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Abstract. The hydrostatic approximation of the incompressible 3D stationary Navier-Stokes equa-
tions is widely used in oceanography and other applied sciences. It appears through a limit process
due to the anisotropy of the domain in use, an ocean, and it is usually studied as such. We consider
in this paper an equivalent formulation to this hydrostatic approximation that includes Coriolis force
and an additional pressure term that comes from taking into account the pressure in the state equation
for the density. It therefore models a slight dependence of the density upon compression terms. We
study this model as an independent mathematical object and prove an existence theorem by means of
a mixed variational formulation. The proof uses a family of finite element spaces to discretize the prob-
lem coupled with a limit process that yields the solution. We finish this paper with an existence and
uniqueness result for the evolutionary linear problem associated to this model. This problem includes
the same additional pressure term and Coriolis force.
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1. Introduction

The anisotropic stationary Navier-Stokes equations are widely used in geophysical fluid dynamics as a math-
ematical model for water flow in lakes and oceans, see for instance [10, 11]. These equations appear when the
domain in use has very different horizontal and vertical dimensions, the turbulent viscosity coefficients may not
be isotropic in this case. When we consider a shallow domain, i.e. one in which the horizontal dimension is
very large compared with the vertical one, the hydrostatic approximation is the basic model. This model is
obtained through a limit process from the anisotropic stationary Navier-Stokes equations and it is studied as
such by Besson and Laydi in [2] and by Bresch and Simon in [3]. Several codes have also been developed to
solve this problem [15].

In this paper we study the stationary nonlinear hydrostatic approximation for the ocean as an independent
mathematical object. We generalize the linear model that was first considered by Lewandowsky in [8, 9]. A
severe constraint on the Coriolis force and other parameters was required in the study of this model. We do
not need this constraint in our analysis.
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Our main innovation from the physical point of view is to include in this model the pressure in the state
equation for the density, as introduced in Appendix A of [8]. From the mathematical point of view, this
modification yields an additional pressure term in the momentum equation which prevents the pressure from
taking its usual role as a Lagrange multiplier. A fixed point argument coupled with a standard discretization
to this problem by appropriate finite element spaces gives a weak solution to our model. Such approximation
turns out to be a useful technical tool for two reasons: it provides an easy way to regularize the problem and a
convergent numerical approximation. Our existence theorem is at the same time a convergence result for this
approximation.

1.1. The model equations

We first introduce the necessary notation for what follows. Let Ω⊂ R3 be the domain defined by

Ω = {(x, y, z) ∈ R3; s.t. (x, y) ∈ S, −D(x, y) < z < 0} (1.1)

where S ⊂ R2 is an open and bounded Lipschitz domain representing the surface of the ocean andD : S∪∂S 7→ R
is a bounded positive Lipschitz function that describes the bottom and sidewalls of the ocean Ω, denoted by Γb
and Γl, i.e.

Γb = {(x, y, z) ∈ R3 s.t. (x, y) ∈ S, z = −D(x, y)}, (1.2)

Γl = {(x, y, z) ∈ R3 s.t. (x, y) ∈ ∂S, −D(x, y) < z < 0}, (1.3)

and such that there exists a real number δ with

min
(x,y)∈S∪∂S

D(x, y) ≥ δ > 0. (1.4)

As we will deal with an anisotropic problem we consider the operator ∇∗ = (∂x, ∂y), while the notations ∇ and
∆ will keep their standard 3D meaning. We use the operator ∆~ν defined by ∆~ν = ν∂2

xx + ν∂2
yy + νz∂

2
zz , where

~ν = (ν, ν, νz) is a turbulent cinematic viscosity vector with ν 6= νz , both positive numbers.
The model we present is the following one: Find a velocity field ~u = (~u?, u3) : Ω 7→ R3, where ~u? = (u1, u2),

and a scalar function, called superficial pressure, πS : S 7→ R such that

(~u · ∇)~u? −∆~ν~u? + α ~u?
⊥ +

1
ρ0

(1− γz)∇∗πS = ~f in Ω, (1.5)

∇ · ~u = 0 in Ω, (1.6)

νz∂z~u? = ~gS on S, (1.7)

~u? = 0 on Γb ∪ Γl, (1.8)

u3 n3 = 0 on ∂Ω. (1.9)

In these equations ~f is a source term and ~gS is the wind tension on the surface S. The Coriolis force is given
by the term α ~u?

⊥ = α (u2,−u1), where α and ~ν are positive fixed numbers and γ is a positive number that
will be properly chosen later on. The outward normal vector to the domain Ω is given by ~n = (n1, n2, n3) and
ρ0 denotes a reference value for the density.

