
Analysis of the IPSec Key Exchange Standard

Radia Perlman, Sun Microsystems Laboratories
Charlie Kaufman, Iris Associates
e
as

the
er-
,

ly
if-
n

ot

ci-
the
re
-
f
n
y
be

ts
n,
ing
.
a
-
,
e
f

ab-

t
s,

ng
a-
y
o-
e

s
ng
t if
an
1 Abstract
This paper describes the purpose, history, and anal-

ysis of IKE [RFC2409], the current standard for key
exchange for the IPSec protocol. We discuss some
issues with the rest of IPSec, such as what services it can
offer without changing the applications, and whether the
AH header is necessary. Then we discuss the various
protocols of IKE, and make suggestions for improve-
ment and simplification.

2 Background
IPSec is an IETF standard for real-time communi-

cation security. In such a protocol, Alice initiates com-
munication with a target, Bob. Each side authenticates
itself to the other based on some key that the other side
associates with it, either a shared secret key between the
two parties, or a public key. Then they establish secret
session keys (4 keys, one for integrity protection, and
one for encryption, for each direction).

The other major real-time communication protocol
is SSL [R01], standardized with minor changes by the
IETF as TLS. IPSec is said to operate at “layer 3”
whereas SSL operates at “layer 4”. We discuss what this
means, and the implications of these choices, in section
2.2.

2.1 ESP vs AH
There are several pieces to IPSec. One is the IPSec

data packet encodings of which there are two: AH
(authentication header), which provides integrity protec-
tion, and ESP (encapsulating security payload) that pro-
vides encryption and optional integrity protection. Many
people argue [FS99] that AH is unnecessary, given that
ESP can provide integrity protection. The integrity pro-
tection provided by ESP and AH are not identical, how-
ever. Both provide integrity protection of everything
beyond the IP header, but AH provides integrity protec-
tion for some of the fields inside the IP header as well.

It is unclear why it is necessary to protect the IP
header. If it were necessary, this could be provided by
ESP in “tunnel mode” (where a new IP header with ESP
is prepended to the original packet, and the entire origi-
nal packet including IP header is considered payload,
and therefore cryptographically protected by ESP).
Intermediate routers can not enforce AH’s integrity pro-
tection, because they do not know the session key for the

Alice-Bob security association, so AH can at best b
used by Bob to check that the IP header was received
launched by Alice. Perhaps an attacker could change
QOS fields, so that the packet would have gotten pref
ential or discriminatory treatment unintended by Alice
but Bob would hardly wish to discard a packet from
Alice if the contents were determined cryptographical
to be properly received, just because it travelled by a d
ferent path, or according to different handling, tha
Alice intended.

The one function that AH offers that ESP does n
provide is that with AH, routers and firewalls know the
packet is not encrypted, and can therefore make de
sions based on fields in the layer 4 header, such as
ports. (Note: even if ESP is using null encryption, the
is no way for a router to be able to know this conclu
sively on a packet-by-packet basis.) This “feature” o
having routers and firewalls look at the TCP ports ca
only be used with unencrypted IP traffic, and man
security advocates argue that IPSec should always
encrypting the traffic. Information such as TCP por
does divulge some information that should be hidde
even though routers have become accustomed to us
that information for services like differential queuing
Firewalls also base decisions on the port fields, but
malicious user can disguise any traffic to fit the fire
wall’s policy database (e.g., if the firewall allows HTTP
then run all protocols on top of HTTP), so leaving th
ports unencrypted for the benefit of firewalls is also o
marginal benefit.

The majority of our paper will focus on IKE, the
part of IPSec that does mutual authentication and est
lishes session keys.

2.2 Layer 3 vs Layer 4
The goal of SSL was to deploy something totally a

the user level, without changing the operating system
whereas the goal of IPSec was to deploy somethi
within the OS and not require changes to the applic
tions. Since everything from TCP down is generall
implemented in the OS, SSL is implemented as a pr
cess that calls TCP. That is why it is said to be at th
“Transport Layer” (layer 4 in the OSI Reference
Model). IPSec is implemented in layer 3, which mean
it considers everything above layer 3 as data, includi
the TCP header. The philosophy behind IPSec is tha
only the OS needed to change, then by deploying

ue
e 1
and
rets
ap-
ple
ies.
tab-
b-
in

et
do
gh
sed
be
use
ge.

e.
c-
gu-

-

t

r

-

a
-

t
r
s

n

er
IPSec-enhanced OS all the applications would automati-
cally benefit from IPSec’s encryption and integrity pro-
tection services.

