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Abstract

The charging of batteries of plug-in hybrid electric vehicles at home at standard outlets has an impact
on the distribution grid which may require serious investments in grid expansion. The coordination of
the charging gives an improvement of the grid exploitation in terms of reduced power losses and voltage
deviations with respect to uncoordinated charging. The vehicles must be dispatchable to achieve the most
efficient solution. As the exact forecasting of household loads is not possible, stochastic programming
is introduced. Two main techniques are analyzed in this paper: quadratic and dynamic programming.
Both techniques are compared in results and storage requirements. The charging can be coordinated
directly or indirectly by the grid utility or an aggregator who will sell the aggregated demand of PHEVs
at the utility. PHEVs can also discharge and so inject energy in the grid to restrict voltage drops. The
amount of energy that is injected in the grid depends on the price tariffs, the charging and discharging
efficiencies and the battery energy content. The impact of a voltage controller embedded in a PHEV
charger is regarded in this paper. A day and night tariff are applied. The charging and discharging of
vehicles can respond to real-time pricing or on a price-schedule as well. Voltage control is the first step
in the utilization of distributed resources like PHEVs for ancillary services.

Keywords: Charging, Energy, Optimization, Plug-in hybrid electric vehicles

1 Introduction

Hybrid electric vehicles (HEVs), battery electric
vehicles (BEVs) and plug-in hybrid electric
vehicles (PHEVs) are gaining popularity. HEVs
and PHEVs have an extra electric motor added
at their power train for propulsion purposes.
Because of this electric motor, the combustion
engine can be downsized which reduces the
greenhouse gases. A PHEV is defined by [1]
as any hybrid electric vehicle which contains at
least 1) a battery storage system of 4 kWh or
more used to power the motion of the vehicle, 2)
a means of recharging that battery system from
an external source of electricity and 3) an ability
to drive at least 10 miles (16 km) in all electric
mode consuming no gasoline. PHEVs may

have a larger battery and a more powerful motor
compared to a HEV, but their electric range is
still very limited [2] and can not compete with
the drive range of a conventional vehicles.

PHEVs can be charged by on-board electricity
generation or plugging into standard electric
outlets, so they have a connection to the grid.
There are several places where the batteries of
PHEVs can be recharged, e.g. on a car park,
at work or at home. The focus here lies on the
latter. The electrical consumption for charging
PHEVs may rise up to 5% of the total electrical
consumption in Belgium by 2030 [3]. For a
PHEV with a range of 60 miles (100 km), this
amount can increase up to 8%.
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From the distribution system operator (DSO)
point of view in a performance based regulation,
there are strong incentives to minimize the power
losses during charging and to avoid transformer
and feeder overload. Not only power losses, but
also power quality (e.g. voltage dips, unbalance,
harmonics, etc . . . ) is essential to the DSO as
to grid customers as well. Overnight charging
can also increase the loading of base-load power
plants and smoothen their daily cycle or avoid
additional generator start-ups thus enhancing
general efficiency [4]. From the PHEV owner
point of view, the batteries of the PHEV have to
be charged within a certain time period, possibly
at the lowest cost, so the driver can drive off with
a fully-charged battery.

In [5], the uncoordinated and coordinated
charging of the batteries of PHEVs are discussed.
For uncoordinated charging, the vehicles start
to charge immediately or after a fixed start
delay. In this article, the coordinated charging is
investigated. The charge profile of the batteries
of PHEVs can be adopted and the profile can
be determined by electricity price, frequency,
power losses, voltage and owner preferences [6].
This creates opportunities for intelligent or smart
charging. The coordination of the charging
could shift the demand to periods of lower
load consumption and thus avoid high peaks in
electric consumption. The idea of coordinated
charging is to achieve optimal charging and grid
utilization by minimizing the power losses for
both deterministic and stochastic data of the
household loads. For deterministic household
profiles, there is a perfect knowledge of the
future data. The stochastic data reflect an error
in the forecasting of the daily load profiles. Two
program techniques are presented to improve
the grid quality for the deterministic and the
stochastic approach: quadratic programming
(QP) and dynamic programming (DP). Both
techniques are compared in results, storage
requirements and computational effort.

