HIP 
Transforms, ESP Transforms, Echo_Request)SIG

I2: HIT-I, HIT-R, (Solution(I,K,J), SPI-I, DH-I, HIP 
Transforms, ESP Transforms, {HI-I}, Echo_Response)SIG

R2: HIT-I, HIT-R, (SPI(R), HMAC)SIG



The Initiator must do a brute-force search for the value of J, which takes O(2K) trials. 
The Responder, on the other hand, can verify the solution by computing a single hash. 

On receiving R1, the initiator checks that it has sent a corresponding I1 and 
verifies the signature using the public key HI-R. If the signature is ok, it solves the 
puzzle and creates the message I2. I2 includes the puzzle and its solution, the 
Initiator’s Diffie-Hellman key, the HIP and ESP transforms proposed by the Initiator, 
a security parameter index (SPI) for the Responder-to-Initiator IPsec SA, the Initiator 
public key (HI-I) encrypted using the new session key, and the Echo_Response. A 
signature covers the entire message. Key material for the session keys is computed as 
a SHA-1 hash of the Diffie-Hellman shared secret Kij: 

KEYMAT_k = SHA-1(Kij, | sort(HIT-I | HIT-R) | k)  for k = 1, 2,... 
On receiving I2, the Responder verifies the puzzle solution. If it is correct, the 

Responder computes the session keys, decrypts HI-I, and verifies the signature on I2. 
The Responder then sends R2, which contains the SPI for the Initiator-to-Responder 
IPsec SA, an HMAC computed using the session key, and a signature.  

For the Initiator, the exchange is concluded by the receipt of R2 and the 
verification of the HMAC and the signature. The HMAC confirms the establishment 
of the session key. For the Responder, the key confirmation is provided by the first 
inbound IPsec packet that is protected with the new security association.  

3 Replays of R1 
In this section, we consider replays of the R1 message. As explained earlier, R1 is 
partially signed. There is, however, nothing in R1 to prove its freshness.  

Before explaining why we think the freshness of R1 should be checked, we’ll 
consider arguments against such protection. First, it is infeasible to include a nonce in 
the signed part of R1 because that would prevent the Responder precomputing the 
signature. Thus, nonce-based replay protection appears not to work. Second, 
timestamps have well-known problems with clock synchronization. Third, there are 
features in the protocol that mitigate the consequences of R1 replays. The signature 
on the last message, R2, covers the session key (indirectly by covering the HMAC). 
Thus, the Initiator detects the replay of an old Diffie-Hellman key in R1 when it 
receives R2. For these reasons, the freshness of R1 many not appear very important. 

There is, however, another type of attack based on replaying R1: the attacker 
spoofs R1 and tricks the Initiator into solving the wrong puzzle. The attacker can send 
a trickle of replayed R1 messages to the Initiator with random I values. If the 
frequency of the spoofed R1 messages is higher than the roundtrip between the 
Initiator and Responder, the first R1 to arrive at the Initiator after it has sent I1 is 
always a replay. This prevents the Initiator from ever solving an authentic puzzle. 

Problem 1: Attacker can replay the signed parts of R1 and trick the Initiator into 
solving the wrong puzzle. This results in denial-of-service for the Initiator 
because the solution is rejected by the Responder. 

The seriousness of the above DoS attack is increased by the ease of obtaining the 
replay material. No sniffing is necessary; the attacker can obtain the partially signed 
R1 by sending an I1 message to the same Responder.  



There is a simple mechanism for preventing the attack: include a nonce in I1 and 
in the unsigned part of R1. The nonce prevents the attacker from replaying R1 unless 
it can sniff the corresponding I1. The cost of adding the nonce is low and it reduces 
significantly the threat of R1 replays.  

Proposed solution 1: Add a nonce of the Initiator to I1 and to the unsigned part 
of R1 to prevent replays of R1.  

The lack of this kind of “cookies” in the current HIP specification may be the 
influence of [3] where the first protocol message was potentially a broadcast message 
and, thus, could not contain a per-responder nonce. In HIP, the first message I1 is 
always unicast and therefore a nonce can be added.  