Let us justify formally our model. The dimensionless anisotropic stationary Navier-Stokes equations for an
incompressible fluid with Coriolis forces in a domain Ω seek a velocity ~u = (~u?, u3) : Ω 7→ R3 and a pressure
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P : Ω 7→ R, that solve the equations

(~u · ∇)~u? −∆~ν~u? + α ~u?
⊥ +

1
ρ0
∇∗P = ~f in Ω, (1.10)

ε2{(~u · ∇)u3 + ∆~νu3}+ εu1 h+
1
ρ
∂zP = −1 in Ω, (1.11)

∇ · ~u = 0 in Ω (1.12)

νz∂z~u? = ~gS on S (1.13)

~u = 0 on Γb ∪ Γl (1.14)

u3 = 0 on S (1.15)

where ε is the ratio depth of the ocean over the diameter of the surface, ρ is the density, ρ0 being a reference
density, the gravity constant is taken to be one and h is a regular and bounded function.

Equations (1.10–1.15) take into account the Boussinesq approximation, i.e. we assume a constant value for
the density in the horizontal momentum and continuity equations. In particular, this approximation implies the
incompressibility of the 3D velocity field ~u. Also, the boundary condition (1.13) and the fact that u3 = 0 on S
constitute what is known as Rigid Lid Hypothesis: We assume no vertical movement of the ocean surface and
include in condition (1.13) the wind and turbulence effect on the surface and low atmosphere. This surface S is
an “averaged surface” (≈ 100 metres thick) that models the turbulent mixed layer, air-ocean. The information
of this mixed layer is given by the boundary condition at S.

When we neglect first and second order terms in ε we obtain the hydrostatic approximation:
Find ~u = (~u?, u3) : Ω 7→ R3 and a hydrostatic pressure P : Ω 7→ R, such that

(~u · ∇)~u? −∆~ν~u? + α ~u?
⊥ +

1
ρ0
∇∗P = ~f in Ω, (1.16)

1
ρ
∂zP = −1 in Ω, (1.17)

∇ · ~u = 0 in Ω, (1.18)

ν∂z~u? = ~gS on S, (1.19)

~u = 0 on Γb ∪ Γl, (1.20)

u3 n3 = 0 on ∂Ω. (1.21)

In [2] it is proved that, when ρ is constant, equations (1.16–1.21) are the limit equations of (1.10–1.15) in a
precise sense.

A more realistic model allows a state equation for the density ρ of the form

ρ = ρ(Ŝ, T, P ) (1.22)

where Ŝ is the salinity, T is temperature and P is pressure. The dependence of ρ on these variables is mainly
polynomial, as experimental examples show in [7]. The functions Ŝ and T do not add any new mathematical
difficulty and, hence, are not considered in our model. But, when we consider ρ = ρ(P ) we may argue as follows:

ρ(P ) = ρ(πS + z ∂zP̂ ) = ρ(πS) + z ∂zP (θ̂) ρ′(P̃ ) (1.23)

where πS = P (x, y, 0) is the pressure at height z = 0, and θ̂ and P̃ are intermediate values. The superficial
pressure πS is not the hydrostatic pressure on S. Its introduction is a consequence of the Rigid Lid Hypothesis
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and allows to recover the hydrostatic pressure on Ω. Equation (1.11) reads now

ε2ρ{(~u · ∇)u3 + ν∆u3}+ εu1 h+ ∂zP = −ρ(πS)− z ∂zP (θ̂)ρ′(P̃ ). (1.24)

We now may assume a weak dependence of ρ with respect to the pressure P , and, therefore, suppose that zρ′(P̃ )
is small. This hypothesis agrees with the small physical variation of the density around its reference value ρ0.
Then, a first approximation leads to the simplification of (1.24)

∂zP = −ρ(πS), (1.25)

and, from here,

P = πS +
∫ 0

z

ρ(πS) dξ. (1.26)

Hence, a linear dependence of ρ from πS gives a law of the form

ρ(πS) = ρ0 + γ (πS − πS0) (1.27)

for some positive number γ and a superficial pressure of reference πS0. Finally, we eliminate the hydrostatic
3D pressure P in the momentum equation for the horizontal velocity ~u? = (u1, u2), using the relation

∇∗P = (1− γz)∇∗πS . (1.28)

Therefore, we obtain model (1.5–1.9) from the hydrostatic approximation (1.16–1.21) and we see that equa-
tions (1.5–1.9) intend to model a slight dependence of the density upon compression effects. We refer the reader
to [8] for a more detailed account on the physical interpretations of this problem.

The main result presented in this paper states that for γ small enough there exists a weak solution (~u, πS)
to model (1.5–1.9), see Theorem 2, Section 1.3, for a detailed statement.

Remark 1. As we mentioned before, the most general model also includes equations for temperature and
salinity coupled with the momentum equation. From the mathematical point of view, these two functions do
not add any new difficulty. The essential difficulties of this problem are the lack of regularity of the vertical
velocity u3 in the non-linear convection term and the additional compression term.