The connection to the electric power grid, mainly
for purpose of charging the batteries for driving
needs, offers more opportunities. The power flow
of the charger can be bidirectional, meaning that
the vehicle can also discharge and thus inject
electrical energy from the battery back in the
grid [6]. In that way, PHEVs can support the
grid. This is the vehicle to-grid-concept (V2G).
For the V2G concept, a lot of vehicles must be
connected to the power grid. The battery capacity
of each vehicle individually is small, but the
large number of vehicles make that PHEVs have
enormous energy storage capacity. More than
90% of the vehicles are always available for V2G
[1], [7], [8] and must be connected to the grid
when idle. This can be encouraged by giving
incentives to stay plugged in.
The V2G-concept offers opportunities for both
the vehicle owners and the distribution and
transmission system operator (TSO). There is
almost no storage available in the power grid
nowadays so the demand and generation must
be perfectly matched and continuously managed

to absorb fluctuations [8]. The electrical storage
of PHEVs could provide grid services via V2G
concept and add a surplus value to the vehicle
owner [9], although, it is not clear if this would
be economically viable. Grid operators and
vehicle owners have complementary needs [7].
The PHEV-owner needs energy for driving at
more or less predictable times and the grid
operator is responsible for power balance at
each time instant. In this research is shown that
vehicles can each individually support the grid
by implementing a voltage controller embedded
in the charger.

2 Assumptions and modeling

2.1 Load scenarios
From an available set of residential load
measurements, two large groups of daily winter
and summer load profiles are selected. The load
profiles cover 24 hours and the instantaneous
power is given on a 15 minute time base as shown
in Fig. 1 for an arbitrary day during winter.
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Figure 1: Household load during winter [10].

2.2 Specifications of PHEVs
Each of the PHEVs has a battery with a
maximum storage capacity of 11 kWh [4]. Only
80% of the capacity of the battery can be used to
optimize life expectancy. This gives an available
capacity of 8.8 kWh. 10 kWh is required from
the grid, assuming an 88% energy conversion
efficiency from AC power absorbed from the grid
to DC power in the battery of the vehicle [11].
The batteries can be charged and discharged,
meaning that the energy flow is bidirectional.
The charger has a maximum output power of
4 kW for both directions. The charger of 4 kW
is chosen because the maximum power output of
a standard single phase 230 V outlet is 4.6 kW.
So this is the largest charger that can be used for
a standard outlet at home without reinforcing the
wiring. The maximum penetration degree is 30%
by 2030 for Belgium as predicted by the Tremove
model [12].
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2.3 Charging periods

It is not realistic to assume that PHEVs could be
connected at any place where a standard outlet
is present. Therefore in this article, the batteries
of the vehicles are assumed to be connected
at home. Fig. 2 shows the percentage of all
trips by vehicle each hour on average. At that
moment, they are not available for connection.
An important period is during the evening and
night. Most of the vehicles are at home from
21h00 until 06h00 in the morning. Other possible
periods are not considered in this paper because
the focus lies on a connection at home, in
distribution grids, but the proposed methods are
also valid for other periods.

Time [h]

N
um

be
r 

of
 tr

ip
s 

[%
]

00h 02h 04h 06h 08h 10h 12h 14h 16h 18h 20h 22h 24h
0

1

2

3

4

5

6

7

8

9

10

Figure 2: Percentage of vehicle trips at each hour on
average [13].

2.4 Grid topology

The radial network used for this analysis is the
IEEE 34 node test feeder [14] shown in Fig 3.
This network is downscaled to 230 V so this grid
topology represents a residential radial network.
The line impedances are adapted to achieve
tolerable voltage deviations and power losses.
Each node is a connection with a residential
load and some of the connections which are
randomly chosen, will have PHEVs charging or
discharging.

GRID

Figure 3: IEEE 34 node test feeder [14].

3 Quadratic programming
The coordinated charging handles a
unidirectional energy flow from the grid to
the batteries. Discharging is not implemented, so
in this case, the vehicles are not able to support
the grid by injecting energy into the grid. The
idea of coordinated charging by minimizing
power losses is to optimize the grid utilization
and quality. This optimization problem can
be tackled by quadratic programming. This
technique optimizes a quadratic function of
several variables, in this case the power of
the PHEV chargers at all time steps, which are
subjected to linear constraints. The QP technique
is applied to handle deterministic and stochastic
household load profiles.

3.1 Optimization problem
By optimizing grid utilization, the owners of
PHEVs will no longer be able to control the
charging profile. The only degree of freedom
left for the owners is to postulate the point in
time when the batteries must be fully charged.
For the sake of convenience, the end of the
indicated charging period is taken as the point in
time when the vehicles must be fully charged.
The charging power varies between zero and
maximum charger output.