4 Reuse of Diffie-Hellman Keys 
Diffie-Hellman public keys (gx and gy) are often reused in order to amortize the cost 
of public-key generation over multiple key exchanges. The trade-off is the loss of 
forward secrecy: old session keys can be recovered as long as the key owner stores 
the private exponent. Another consequence of the key reuse is that the Diffie-Hellman 
shared secret (Kij = gxy) is not guaranteed to be fresh. The usual solution is to 
compute the session key as a hash of Kij and nonces from both participants.  

In the HIP base exchange, Diffie-Hellman keys are sometimes reused. First, the 
Responder uses the same key in all R1 messages over a time period (Delta). Second, 
the same host acting simultaneously as the Initiator and as the Responder uses the 
same key in both roles. (While the reuse is not mandated by the specification, it is 
probably necessary in practice to avoid further complicating the protocol state 
machine. See Section 7.) Nevertheless, the HIP base exchange does not include 
nonces in the session-key computation.  

The lack of nonces may, in fact, lead to a vulnerability. If the same two hosts 
perform the base exchange twice within the time Delta (i.e., the time during which 
Diffie-Hellman keys are reused), they end up with the same session keys. In practice, 
this depends on the timing in the implementations at each end-point. Such dependence 
on the implementation detail is, of course, not acceptable in a security protocol. 

Problem 2: Reuse of Diffie-Hellman keys may result in reuse of session keys. 
The puzzle I and the solution J are, in effect, nonces of the Responder and 

Initiator. Thus, they can be used for freshness in the session-key generation: 
KEYMAT_k = SHA-1(Kij | sort(HIT-I | HIT-R) | I | J | k) 

Proposed solution 2: The nonces I and J should be hashed into the key material. 

5 Puzzle Implementation 
The client puzzles force the Initiator to perform a moderately expensive computation 
before the Responder commits its computational resources or creates a protocol state. 
The Initiator, in effect, pays for the resources of the Responder by solving the puzzle, 
which is why this kind of mechanism is sometimes called hash cash. During DoS 
attacks or otherwise heavy load, the Responder increases the price. The HIP puzzle 



mechanism originates from [3] but some changes have been made in order to address 
specific security concerns. In this section, we analyze the HIP puzzles and suggest 
changes that are compatible with the current implementations.  

The following requirements for the puzzles can be derived from [10] or [3]: 
1. The Responder must not verify the signature on I2 or do other expensive 

computation before it has verified the puzzle solution. It must verify at most 
one signature for each puzzle solved by the Initiators (or attackers).  

2. The Responder must not create a per-Initiator or per-session state before 
verifying the puzzle solution. It must only store a small amount of information 
for each puzzle solved by the Initiators (or attackers).  

3. The cost of creating and verifying a puzzle must be small, preferably requiring 
only one computation of a one-way hash function by the Responder.  

4. The attacker must not be able to pre-compute solutions for a burst attack. That 
is, the solutions must remain valid only for a short time period. 

5. The Responder must not reject correct solutions sent by an honest Initiator 
because the attacker has previously solved the same puzzle.  

6. In order to verify the Initiator IP address, the Responder must recognize I in I2 
as the same nonce that it previously sent to the source address of I2.  

7. The Responder must accept at most one correct puzzle solution for each I1/R1 
exchange that takes place. (We will later argue that Requirement 7 is 
unnecessary even though it is implied in [10].) 

A naive puzzle implementation will send a random number I in every R1 and 
store the random number until it either receives a solution or a time Delta has passed. 
The naive puzzles fail Requirement 2 because a small state is created for each 
received I1. An attacker can exploit this by flooding the Responder with I1 messages.1  

The puzzle implementation proposed in [10] (Appendix D) tries to address all of 
the above requirements. The basic idea is that the Responder has a fixed-size table of 
pre-generated random I values (Ik  for k=0...n-1), called cookies, and it selects one of 
them for each R1 message by computing the index to the cookie table as a function of 
HIT-I and HIT-R and the Initiator and Responder IP addresses (IP-I and IP-R). The 
function is not a strong cryptographic hash but an inexpensive combination of XOR 
operations. Upon receiving a solution in I2, the Responder recomputes the index k to 
the cookie table and checks that the I in I2 matches the value in the table. The 
Responder then verifies the puzzle solution by computing a SHA-1 hash. If the 
solution is correct, it marks the nonce Ik as used. Only the first solution to each puzzle 
is accepted. A background process replaces the used nonces Ik with new ones within 
the time period Delta. 