1.2. Basic functional spaces and related results

On the domain Ω introduced in the previous section we consider the following linear space of smooth functions

C∞b,l = {φ ∈ C∞(Ω̄) s.t. φ|Γb∪Γl
= 0}, (1.29)

and, based on this, the Hilbert space

H1
b,l(Ω) = C∞b,l

(H1(Ω))
= {v ∈ H1(Ω) s.t. v|Γb∩Γl

= 0} (1.30)

endowed with the standard H1
0 (Ω) norm. In general, for any integer k ≥ 1 and real p ≥ 1 we may consider the

spaces

W k,p
b,l (Ω) = C∞b,l

(Wk,p(Ω))
= {v ∈W k,p(Ω) s.t. v|Γb∩Γl

= 0} (1.31)
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endowed with the W k,p(Ω) norm. We will work with product spaces and use the notation H1
b,l(Ω) = H1

b,l(Ω)×
H1
b,l(Ω) and Wk,p

b,l (Ω) = W k,p
b,l (Ω)×W k,p

b,l (Ω). Trace spaces will also be needed, we introduce

H1/2(∂Ω) = {v ∈ L2(∂Ω) s.t. v = v̄|∂Ω for some ū ∈ H1(Ω)}, (1.32)

and the anisotropic spaces:

H(∂z ; Ω) = {v ∈ L2(Ω) s.t. ∂zv ∈ L2(Ω)}, (1.33)

H0(∂z ; Ω) = C∞0 (Ω)
H(∂z ;Ω)

, (1.34)

endowed with the norm ‖v‖H(∂z;Ω) = ‖v‖L2(Ω) + ‖∂zv‖L2(Ω). As usual, we denote by U∗ the dual space of
a Banach space U and, in particular, we consider the dual spaces H−1/2(∂Ω) = (H1/2(∂Ω))?, H−1/2 =
(H−1/2(∂Ω))2 and H−1

b,l = (H1
b,l(Ω))∗. The normal trace v n3 of functions in H(∂z; Ω) belongs to H−1/2(∂Ω)

and H0(∂z; Ω) is described as

H0(∂z ; Ω) = {v ∈ H(∂z; Ω) s.t. v n3|∂Ω = 0}, (1.35)

where ~n = (n1, n2, n3) denotes the outward normal to Ω (see [12] for all these results). We also introduce, for
any r ≥ 1, the Banach space Ur given by

Ur = {v ∈ H1
b,l(Ω) s.t. ∂zv ∈ Lr(Ω)} (1.36)

endowed with the norm ‖v‖Ur = |v|1,0 + ‖∂zv‖Lr(Ω) and the product space Ur = Ur × Ur. Finally, we consider

L2
0(S) =

{
π : S 7→ R s.t. ‖π‖20,S =

∫
S

|π|2 dS < +∞ ,

∫
S

π dS = 0
}

(1.37)

normed by ‖ · ‖0,S as usual.

1.3. Reduction of the model equations and variational formulation

In this section we first introduce the variational formulation of model (1.5–1.9). Then we present a refor-
mulation of (1.5–1.9) in which the vertical velocity u3 disappears as an unknown. We finally show that both
formulations have the same weak solutions.

The lack of smoothness in the vertical component of the velocity field u3 only gives a convection term
u3∂z~u? ∈ (L1(Ω))2. The following result gives a variational sense to this term:

Lemma 1. If ~u? = (u1, u2) ∈ H1
b,l(Ω) and u3 ∈ H0(∂z; Ω) are such that ∇ · (~u?, u3) = 0, then, for any r ≥ 3 ,

u3∂z~u? belongs to Ur
? and

〈u3∂z~u?, ~v?〉U?r ,Ur = −
∫

Ω

u3∂z~v? · ~u? dΩ−
∫

Ω

∂zu3~v? · ~u? dΩ (1.38)

for all ~v? ∈ Ur. As a consequence, ((~u?, u3) · ∇)~u? belongs to Ur
? and

〈((~u?, u3) · ∇)~u?, ~v?〉U?r ,Ur = −
∫

Ω

(~u? · ∇∗)~v? · ~u? dΩ−
∫

Ω

u3∂z~v? · ~u? dΩ (1.39)

for all ~v? ∈ Ur.

Proof. The proof of (1.38) is a consequence of a density argument for approximating u3∂z~u?, coupled with an
integration by parts, while (1.39) uses integration by parts and (1.38).
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As the cinematic viscosity vector ~ν = (ν, ν, νz) does not add any mathematical difficulty to the formulation,
we will simplify the model and suppose νz = ν > 0. The variational formulation of problem (1.5–1.9) is the
following:
Given ~f ∈ H−1

b,l and ~gS ∈ H−1/2, obtain (~u, πS) ∈ H1
b,l(Ω) ×H1

b,l(Ω) × H0(∂z; Ω) × L2
0(S), ~u = (~u?, u3), such

that

〈(~u · ∇)~u?, ~v?〉U?4 ,U4 + ν(∇~u?,∇~v?)Ω + α(~u?
⊥, ~v?)Ω −

1
ρ0

(πS , (1− γz)∇∗ · ~v?)Ω = l(~v?), (1.40)