3.2 Methodology
The objective is to minimize the power losses
which are treated as a reformulation of the
non-linear power flow equations. This non-linear
minimization problem can be tackled as a
sequential quadratic optimization [15]. The
charging power obtained by the quadratic
programming can not be larger than the
maximum power of the charger Pmax. The
batteries must be fully charged at the end of
cycle, so the energy which flows to the batteries
must equal the capacity of the batteries Cmax. xn
is zero if there is no PHEV placed and is one
if there is a PHEV at node n. The goal is to
minimize power losses while taking into account
these constraints. The quadratic programming
uses equations (1) and (2).

min

tmax∑
t=1

lines∑
l=1

Rl · I2
l,t (1)

s.t.

{ ∀t, ∀n ε {nodes} : 0 ≤ Pn,t ≤ Pmax

∀n ε {nodes} :
∑tmax

t=1 Pn,t · �t · xn = Cmax

xnε {0, 1}
(2)

3.3 Deterministic programming
Fig. 4 represents the outline of the algorithm
of coordinated charging. The vehicles are
randomly placed after the selection of a daily
load profile and the number of PHEVs. A flat
voltage profile is assumed and the node voltages
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are computed with the backward-forward sweep
method assuming that there are no PHEVs. The
backward and forward sweep are formulated
as a matrix multiplication. The quadratic
optimization is performed in order to determine
the optimal charging profile. Next, the node
voltages are computed again. This process is
repeated until the power loss based stopping
criterion is reached.

Figure 4: Algorithm of coordinated charging.

3.4 Stochastic programming
The analysis of the previous paragraph are based
on deterministic or historical data for the daily
load profiles. So the essential input parameters,
such as the household load profiles, are fixed.
For this approach, sufficient measurement data
must be available. Most of the time, however,
these measurements are not adequate to do a
perfect forecasting of the data. A stochastic
approach, in which an error in the forecasting
of daily load profiles is considered, is therefore
more realistic.

The daily load profiles are the essential
input parameters. The uncertainties of these
parameters can be described in terms of
probability density functions. In that way,
the fixed input parameters are converted into
random input variables with normal distributions
assumed at each node. N independent samples

of the random input variable ωi, the daily load
profile, are selected.
Equation (3) gives the estimation for the
stochastic optimum v̂n. The function g

(
Pn,t, ω

i
)

gives the power losses and Pn,t is the power
rate of the charger for all the PHEVs and time
steps. f̂N is a sample-average approximation
of the objective of the stochastic programming
problem.

v̂n = min

{
f̂N (Pn,t) ≡ 1

N

N∑
i=1

g
(
Pn,t, ω

i
)}

(3)

The mean value of the power losses, E (v̂n),
is a lower bound for the real optimal value of
the stochastic programming problem, v∗ [16], as
shown in (4).

E (v̂n) ≤ v∗ (4)

E (v̂n) can be estimated by generating M
independent samples ωi,j of the random input
variable each of size N . M optimization runs are
performed based on (3). v̂j

n is the mean optimal
value of the problem for each of the M samples
as shown in (5). The optimal values of the M
samples constitute a normal distribution.

v̂j
n = min

{
f̂N

j
(Pn,t) ≡ 1

N

N∑
i=1

g
(
Pn,t, ω

i,j
)}

, j = 1...M

(5)

From equation (6), LN,M is an unbiased
estimator of E (v̂n).

LN,M =
1

M

M∑
j=1

v̂j
N (6)

Simulations indicate that in this type of problem,
the lower bound converges to the real optimal
value when N is sufficiently high. A forecasting
model for the daily load profile for the next 24
hours is required. The daily load profiles of the
available set are varied by a normal distribution
function. The standard deviation σ is determined
in such a way that 99.7 % of the samples vary, at
maximum, 5 or 25 % of the average μ.
For 2000 independent samples of the daily
load profile, one optimal charging profile is
calculated. This optimal charging profile is
used to determine the power losses for the
2000 individual load profiles. This is the
stochastic optimum. For each of these 2000
load profiles, the optimal charging profile and the
corresponding power losses are also computed,
which is the deterministic optimum.
The power losses of the deterministic optimum
are subtracted from the power losses of
the stochastic optimum and divided by the
deterministic optimum, defined as ΔP . This is
shown for a variation of the household loads of
5 and 25% in Fig. 5 and 6 respectively. The
value of this difference is always positive. The
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forecasting of the daily load profiles introduces
an efficiency loss because the charge profiles
of the PHEVs are not optimal for this specific
daily load profile. If the standard deviation of
the normal distribution and thus the variation
of the household load is reduced, the 2000
charge profiles of the deterministic optimum will
converge to the optimal charge profile. The
efficiency loss will also reduce indicating that the
power losses of the differences will go down by
a factor 25 as shown in Fig. 5 compared to 6.
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Fig. 5: Histogram of the efficiency loss of an arbitrary
day during winter for a variation of 5%.
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Fig. 6: Histogram of the the efficiency loss of an
arbitrary day during winter for a variation of 25%.