Unfortunately, the pseudo-random function described in the specification is linear 
and it is easy for the attacker to create a collision with the honest Initiator. The 
function is simply an XOR of the Responder’s secret 1-byte key r and the bytes of the 
Initiator and Responder HITs and IP addresses:  

index = XOR of r and all bytes of HIT-I, HIT-R, IP-I and IP-R 

                                                           
1 The naive algorithm is presented in Section 4.1.1 of [10]. The rest of the specification talks 
about the cookie-table mechanisms. 



The attacker can cause an index collision with an honest Initiator by selecting the 
Initiator HIT in the spoofed I2 message as follows: 

HIT-A[m] = HIT-I[m] for m=0,...,14 
HIT-A[15] = XOR of HIT-I[15] and all bytes of IP-A and IP-I 

The attacker obtains an R1 by sending an I1 from its own IP address (IP-A), 
solves the puzzle for HIT-A and IP-A, and then sends an I2 from IP-A using HIT-A 
as the initiator HIT. The Responder accepts this solution and rejects the one sent later 
by the honest initiator because the puzzle has already been used. The signature on the 
attacker’s I2 is invalid because HIT-A is not a hash of any public key, but the 
Responder must mark the puzzle used even when the signature is invalid. 

 Problem 3: The pseudo-random function for selecting the puzzle is linear. Thus, 
the attacker can cause collisions and consume puzzles of honest initiators by 
solving them. 

The obvious solution is to compute the index with a second-preimage-resistant 
hash function. The trade-off is that this adds two hash computations to the total cost 
of creating and verifying a puzzle. We suggest using a standard function like SHA-1 
because it would be non-trivial to design a lower-cost non-linear function that 
nevertheless has sufficient strength to match puzzle difficulties up to O(264).  

Proposed solution 3: The pseudo-random function used to select the value of I 
should be a strong hash function, such as SHA-1.  

There is another problem with the cookie table. Even if we use SHA-1 to index 
the table, the attacker can still solve a lot of puzzles so that a significant portion of the 
puzzles in the table remain used at any point of time. The attacker can do this from its 
own IP address by picking random HITs and by solving the puzzles for them. For 
example, in order to consume n/2 nonces, the attacker has to solve approximately 
0.69*n puzzles. The suggested table size is n=256, which means that the attacker 
needs to solve about 177 puzzles during the time Delta to cause the exchange to fail 
for 50% of honest Initiators. Even with a larger table, the birthday paradox ensures 
that the attacker can block out a small number of legitimate connection attempts. 

Problem 4: With any realistic cookie-table size, the attacker can cause some 
index collisions and, thus, authentication failures. 

The purpose of the cookie table is to implement Requirements 6 and 7 above, i.e., 
to bind the Initiator IP address to the puzzles and to prevent the reuse of puzzles. If an 
attacker wants to flood the Responder with correct puzzle solutions, it has to repeat 
the I1/R1 exchange and it must use its own IP address.  

We suggest a way of generating puzzles that does not require the Responder to 
store a table of nonces: compute the puzzle I as a hash of the Initiator HIT and IP 
address, and a periodically changing secret key KRes known only to the Responder. 

I = SHA-1(IP-I | IP-R | HIT-I | HIT-R | KRes) 
The Responder does not need to store any information after sending this puzzle in 

R1. When it receives I2, it can recompute I from the information in that message. 



Proposed solution 4: In order to bind the puzzle to the Initiator IP address, 
compute the puzzle I as a SHA-1 hash of the address. This gives the same level of 
security as the cookie-table with the same computational cost and less memory.   

It should be noted that the cookie-table mechanism implements Requirement 7 
but our alternative solution does not. That is, we do not prevent the Initiator from 
solving the same puzzle multiple times during the time Delta. It is not clear what 
would be achieved by forcing the Initiator to perform the I1/R1 exchange more 
frequently.  