(q,∇ · ~u)Ω = 0, (1.41)

for all (~v?, q) ∈ U4 × L2
0(Ω). Here l ∈H−1

b,l is the linear form l : H1
b,l(Ω) 7→ R defined by

l(~v?) = 〈~f , ~v?〉Ω + 〈~gS , ~v?|S〉S , (1.42)

where 〈·, ·〉Ω and 〈·, ·〉S stand for the duality in H1(Ω) and H1/2(S) respectively, and (·, ·)Ω stand for the L2

scalar, or tensor, product in Ω. Any solution of (1.40–1.41) is a weak solution of problem (1.5–1.9) in the
following sense: equation (1.5) is verified in U4

?, equation (1.6) in L2(Ω), (1.7) in H−1/2, (1.8) in H1/2(Γb∪Γl)
and (1.9) in H−1/2(∂Ω).

Remark 2. The choice of test functions in U4 is due to the lack of regularity in the vertical velocity u3 and
it just makes computations easier. The simplest choice, U3, yields some technical trouble in the compactness
argument used later on. Moreover, it essentially gives the same information on the solution.

Let us now consider the following reduced problem: Find a velocity field ~u? : Ω 7→ R2 and a superficial
pressure πS : S 7→ R such that

(~u?, u3) · (∇∗, ∂z)~u? − ν∆~u? + α ~u?
⊥ +

1
ρ0

(1− γz)∇∗πS = ~f in Ω, (1.43)

∇∗ · 〈~u?〉 = 0 on S, (1.44)

ν∂z~u? = ~gS on S, (1.45)

~u? = 0 on Γb ∪ Γl, (1.46)∫ 0

z

∇∗ · ~u?(x, y, ξ)dξ = u3(x, y, z) in Ω. (1.47)

Here, for any function φ : Ω 7→ R we will denote by 〈·〉 its vertical mean, i.e.

〈φ〉(x, y) =
∫ 0

−D(x,y)

φ(x, y, z)dz, ∀(x, y) ∈ S. (1.48)

In order to obtain a variational formulation of (1.43–1.46) we consider the functional B : (H1
b,l(Ω) × L2

0(S)) ×
(U4 × L2

0(S)) 7→ R given by

B((~u?, πS); (~v?, q)) = 〈(~u · ∇)~u?, ~v?〉U?4 ,U4 + ν(∇~u?,∇~v?)Ω − α(~u?
⊥, ~v?)Ω −

1
ρ0

(πS ,∇∗ · 〈~v?〉)S

+
1
ρ0

(πS , 〈γz∇∗ · ~v?〉)S − (q,∇∗ · 〈~u?〉)S , (1.49)

where (·, ·)S stand for the L2 scalar product in S and u3 is given by (1.47).
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We pose the following variational problem:
Given ~f ∈H−1

b,l , ~gS ∈H−1/2 and positive constants γ, ν and α, find (~u?, πS) ∈ H1
b,l(Ω)× L2

0(S) such that

B((~u?, πS); (~v?, q)) = l(~v?), ∀(~v?, q) ∈ U4 × L2
0(S). (1.50)

The variational formulations (1.50) and (1.40, 1.41) are equivalent due to the following result:

Lemma 2. Let ~u? ∈ H1
b,l(Ω) and define u3 by

u3(x, y, z) =
∫ 0

z

∇∗ · ~u?(x, y, ξ)dξ, ∀(x, y, z) ∈ Ω.

Then, the following are satisfied:
1. We have u3 ∈ H(∂z; Ω) and ∂zu3 = −∇∗ · ~u?.
2. The 3D velocity vector (~u?, u3) is incompressible, i.e., ∇ · (~u?, u3) = 0 in L2(Ω).
3. 〈~u?〉(x, y) =

∫ 0

−D(x,y)
~u?(x, y, z)dz ∈ H1

0 (S).
4. u3 n3|∂Ω

∈ H−1/2(∂Ω) and

u3 n3|∂Ω = 0 in H−1/2(∂Ω)⇐⇒∇∗ · 〈~u?〉 = 0 in S,

where ~n = (n1, n2, n3) is the 3D outward normal vector to ∂Ω. As a consequence of (1.44), we obtain
u3 ∈ H0(∂z ; Ω).

Proof. The first two properties are straightforward while the third one is obtained by a density argument. We
prove the fourth one: As ~u?|Γb∪Γl

= 0 and D is bounded and Lipschitz, we have D ∈W 1,∞(S) and then

∇∗ · 〈~u?〉 = 〈∇∗ · ~u?〉 (1.51)

for all ~u? ∈H1
b,l(Ω). Now, assume that u3 n3|∂Ω = 0 in H−1/2(∂Ω), then any ϕ ∈ C∞0 (S) may be considered as

a z−independent function in Ω, and we have∫
S

∇∗ · 〈~u?〉ϕ dS =
∫

Ω

∇∗ · ~u? ϕ dΩ = −
∫

Ω

∂zu3 ϕ dΩ

=
∫

Ω

u3 ∂zϕ dΩ−
∫
∂Ω

(u3 n3) ϕ d∂Ω

= −〈u3 n3, ϕ|∂Ω〉 = 0.