In general, the difference between the power
losses of the stochastic and the deterministic
optimum is rather small. It is clear that the
error in forecasting does not have a large impact
on the power losses. The daily household load
profiles during the winter season are showing
the same trend each day during winter season
resulting in an optimal charge profile which
resembles a deterministic charge profile of a
specific day as shown in Fig. 7 for the last
node of the test grid. Both charge profiles
have the same trend. Therefore, the contrast in
terms of power losses between the deterministic
and stochastic optimum is not large. However,
the difference between the uncoordinated and
coordinated charging is much larger because

the charge profiles are more different. The
uncoordinated charging has a constant charge
profile for a specific amount of time and the
power of the charger can not be varied.
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Figure 7: The deterministic optimum and optimal
charger profile for node 33.

In Fig. 5 and 6, a specific household load
profile is assumed which is varied by a normal
distribution function. In Fig. 8, the load profiles
are randomly selected out of a database of
household load profiles. This database contains
profiles that differ more each day and are more
peaked which increases the efficiency losses
significantly.
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Fig. 8: Histogram of the efficiency loss of an arbitrary
day during winter for other household profiles.

4 Dynamic programming

The optimal coordination of charging PHEVs
can also be tackled by the dynamic programming
technique (DP). The QP and DP techniques
are compared with respect to results, storage
requirements and computational time. The DP
technique decomposes the original optimization
problem into a sequence of subproblems which
are solved backward over each stage. A classical
implementation of the DP technique is the
shortest path problem. For the application of
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this paper, the model is represented as a series
of plug-in hybrid electric vehicles.

4.1 Optimization

There are Q vehicles with charging batteries
and the maximum value of Q corresponds to a
penetration degree of 30%. The battery content
of these Q vehicles at each stage are the Q
state variables St,i. The number of stages T
is the number of hours of the charging period
multiplied by four because the household loads
are available on a 15 minute time base.
The backward recursive equations for the
conventional dynamic programming technique
are given in (7) and (8).

ft = min [Lt (St, Pt) + ft+1 (St+1)] t = 1, 2, ...., T (7)

s.t.{ St,i = St+1,i − Pt,i · Δt ∀i = 1, ..., Q (8)

The function ft represents the total optimal
power losses from period t to the last period T .
The vector St is a Q-dimensional vector. Each
storage level can take R discrete values at time t.
Lt are the power losses during period t and St,i

is the battery content of the ith vehicle at time
stage t. The power of the chargers is represented
by Pt and is also a Q-dimensional vector. So the
first component of this vector gives the power of
the charger for the first PHEV. The output of the
charger is not continuous, but has a step size of
400 W. This is relatively large, but smaller step
sizes would lead to too much computational time
which is proportional to RT [17]. The constraints
of the problem remain the same and are shown in
(9).

0 ≤ St,i ≤ Cmax

0 ≤ Pt,i ≤ Pmax

ST,i = Cmax ∀i = 1, ..., Q
(9)

The power loss objective function is to minimize.
The storage vector St is a Q-dimensional vector
and thus ”the curse of dimensionality” [18] arises
which is handled by modifying the original
dynamic programming technique.
The dynamic programming successive
approximation (DPSA) technique decomposes
the multidimensional problem in a sequence
of one-dimensional problems which are much
easier to handle [19]. The optimizations occur
one variable at a time while holding the other
variables at a constant value. All the variables
are evaluated that way. This technique converges
to the global optimum for convex problems. This
method will be used for the deterministic and
stochastic programming.

4.2 Deterministic programming

A daily load profile of the selected season is
chosen and the vehicles are placed randomly.
The DPSA technique needs initial values of the
state variables to start the iteration. These values
are generated by calculating the optimal charge
trajectory for each PHEV separately without
considering the other PHEVs. These optimal
trajectories are put together into one temporary
optimal trajectory and thus one Q-dimensional
state vector. All the components of the state
vector are held constant except the first one. The
optimal charge trajectory for the first component
of the state variable is defined. The new value is
ascribed to the first component and the procedure
continues until the last component of the state
vector is optimized. This procedure is repeated
until convergence is obtained. The problem is
switched from a multidimensional problem to
a sequence of one-dimensional problems. The
algorithm of dynamic programming successive
approximation is represented in Fig. 9.