Next, we turn our attention to another feature in the puzzle mechanism that does 
not achieve its intended purpose. It is suggested in [10] (Section 4.1.1 and in 
Appendix D) that if the Responder receives multiple false solutions from the same IP 
address and HIT, it should block further I2 messages from this source for a period of 
time. The problem is that this contradicts Requirement 2, i.e., not creating any per-
Initiator state at the Responder until a correct puzzle solution is verified. The attacker 
can exhaust the blocking mechanism by flooding the Responder with false puzzle 
solutions from spoofed IP addresses.  

Problem 5: If the Responder blocks I2 packets from HITs or IP addresses after 
receiving false cookie solutions, the blocking mechanism is vulnerable to a 
flooding attack.  

It is not easy to define any robust criteria for filtering incoming puzzle solutions 
without verifying them. Any such filtering mechanism can probably be circumvented 
or, worse, exploited in DoS attacks. It is, therefore, better to design the system 
without the blocking. 

Proposed solution 5: The responder should not create any state after receiving 
false puzzle solutions. 

Finally, we suggest a complete puzzle mechanism that solves the above problems 
while maintaining compatibility with the current HIP specification.  
• The Responder has a secret key KRes that it generates periodically, once in every 

Delta. The Responder remembers the two last values of KRes.  
• The Responder uses one pre-signed message R1. The signature is recomputed 

periodically when the Diffie-Hellman key is replaced, which happens slightly 
less often than the generation of a new KRes. 

• The Responder computes the puzzle nonce I as the SHA-1 hash of the newest 
KRes and the Initiator and Responder HITs and IP addresses. It computes the 
value of I on the fly for each R1 and forgets the value after sending R1. 

• A 1-bit key counter is incremented every time a new key KRes is generated. The 
value of this counter is sent in R1 and I2 with the puzzle.2  

                                                           
2 The counter bit can be sent in the Opaque field of the puzzle data structure or in an 
Echo_Request field, both of which are returned unmodified in I2. 



• On receiving I2, the Responder recomputes I from KRes and the HITs and IP 
addresses, which it takes from the I2 message. The correct KRes is identified by 
the 1-bit counter.  

• The Responder then compares the computed value of I with the one in I2. If the 
values match, it verifies the puzzle solution J by computing the SHA-1 hash.  

• If the puzzle solution is correct, the Responder stores the puzzle I and the correct 
solution J. (Alternatively, the Responder can store the Initiator HIT and IP 
address and the correct solution J.) Separate storage is maintained for the latest 
and second latest value of KRes. When the older KRes is deleted, the corresponding 
storage is purged as well.  

6 Encryption of Initiator HI in I2 
The Initiator host identity HI-I in the I2 message is encrypted with the new session 
key. In this section, we argue that the encryption is unnecessary and bad for security. 

In some key exchange protocols, such as IKE [4], the endpoint identifiers, or the 
certificates containing the identifiers, are encrypted to enhance user privacy. The host 
identifiers in HIP could be similarly encrypted to prevent an eavesdropper from 
identifying the hosts. There are, however, several reasons why the encryption does not 
make sense. First, the privacy issue is mitigated by the fact that the host identifiers are 
public keys and not user or machine names. Second, the HITs that appear in every 
message header are hashes of the host identifier and, thus, uniquely identify the hosts. 
Encrypting the HI achieves little as long as the HIT is sent unprotected. Third, the 
Responder identity in R1 is sent in plaintext. An attacker that impersonates the 
Responder can easily discover the Initiator’s identity by reversing the roles and 
sending an I1 message to the Initiator. It will receive the peer’s HI in R1. (The HIP 
specification suggests that a privacy-conscious HIP host may refuse to act as the 
Responder but that will lead to communications failure if both endpoints follow the 
same policy.) For these reasons, the encryption is ineffective as a privacy mechanism.  

There could be other reasons for the encryption. First, it could be a freshness 
check: the encryption is a function of the session key, which is a function of the 
Responder’s Diffie-Hellman key, which changes for every time Delta. Thus, valid 
encryption links message I2 to a fresh value generated by the Responder. But this 
freshness check is superfluous because the puzzle nonce I already provides freshness 
for the I2 message. Second, the encryption could serve as key confirmation: by 
encrypting with the session key, the Initiator proves to the Responder that it knows 
the session key. But this is clearly not the intention because there is a separate 
mechanism for key confirmation. (The protocol state machine requires the Responder 
to wait in the R2-SENT state for a valid ESP packet from the Initiator before moving 
to the ESTABLISHED state.) Hence, neither freshness nor key confirmation is a valid 
motivation for encrypting the HI. 