Thus, ∇∗ · 〈~u?〉 = 0 in S.
Now we suppose that ∇∗ · 〈~u?〉 = 0, then take a sequence ~φn ∈ C∞b,l ×C∞b,l convergent to ~u? in (H1(Ω))2 and

consider Φn =
∫ 0

z ∇∗ · ~φndξ. As Φn converges to u3 in H(∂z; Ω), Φn n3 converges to u3 n3 in H−1/2(∂Ω). We
see next that, indeed, Φn n3 converges to 0 in H−1/2(∂Ω). As we have Φ(x, y, 0) = 0 and n3 = 0 on S ∪ Γl,
then, for any v ∈ H1/2(∂Ω)

|〈Φn n3, v〉H1/2(∂Ω)| = |
∫
∂Ω

Φn n3v d∂Ω| = |
∫

Γb

Φn n3v d∂Ω|

= |
∫
S

(Φn n3v)(x, y,−D(x, y))
√

1 + |∇D|2dxdy|

≤ C(D,S) ‖Φn(·,−D(·))‖L2(S)‖v‖L2(S)

≤ C(D,S) ‖∇∗ · 〈 ~φn〉‖L2(S)|v|L2(S),
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where C(D,S) is a constant that depends only on Ω. We conclude now thanks to the fact that Φn(x, y,−D(x, y))
converges to zero in L2(S) because ∇∗ · 〈 ~φn〉 converges to ∇∗ · 〈~u?〉 = 0 in L2(S).

Therefore, we get the following equivalence result:

Theorem 1. Given positive numbers ~ν, α and γ, (~u, πS) ∈ H1
b,l(Ω) × H1

b,l(Ω) × H0(∂z ; Ω) × L2
0(S), with ~u =

(~u?, u3), is a solution of (1.40–1.41) if and only if (~u?, πS) ∈ H1
b,l(Ω) × L2

0(S) solves (1.50), with u3 =
∫ 0

z
∇∗ ·

~u? dξ.

Remark 3. Observe that with the choice of test functions made all the terms in the two variational formulations
introduced are well defined.

The existence result of weak solution to problem (1.5–1.9) that we present in this paper is the following:

Theorem 2. Let ~f ∈ H−1
b,l , ~gS ∈ H−1/2 and positive numbers ~ν,α and γ. Suppose that D ∈ W 1,∞(S) is such

that (1.4) is satisfied. Then, there exists a positive constant C depending only on the data such that, if γ < C
there exists a pair (~u?, πS) ∈H1

b,l(Ω)× L2
0(S) that satisfies the variational problem (1.50).

Remark 4. Hypothesis (1.4) is needed for technical reasons, as it will be mentioned later on.

Remark 5. It is possible to work with a more general function γ = γ(z) ∈ L∞(Ω) such that γ(z) 6= γ z. Then
we just require ‖γ‖∞ to be small enough.

Remark 6. The uniqueness of the solution for problem (1.50) is still an open question due to the lack of
regularity in the third component of the velocity field, which leads to the non-Hilbertian weak formulation
presented in this paper.

2. Proof of Theorem 2

2.1. Sketch of the proof and preliminaries

We outline the proof of Theorem 2:
1. We consider a family of finite dimensional spaces Xh×Mh dense in both H1

b,l(Ω)×L2
0(S) and U4×L2

0(S),
depending upon the norm used and then we pose the variational problem (1.50) in (Xh×Mh)×(Xh×Mh).
Observe that the convection term is regularized with this discretization of the problem.

2. We then remove the nonlinearity in the convection term and in the pressure term by means of a known
data (~a, t) ∈ Xh ×Mh.

3. We show existence of solution (~u?, πS) ∈ Xh ×Mh for this linear problem.
4. We estimate this solution in terms of the data (~a, t).
5. We show existence of solution, by a fixed point argument, for the non-linear and with additional pressure

term problem in the finite-dimensional space Xh ×Mh.
6. Via a compactness argument, we obtain the solution (~u?, πS) ∈ H1

b,l(Ω) × L2
0(S) to (1.50) by passing to

the limit in the equation.
We perform an approximation of the domain Ω through polygonal subdomains Ωh ⊂ Ω, for h > 0, as follows:
Take the the surface of Ωh to be a polygonal domain Sh and consider a triangularization of Sh. Take a Lipschitz
function Dh : Sh → R that gives the depth of the domain Ωh, as in the continuous case, such that the extension
of Dh by zero to converges to D in W 1,∞(S) and

min
(x,y)∈Sh

Dh(x, y) ≥ δ > 0, (2.52)