There is a problem in operating above TCP. Since
TCP will not be participating in the cryptography, it will
have no way of noticing if malicious data is inserted into
the packet stream. TCP will acknowledge such data and
send it up to SSL, which will discard it because the
integrity check will indicate the data is bogus, but there
is no way for SSL to tell TCP to accept the real data at
this point. When the real data arrives, it will look to TCP
like duplicate data, since it will have the same sequence
numbers as the bogus data, so TCP will discard it. So in
theory, IPSec’s approach of cryptographically protecting
each packet independently is a better approach.

However, if only the operating system changes, and
the applications and the API to the applications do not
change, then the power of IPSec cannot be fully utilized.
The API just tells the application what IP address is on a
particular connection. It can’t inform the application of
which user has been authenticated. That means that even
if users have public keys and certificates, and IPSec
authenticates them, there is no way for it to inform the
application. Most likely after IPSec establishes an
encrypted tunnel, the user will have to type a name and
password to authenticate to the application. So it is
important that eventually the APIs and applications
change so that IPSec can inform the application of
something more than the IP address of the tunnel end-
point, but until they do, IPSec accomplishes the follow-
ing:
• It encrypts traffic between the two nodes.
• As with firewalls, IPSec can access a policy data-

base that specifies which IP addresses are allowed
to talk to which other IP addresses.

• Some applications do authentication based on IP
addresses, and the IP address from which informa-
tion is received is passed up to the application. With
IPSec, this form of authentication becomes much
more secure because one of the types of endpoint
identifiers IPSec can authenticate is an IP address,
in which case the application would be justified in
trusting the IP address asserted by the lower layer
as the source.

3. Overview of IKE
IKE is incredibly complex, not because there is any

intrinsic reason why authentication and session key
establishment should be complex, but due to unfortunate
politics and the inevitable result of years of work by a
large committee. Because it is so complex, and because
the documentation is so difficult to decipher, IKE has
not gotten significant review.

The IKE exchange consists of two phases. We arg
that the second phase is unnecessary. The phas
exchange is based on identities such as names,
secrets such as public key pairs, or pre-shared sec
between the two identities. The phase 1 exchange h
pens once, and then allows subsequent setup of multi
phase 2 connections between the same pair of identit
The phase 2 exchange relies on the session key es
lished in phase 1 to do mutual authentication and esta
lish a phase 2 session key used to protect all the data
the phase 2 security association.

It would certainly be simpler and cheaper to just s
up a security association in a single exchange, and
away with the phases, but the theory is that the althou
the phase 1 exchange is necessarily expensive (if ba
on public keys), the phase 2 exchanges can then
much simpler and less expensive because they can
the session key created out of the phase 1 exchan
This reasoning only makes sense if therewill be multi-
ple phase 2 setups inside the same phase 1 exchang

Why would there be multiple phase 2-type conne
tions between the same pair of nodes? Here are the ar
ments in favor of having two phases:
1. It is a good idea to change keys periodically. You

can do key rollover of a phase 2 connection by
doing another phase 2 connection setup, which
would be cheaper than restarting the phase 1 con
nection setup.

2. You can set up multiple connections with differen
security properties, such as integrity-only, encryp-
tion with a short (insecure, snooper-friendly) key, o
encryption with a long key.

3. You can set up multiple connections between two
nodes because the connections are application-to
application, and you’d like each application to use
its own key, perhaps so that the IPSEC layer can
give the key to the application.

We argue against each of these points:
1. If you want perfect forward secrecy when you do

key rollover, then the phase 2 exchange is not sig
nificantly cheaper than doing another phase 1
exchange. If you are simply rekeying, either to limi
the amount of data encrypted with a single key, o
to prevent replay after the sequence number wrap
around, then a protocol designed specifically for
rekeying would be simpler and less expensive tha
the IKE phase 2 exchange.

2. It would be logical to use the strongest protection
needed by any of the traffic forall the traffic rather
than having separate security associations in ord
to give weaker protection to some traffic. There
might be some legal or performance reasons to
want to use different protection for different forms

ted
es
nd
a-

he
ge
es-
ll-

to
p-

cret
ts

he

t
r

ys

up
n

o-
r-
nd
i-

ing
of
or
ct
a

ret
t
er
o
en
l

of traffic, but we claim that this should be a rela-
tively rare case that we should not be optimizing
for. A cleaner method of doing this would be to
have completely different security associations
rather than multiple security associations loosely
linked together with the same phase 1 security asso-
ciation.