In addition to being unnecessary, the encryption of the Responder HI prevents 
NAT and firewall support [1,5,6] for HIP. The catch is that when the HI is encrypted, 
middle boxes in the network cannot verify the signature on I2 and, thus, cannot safely 
create a state for the HIP association.  On the other hand, if the HI is not encrypted, a 
stateful middle box like a NAT can process I2 and create a protocol state for the 



Initiator. A firewall can also verify the puzzle and signature on I2, thus making it 
possible to push the I1/R1 exchange into the firewall and to filter false puzzle 
solutions at the firewall. The encryption of HI-I prevents such middle-box 
implementations. (See [11,14,15] for details.) 

Problem 6: The encryption of the Initiator HI in the I2 message does not provide 
any privacy protection and prevents HIP support in firewalls and NATs. 

The solution is obvious:  
Proposed solution 6: Do not encrypt the Initiator HI in I2. 

7 State Machine Issues 
The base-exchange protocol state machine is shown in Figure 2. The Initiator moves 
from the UNASSOCIATED state via I1-SENT, on receiving R1, to I2-SENT and, 
finally, on receiving R2, to ESTABLISHED. The Responder remains in 
UNASSOCIATED until it receives and verifies I2, after which it moves to R2-SENT 
and, finally, on receiving a valid ESP packet, to ESTABLISHED. These basic state 
transitions are sensible and have been thoroughly tested. On the other hand, the 
recovery from packet loss and handshake collisions, where the hosts act 
simultaneously in the Initiator and Responder roles, is ad-hoc and not fully specified. 
In this section, we discuss problems with these less frequent state transitions. 

The first issue is that there is a timeout transition for the Responder from the R2-
SENT to ESTABLISHED. The reason for waiting for the ESP packet is key 
confirmation: only after receiving the ESP packet the Responder knows that the 
Initiator received a fresh Diffie-Hellman key (rather than a replay) in R1 and has 
computed the valid session key. The timeout transition breaks this mechanism.  

Problem 7a: The timeout transition to the ESTABLISHED state breaks key 
confirmation. 

An alternative would be a timeout transition to UNASSOCIATED instead of the 
ESTABLISHED state. This could, however, cause an infinite loop (livelock) in which 
the hosts never reach the ESTABLISHED state, even if no messages are lost or 
spoofed. Consider the following sequence of events: both hosts initiate the protocol 
by sending I1 and move to the I1-SENT state; both hosts receive I1 and respond with 
R1; both hosts receive R1, respond with I2 and move to I2-SENT; both hosts receive 
I2, send R2 and move to the R2-SENT state; both hosts receive R2 and drop it; after a 
timeout, both hosts move back to UNASSOCIATED and start the same process form 
the beginning.  

Problem 7b: If the timeout transition is changed to lead to UNASSOCIATED 
instead of ESTABLISHED, a livelock may occur where neither party ever 
reaches ESTABLISHED.  

We can resolve this problem by creating an asymmetry between the participants. 
A convenient place to do that is when both hosts are in the I2-SENT state and both 
receive an I2 packet. One of the hosts should continue in the Initiator role and the 
other should assume the Responder role. (In the current state-machine specification, 



both move to R2-SENT, i.e., select the Responder role.) One way to assign the roles 
to the hosts is to compare their HITs as if they were integers. We have (arbitrarily) 
decided to make the host with lower HIT the Initiator. 

Proposed solution 7:  
(a) The timeout transition from the R2-SENT state should lead to the 
UNASSOCIATED state.  
(b) In I1-SENT, if a host receives I1 and the local HIT is lower than the peer HIT, 
the host should drop the received I1 and remain in I1-SENT. Otherwise, the host 
should process the received I1, send R1, and remain in I1-SENT.  
(c) In I2-SENT, if a host receives I2 and the local HIT is lower than the peer HIT, 
the host should drop the received I2 and remain in I2-SENT. Otherwise, the host 
should process the received I2, send R2, and go to R2-SENT. 