‖Dh‖1,∞ ≤ C ‖D‖1,∞, (2.53)

for C and δ independent of h. We recall that δ is the one in (1.4). Then we form Ωh by vertical prisms spanned
from the triangularization of Sh down to the bottom and such that the depth is given by Dh. Then, when h
tends to 0, Ωh fills up Ω.
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We follow [5] and consider Yh and M̃h finite element subspaces of (W 1,∞
0 (Sh))2 and L∞0 (Sh) respectively,

such that the discrete “inf-sup” condition by Ladyzhenskya-Brezzi-Babuška, the LBB condition, is satisfied, i.e.
there exists a constant ĉ > 0, independent of h, with

‖q‖L2
0(Sh) ≤ ĉ sup

~y∈Yh\{0}

|(q,∇∗ · ~y)Sh |
|~y|1,0

∀q ∈ M̃h. (2.54)

We approximate H1
b,l(Ω) by a family of finite element subspaces Ỹh on Ωh, such that Ỹh ⊂ (W 1,∞

b,l (Ωh))2 and
form a “stable extension” of the spaces Yh in the sense that the following conditions are satisfied. Consider the
nonzero function

β(z) =
{
δ−1(z + δ), for −δ ≤ z ≤ 0
0, for z ≤ −δ . (2.55)

We then require:
• (H1) for all ~y ∈ Yh

β(z) ~y(x, y) ∈ Ỹh. (2.56)

• (H2) The union of spaces
⋃
h>0 Xh and

⋃
h>0Mh are dense in U4 and L2

0(S) respectively, where Xh and
Mh are the extension by zero of functions in Ỹh and M̃h.

As Ωh has been constructed, these properties are simply obtained via the standard Lagrange finite elements,
see for instance [6] (page 89). In particular (1.4) plays a key role in (H1). From now on we will work with the
spaces Xh and Mh.

We now pose the finite dimensional version of the non-linear variational problem (1.50) and solve it in the
next section:
Find (~u?, πS) ∈ Xh ×Mh such that

Bh((~u?, πS); (~v?, q)) = lh(~v?), ∀(~v?, q) ∈ Xh ×Mh (2.57)

where Bh and lh denote the restriction of B to Xh ×Mh and of l to Xh respectively.

2.2. Existence of solution for the finite dimensional linear problem

We first make problem (2.57) into a linear problem that yields a square linear system of dimension dim(Xh)+
dim(Mh). Consider a known velocity field ~a ∈ Xh, and consider b(x, y, z) =

∫ 0

z
∇∗ ·~a(x, y, ξ) dξ, for (x, y, z) ∈ Ωh

and t ∈Mh, then we pose the following finite dimensional linear problem:
Find (~u?, πS) ∈ Xh ×Mh such that

B
h,~a((~u?, πS); (~v?, q)) = lh,t(~v?), ∀(~v?, q) ∈ Xh ×Mh (2.58)

where B
h,~a : (Xh ×Mh)× (Xh ×Mh) 7→ R is the linear form given by

B
h,~a((~u?, πS); (~v?, q)) = ((~a · ∇∗)~u?, ~v?) + (b ∂z~u?, ~v?) + ν(∇~u?,∇~v?) + α(~u?

⊥, ~v?)

− (πS ,∇∗ · 〈~v?〉) + (q,∇∗ · 〈~u?〉), (2.59)

and the linear form lh,t : Xh 7→ R is defined by

lh,t(~v?) = 〈~f , ~v?〉Ω + 〈~gS , ~v?〉S − (t, γ〈z∇∗ · ~v?〉)S . (2.60)

We have the following result:
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Lemma 3. Given ~f ∈ H−1
b,l , ~gS ∈ H−1/2 and D ∈ W 1,∞(S) satisfying (1.4), there exists a unique solution

(~u?, πS) ∈ Xh ×Mh to the linear finite dimensional problem (2.58) such that the following bounds hold

|~u?|1,0 ≤
C

ν
{‖~f‖−1 + ‖~gS‖−1/2 + γ‖t‖0,S}, (2.61)

‖πS‖0,S ≤
C

δ7/4
{(|~a|1,0 + ν + α)|~u?|1,0 + ‖~f‖−1 + ‖~gS‖− 1

2
+ γ‖t‖0,S}, (2.62)

where C is a constant that depends only on the domain Ω, not on h, and δ is given in (1.4).

Remark 7. Observe that this L2 estimate for the pressure blows up when δ goes to zero.