Figure 9: Algorithm of DPSA charging.
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4.3 Stochastic programming
The uncertainties of the household loads must
also be implemented in the DP technique. 2000
stochastic household load profiles are generated
and the mean power losses of these loads are
used to determine the total power losses ft as
presented in (10).

ft = min [E (Lt (St, Pt)) + ft+1 (St+1)] t = 1, 2, ...., T
(10)

The same stochastic load profiles as produced in
the stochastic programming of the QP technique
are applied to make the comparison more clear.
One optimal charge profile is generated for these
2000 stochastic household loads with the DPSA
technique. The power losses are calculated
separately for the 2000 household load profiles
and the single optimal charge profile. This is
the stochastic optimum. For the deterministic
optimum, the optimal charge profile and power
losses are determined for each of the 2000
stochastic household load profiles, giving 2000
optimal charge profiles. The power losses of
the deterministic optimum are subtracted from
the power losses of the stochastic optimum
and divided by the deterministic optimum for a
variation of the household loads of 5 and 25%.

4.4 Results
In general, the difference between the results of
the DP and QP techniques is negligible although
the QP technique gives more accurate results
because the values of the charge profile are
continuous, in contrast to the DP technique
where a step size of 400 W is introduced for the
power of the charger, giving a discrete charge
profile. In Fig. 10, the charge profiles for the
QP and DP technique are compared. Reducing
the step to an infinitesimal value would give the
same result as the QP technique. This step size
is taken rather large to reduce the number of
levels and with that the computational time and
storage requirements. The storage requirements
are heavier for the DP technique compared to the
QP technique because every possible path over
each stage must be stored. Since this leads to
very large matrices and increased computational
time, the DP technique is slower. Therefore, the
QP technique preferred above the DP technique
for the further analysis.

5 Voltage control by PHEVs
The aim of this section is to emphasize
the impact on the grid of implementing a
voltage controller. PHEVs with a bidirectional
connection to the power grid can deliver ancillary
services although PHEVs are not technical and
economically suitable for all kind of ancillary
services. The vehicles respond quickly, but they
have a high cost per kWh and the battery capacity
is rather limited, so the duration of the services
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Figure 10: The charge profile for node 1 for the QP
and the DP program technique.

must be short. The ancillary services are not
handled in this paper but are studied in [8] and
[20].
The charging of PHEVs increases the total load
of the distribution grid considerably [5]. The
extra loads cause an increase of power losses and
voltage deviations. The voltage deviations can be
reduced to meet partially the EN50160 standard
by embedding a voltage controller in a PHEV
charger. This could even be made mandatory
because the grid reliability must be assured. In
the test grid of this paper, no voltage deviations
occur in the case with no PHEVs present in the
grid. Therefore, this support is not considered
as an ancillary service, but is a first step in the
direction of supporting the grid by PHEVs.

5.1 Optimization problem
The utilization of the power grid is maximized
by the optimization of the bidirectional charge
profile. The objective function is now a linear
cost function so a linear programming technique
(LP) can be used. This optimization problem
minimize the charging cost for the consumers
or PHEV owners while the voltage in the nodes
must stay within their limits. The test grid and
the charging period stay the same.

5.2 Methodology
The objective function is a cost function which
must be minimized as shown in (11). This
function is very simple and has only two
constants: one constant represents the tariff
during the day Cday and a one constant is the
tariff overnight Cnight. The ratio of the day
constant to the night constant is estimated to be
about 1.6 [21]. A night tariff starts between
21h00 and 23h00 and ends between 06h00 and
08h00. In this paper, the night tariff starts at
22h00 and ends at 07h00.
The constraints of (2) are kept and new
constraints are added as shown in (12). The
vehicles are now also able to discharge so
the charger output varies between -4000 and
4000 W. The discharge efficiency is also taken
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into account, which is 88%. The capacity of the
batteries, Cn,t, must be between zero and Cmax

for each time step and equals Cmax at the end
of the charging period, i.e. 06h00. The voltage
must satisfy the EN50160 standard so the node
voltages Vn,t at each time step must be higher
than 90% of 230 V, which is Vlimit. The goal is
to minimize this cost function while fulfilling the
constraints.

min
nodes∑
n=1

(

tnight∑
t=1

Cday · Pn,t +

tmax∑
tnight+1

Cnight · Pn,t) (11)

s.t.