This way, both hosts cannot end up in the R2-SENT state at the same time and 
liveness of the protocol is guaranteed unless there is repeated message loss. The 
difference between solutions 7(b) and 7(c) is that 7(b) saves two messages but 7(c) is 
more robust in the presence of middle boxes. We suggest implementing both. 

Above, we have only considered the protocol states as listed in the HIP 
specification. In reality, the state also comprises the SPI values, HIP and ESP 
transforms, and cryptographic keys. In the following, we will consider how these 
values are treated in the state transitions, in particular, when two handshakes collide. 
The Diffie-Hellman keys and the HIP and ESP transforms are selected together and 
can be considered parts of the same data structure. We will only discuss the keys but 
the same considerations apply to the transforms as well. If the nonces I and J are used 
in the session-key generation (see Section 3), we also need to consider the nonces a 
part of the protocol state.  

It is not specified when the Diffie-Hellman keys should be replaced. This is 
particularly a problem if the handshakes collide and new Diffie-Hellman keys are 

Figure 2 Partial protocol state machine. 
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generated during the exchange. In that case, the hosts may end up with inconsistent 
views of the keys. Specifically, if a host receives I2 in the I2-SENT state, which peer 
Diffie-Hellman key should it use for computing KEYMAT, the one from the just-
arrived I2 or the one received earlier in R1? And which local Diffie-Hellman key 
should it use, the one it sent in I2 or the one it sent earlier in R1? The consistency 
problem is even more acute for the nonces I and J because they are always fresh. It 
turns out that if the hosts behave symmetrically, as a straight-forward implementation 
would do, any choice of keys would be wrong.  

Problem 8: It is not specified which Diffie-Hellman keys (and nonces) a host 
should use to compute the session key if it receives I2 in the I2-SENT state. If the 
hosts behave symmetrically, they may end up with different session keys. 

We assume that the proposed solutions 7(a) and (c) are implemented by all hosts 
but 7(b) only by some. The following rules can then be used to select consistent keys 
and nonces. 

Proposed solutions 8: In the I2-SENT state, if a host receives I2 and the local 
HIT is lower than the peer HIT, the host should use the peer Diffie-Hellman key 
and nonce I from the R1 packet it received earlier. It should also use the local 
Diffie-Hellman key and nonce J from the I2 packet it sent earlier. Otherwise, it 
should use the peer Diffie-Hellman key and nonce J from the just-received I2, 
and the local Diffie-Hellman key and nonce I from the R1 packet it sent earlier.  

A similar confusion occurs with the SPI values in the unmodified protocol. It is 
not specified which SPI values should be used to create the IPsec SAs if handshakes 
collide. It is possible that the hosts end up with different pairs of SPIs. The ambiguity 
is resolved by either one of the protocol changes 7(b) and 7(c).  

We formalized the protocol state machine, including the Diffie-Hellman keys and 
SPIs, and used the Zing model checker to verify deadlock-freeness and consistency of 
the keys, nonces and SPIs after our proposed changes to the protocol. Further work is 
required to verify the absence of livelocks. 

8 Conclusion 
In this paper, we analyzed the security of the HIP base exchange protocol. The base 
exchange is a fairly basic authenticated Diffie-Hellman key exchange that is further 
simplified by the fact that the host identities in HIP are self-certifying. We did not 
find major attacks against the authentication and key-exchange apart from a small 
issue with the freshness of the Diffie-Hellman keys. 

The more interesting security properties in the HIP base exchange relate to 
denial-of-service: the protocol uses client puzzles with several novel details to protect 
against resource-exhaustion DoS attacks. We showed that these details require 
modification to provide the intended protection. In particular, an attacker was able 
trick the honest Initiator into solving the wrong puzzles, and it was able to consume 
the puzzles of the honest Initiator by solving them first. Moreover, the protocol state 
machine requires changes to prevent deadlocks and livelocks. 

Our analysis of the abstract protocol complements in an important way the 
detailed protocol design, specification, implementation, and testing that happens 



during the IETF standardization process. It should be remembered that HIP is as 
much a multi-addressing and mobility protocol as a security protocol. We suggested 
solutions to all the discovered problems and believe that the proposed protocol 
changes fit well into the HIP framework without compromising its original goals. 
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