Proof. As we have a finite dimensional problem that yields a square linear system of equations, we will obtain
existence and uniqueness of solution if we prove that the homogeneous problem just have the trivial solution.
Therefore, bounds of the possible solution in terms of the right hand side lh,t would be enough for existence
and uniqueness. Let us prove (2.61, 2.62):
Let (~u?, πS) ∈ Xh ×Mh be a solution of (2.58), then using as a test function the pair (~u?,−πS) and the fact
that ∇ · (~a, b) = 0 we obtain

ν|~u?|21,0 = 〈~f , ~u?〉Ω + 〈~gS , ~u?|Sh 〉S − (t, 〈γz∇∗ · ~u?〉)S
≤ ‖~f‖−1|~u?|1,0 + C‖~gS‖H−1/2 |~u?|1,0 + γ‖t‖0,S‖D‖1/2∞ ‖∇∗ · ~u?‖0,Ω
≤ C {‖~f‖−1 + ‖~gS‖−1/2 + γ‖t‖0,Sh}|~u?|1,0 (2.63)

and (2.61) follows.
In order to obtain (2.62), we will make use of the LBB condition (2.54) that the pair of spaces (Yh, M̃h)

satisfies. Given ~v? ∈ Yh we let ~w ∈ Xh be given by

~w(x, y, z) = β(z) ~v?(x, y), ∀(x, y, z) ∈ Ωh, (2.64)

and extended by zero outside Ωh, where the function β is given in (H1). We easily obtain

〈~w〉(x, y) =
δ

2
~v?(x, y) ∀(x, y) ∈ S, (2.65)

‖~w‖U4 ≤ Cδ−3/4|~v?|1,0, (2.66)

for C independent of h. Now we use as a test function the pair (~w, 0) and obtain

δ

2
(πS ,∇∗ · ~v?)S = ((~a · ∇∗)~u?, ~w) + (b ∂z~u?, ~w) + ν(∇~u?,∇~w) + α(~u?

⊥, ~w)

− 〈~f , ~w〉Ω + 〈~gS , ~w〉S
− (t, 〈γz∇∗ · ~w〉)S . (2.67)

Therefore,

|(πS ,∇∗ · ~v?)S | ≤
C

δ7/4
{(|~a|1,0 + ν + α)|~u?|1,0 + ‖~f‖−1 + ‖~gS‖− 1

2
+ γ‖t‖0,S}‖~v?‖1,0,

and, finally, the LBB condition (2.54) yields (2.62).
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2.3. Existence of solution for the finite dimensional non-linear problem

Now we use the result in Lemma 3 combined with a fixed point argument to obtain the solution of the
non-linear problem (2.57).

Consider the mapping T : Xh ×Mh 7→ Xh ×Mh defined by T ((~a, t)) = (~u?, πS), where the pair (~u?, πS) is
the unique solution of the linear problem in Xh ×Mh obtained with data (~a, t). We have:

Lemma 4. The following are satisfied:
1. The operator T is continuous and bounded.
2. If γ < C for some positive real number C that depends only on the domain Ω and all the known data,

then T has a fixed point (~u?, πS) ∈ Xh ×Mh that solves the non-linear variational problem in Xh ×Mh.

Proof. Continuity of T is an easy consequence of the facts that we work in finite dimension and of the uniqueness
of solution in problem (2.58), while boundeness of T is given by Lemma 3. We check now the fixed point
condition for T . Suppose that we have two positive constants Au and Ap such that

|~a|1,0 ≤ Au, (2.68)

‖t‖L2
0(S) ≤ Ap. (2.69)

We will show that T maps the product of discs D(0, Au) ×D(0, Ap) of Xh ×Mh into itself. For this purpose
we just have to consider the bounds given by Lemma 3,

|~u?|1,0 ≤
C

ν
{‖~f‖−1 + ‖~gS‖−1/2 + γ‖t‖0,S},

‖πS‖0,S ≤
C

δ7/4
{(|~a|1,0 + ν + α)|~u?|1,0 + ‖~f‖−1 + ‖~gS‖−1/2 + γ‖t‖0,S},

and find two positive constants Au,Ap such that

C

ν
{‖~f‖−1 + ‖~gS‖−1/2 + γAp} = Au (2.70)

C

δ7/4
{(Au + ν + α)Au + ‖~f‖−1 + ‖~gS‖−1/2 + γAp} = Ap. (2.71)

For this purpose, we substitute (2.70) into (2.71) to obtain a second order polynomial equation in Ap that must
have a positive root:

b0A
2
p + b1Ap + b2 = 0. (2.72)

Here, the coefficients read as follows:

b0 =
C3

δ7/4ν2
γ2 (2.73)

b1 =
1

δ7/4ν2
{C3τ2 + C2(Cτ + ν(ν + α)}γ − 1 (2.74)

b2 =
τC

δ7/4ν2
{ν2 + C(Cτ + ν(ν + α)} (2.75)

where τ = ‖~f‖−1 +‖~gS‖−1/2 and C only depends on Ω. We just need to find Ap > 0 such that (2.72) is satisfied.
A simple algebra yields a condition of the form

γ < Φ(ν, α, τ) δ7/4 (2.76)
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for some positive function Φ bounded in ν and decreasing in τ and α. Therefore, for γ small enough, T has a
fixed point (~u?, πS) ∈ D(0, Au)×D(0, Ap) such that

Bh((~u?, πS); (~v?, q)) = lh(~v?), ∀(~v?, q) ∈ Xh ×Mh. (2.77)

2.4. Convergence analysis

We now perform the convergence analysis that leads to a weak solution of (1.50) by a standard compactness
argument.