{ ∀t, ∀n ε {nodes} : −Pmax ≤ Pn,t ≤ Pmax

∀t, ∀n ε {nodes} : 0 ≤ Cn,t ≤ Cmax

∀t, ∀n ε {nodes} : Vlimit ≤ Vn,t

∀n ε {nodes} :
∑tmax

t=1 Pn,t · �t · xn = Cmax

xnε {0, 1}

(12)

5.3 Results
The results are represented for a day of the winter
season with high peak loads. The new constraints
are added separately to distinguish their impacts.
For Fig. 11, the vehicles are not able to discharge
and no voltage constraint is implemented. The
objective function is simplified and a single tariff
is used, making no distinction between night and
day. The charge profiles for a node at the end
of the IEEE test grid are showed in Fig. 11 for
three different penetration degrees. Because the
objective is no longer to minimize power losses
and a single tariff is assumed, the vehicles are
charging randomly during this period.
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Figure 11: Charge profile for different penetration
degrees and no voltage constraint.

Fig. 12 shows the voltage profiles for the
same node. Because no voltage constraint is
implemented, the voltage goes well below the
voltage limit. Therefore, a voltage constraint
is added at the linear programming. The
charge profile is shown in Fig. 13 also for
a node at the end of the test grid. The
vehicles will not be charging on the moment
the voltage is already low due to the household

loads. The cost function stays the same so the
vehicles are randomly charging between 21h00
and 06h00, satisfying an extra constraint: the
voltage constraint.
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Figure 12: Voltage profile for different penetration
degrees and no voltage constraint.
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Figure 13: Charge profile for different penetration
degrees with voltage constraint.

Fig. 14 shows the voltage profiles if the voltage
constraint is implemented. The voltage stays
well above the voltage limit.
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Figure 14: Voltage profile for different penetration
degrees with voltage constraint.

The discharging of the vehicles is implemented
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in the program and the objective function has two
tariffs. However, the vehicles are not discharging
as shown in Fig. 15. The charging period starts
at 21h00 and thus there is only one hour left to
discharge at peak tariff. This is not happening
because the batteries of the PHEVs are assumed
to be empty at the start of the charging period
and charging and discharging at the same cost
will be uneconomical because of the charge and
discharge efficiencies. Because there is no other
objective, and there are only two cost tariffs, the
vehicles are further randomly charged at night
tariff. There is no incentive to reduce the power
losses.
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Figure 15: Charge profile for different penetration
degrees.

In the previous argumentation, it is assumed
that the batteries are empty at the beginning of
the charging period. For the next model, there
is energy left in the batteries at the start of
the charging period. This energy is stochastic
determined by a Gauss curve with an avarage
of zero and a σ of 1000 W. Fig. 16 shows
the charge profiles of a node at the end of
the test grid for different penetration degrees.
The night tariff starts at 22h00, therefore the
vehicles are discharging between 21h00 and
22h00 depending on the energy left in the battery.
The batteries still must be fully charged at the end
of the period.
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Figure 16: Charge profile for battery capacity
different from zero.

The impact of the energy left in the battery at the

beginning of the charging period is shown in Fig.
17. The more energy left in the battery, the more
the PHEVs are discharging between 21h00 and
22h00, when the peak tariff is valid. The amount
of discharging is directly related to the energy left
in the battery. This is shown for a penetration
degree of 50%.
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Figure 17: Charge profile for different battery
capacity degrees.

6 Conclusion
In general, coordinated charging of plug-in
hybrid electric vehicles can lower power losses
and voltage deviations by flattening out peak
power. At the first stage, historical data is
used so there is a perfect knowledge of the
load profiles. In a second stage, stochastic
programming is introduced to represent an error
in the forecasting which increases the power
losses. This efficiency loss is rather small if the
trend of the household load profiles is known, so
charging during the peak load of the evening can
be avoided. These results are obtained by the
quadratic programming technique. The dynamic
programming technique is also implemented but
does not improve the computational time nor
the achieved accuracy. The applied techniques
and methods can be extended to other objective
functions.
A voltage support could be implemented in the
electric chargers to avoid too large voltage drops
in the grid. If discharging is applied, it is only
economically beneficial at the moment the peak
tariff is valid. The vehicles will only discharge
if some energy is left in the battery. The results
are of course depending on the depicted charging
period.
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