By the finite dimensional analysis performed in the previous section, there exists a family of solutions
(~u?h, πSh) ∈ Xh×Mh of problem (2.77). As these functions are defined in Ωh and Sh, we consider their exten-
sion by zero and work on the fixed domains Ω and S. Then, these solutions are bounded in H1

b,l(Ω) × L2
0(S).

Therefore, there exists a subsequence of solutions, denoted in the same way, which is weakly convergent to a
pair (~u?, πS) ∈ H1

b,l(Ω) × L2
0(S) as h decreases to 0. We show next that this pair is a solution of (1.50). Due

to (H2), for each pair (~v?, q) ∈ U4 × L2
0(S), we can find a sequence (~φh, qh) ∈ Xh ×Mh strongly convergent

to (~v?, q) in U4 × L2
0(S). We, then, write (1.50) for (~u?h, πSh) and (~φh, qh) in Xh ×Mh and take limits when

h decreases to 0 in each term. The only term that gives some difficulty is the one coming from the convection
term and which involves the vertical component of the velocity, u3:

(uh3∂z~φh, ~u?
h)Ω. (2.78)

The reason is that u3 only belongs to H0(∂z,Ω). But the weak convergence of uh3 to u3 in L2(Ω), the strong
convergence of ∂z~φh to ∂z~v? in L4(Ω) and the strong convergence of ~u?h to ~u? in L4(Ω), obtained by the compact
injection of H1(Ω) into L4(Ω), insure the existence of the limit. The proof of Theorem 2 is completed.

Remark 8. Hypothesis (1.4) seems to be essential to obtain uniform, i.e., independent of h, bounds for discrete
velocity and pressure in the norm H1(Ω) × L2(S). This fact allows the limit process in this problem with
additional pressure term.

Remark 9. With the technique presented in this paper we may obtain, for a right hand side in H−1 and
without the additional pressure term, a velocity in H1(Ω) and a pressure in L3/2(Ω), as in [2]. In this case
condition (1.4) is not needed.

3. The linear evolution case

In this final section we continue the study of the hydrostatic approximation and go a step further to the
linear evolution problem. The model is the following: Find a velocity field ~u? : Ω × (0, T ) 7→ R2 and a scalar
function πS : S × (0, T ) 7→ R such that

∂~u?
∂t
− ν∆~u? + α ~u?

⊥ + (1− γz)∇∗πS = ~f in Ω, (3.79)

∇∗ · 〈~u?〉 = 0 in S, (3.80)

ν∂z~u? = ~gS in S, (3.81)

~u?|Γb∪Γl
= 0, (3.82)

is satisfied in some sense. Here γ, ν and α are positive constants and ~f , ~gS play the same role as before.
We will keep the hypothesis (1.4) on the function D which describes the bottom of the domain Ω. It implies

D ∈ W 1,∞(S) and D−1 ∈ L∞(S). Beside the already introduced functional spaces, we consider the following
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nonzero linear space of smooth functions

F = {~φ ∈ C∞b,l × C∞b,l s.t. ∇∗ · 〈~φ〉(x, y) = 0 ∀(x, y) ∈ S}, (3.83)

and the following Hilbert space, see [8]:

V = F ((H1(Ω))2)
= {~v ∈H1

b,l(Ω) s.t. ∇∗ · 〈~v〉 = 0 in S}, (3.84)

with the standard (H1
0 (Ω))2 norm. We will also use H = F ((L2(Ω))2)

endowed with the L2 norm and the dual
space of V, denoted by V?.

We state the following existence and uniqueness result for (3.79, 3.82):

Theorem 3. Let ~f ∈ L2(0, T ; H), ~gS ∈ L2(0, T ; H−1/2) with d
dt
~gS ∈ L2(0, T ; H−1/2), suppose that ~u?0 ∈ V

and let α, ν be positive constants. Then, there exists a positive number C > 0, depending on the domain
Ω and the known data, such that when γ < C there exists a unique function ~u? ∈ L2(0, T ; V) with d

dt~u? ∈
L2(0, T ; V) ∩ L2(0, T ; H) and a superficial pressure πS ∈ L2(0, T ;L2

0(S)) such that (3.79–3.82) is satisfied in
L2(0, T ; H−1

b,l ).

The proof of this result is based on three points; the standard Galerkin techniques used for the linear evolution
Stokes problem, see mainly [13, 14], a modification of De Rham’s Lemma, see [12] for instance, obtained in [8]
(page 43), and a fixed point argument as in the previous Sections. The additional smoothness required on ~gS
is needed to estimate the time derivative of ~u?.

As for the hydrostatic approximation to the nonstationary Navier-Stokes equations, see [1, 4] for the model
without compression term, we could not apply this fixed point technique for the compression term due to the
lack of regularity in the time variable for the superficial pressure. It, therefore, remains as an open problem.

References
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