3. This case (wanting to have each application have a
separate key) seems like a rare case, and setting up
a totally unrelated security association for each
application would suffice. In some cases, different
applications use different identities to authenticate.
In that case they would need to have separate Phase
1 security associations anyway.
In this paper we concentrate on the properties of the

variants of Phase 1 IKE. Other than arguably being
unnecessary, we do not find any problems with security
or functionality with Phase 2 IKE.

4 Overview of Phase I IKE
There are two “modes” of IKE exchange. “Aggres-

sive mode” accomplishes mutual authentication and ses-
sion key establishment in 3 messages. “Main mode”
uses 6 messages, and has additional functionality, such
as the ability to hide endpoint identifiers from eaves-
droppers, and negotiate cryptographic parameters.

Also, there are three types of keys upon which a
phase 1 IKE exchange might be based: pre-shared secret
key, public encryption key, or public signature key. The
originally specified protocols based on public encryp-
tion keys were replaced with more efficient protocols.
The original ones separately encrypted each field with
the other side’s public key, instead of using the well-
known technique of encrypting a randomly chosen
secret key with the other side’s public key, and encrypt-
ing all the rest of the fields with that secret key. Appar-
ently a long enough time elapsed before anyone noticed
this that they felt they needed to keep the old-style pro-
tocol in the specification, for backward compatibility
with implementations that might have been deployed
during this time.

This means there are 8 variants of the Phase 1 of
IKE! That is because there are 4 types of keys (old-style
public encryption key, new-style public encryption key,
public signature key, and pre-shared secret key), and for
each type of key, a main mode protocol and an aggres-
sive mode protocol. The variants have surprisingly dif-
ferent characteristics.

In main mode there are 3 pairs of messages. In the
first pair Alice sends a “cookie” (see section 4.2) and
requested cryptographic algorithms, and Bob responds
with his cookie value, and the cryptographic algorithms
he will agree to. Message 3 and 4 consist of a Diffie-

Hellman exchange. Messages 5 and 6 are encryp
with the Diffie-Hellman value agreed upon in messag
3 and 4, and here each side reveals its identity a
proves it knows the relevant secret (e.g., private sign
ture key or pre-shared secret key).

In aggressive mode there are only 3 messages. T
first two messages consist of a Diffie-Hellman exchan
to establish a session key, and in the 2nd and 3rd m
sages each side proves they know both the Diffie-He
man value and their secret.

4.1 Key Types
We argue one simplification that can be made

IKE is to eliminate the variants based on public encry
tion keys. It’s fairly obvious why in some situations the
variant of pre-shared secret keys makes sense. Se
keys are higher performance. But why the two varian
on public key?

There are several reasons we can think of for t
signature-key-only variant:
• Each side knows its own signature key, but may no

know the other side’s encryption key until the othe
side sends a certificate.

• If Alice’s encryption key was escrowed, and her
signature key was not, then using the signature ke
offers more assurance that you’re talking to Alice
rather than the escrow agent.

• In some scenarios people would not be allowed to
have encryption keys, but it is very unlikely that
anyone who would have an encryption key would
not also have a signature key.
But there are no plausible reasons we can come

with that would require variants based on encryptio
keys. So one way of significantly simplifying IKE is to
eliminate the encryption public key variants.

4.2 Cookies
Stateless cookies were originally proposed in Ph

turis [K94] as a way of defending against denial of se
vice attacks. The server, Bob, has finite memory a
computation capacity. In order to prevent an attacker in
tiating connections from random IP addresses, and us
up all of the state Bob needs in order to keep track
connections in progress, Bob will not keep any state
do any significant computation unless the conne
request is accompanied by a number, known as
“cookie”, that consists of some function of the IP
address from which the connection is made and a sec
known to Bob. In order to connect to Bob, Alice firs
makes an initial request, and is given a cookie. Aft
telling Alice the cookie value, Bob does not need t
remember anything about the connect request. Wh
Alice contacts Bob again with a valid cookie, Bob wil

er-
w
er
e

e

th
-
e

o-

t a
he
s

w

d-
ur-
y
d-

d-
e

l-

y
ng
e,
i-

de

-
s
ng
be able to verify, based on Alice’s IP address, that
Alice’s cookie value is the one Bob would have given
Alice. Once he knows that Alice can receive from the IP
address she claims to be coming from, he is willing to
devote state and significant computation to the remain-
der of the authentication.

Cookies do not protect against an attacker, Trudy,
launching packets from IP addresses at which shecan
receive responses. But in some forms of denial of ser-
vice attacks the attacker chooses random IP addresses as
the source, both to make it harder to catch them, and to
make it harder to filter out these attacking messages.

So cookies are of some benefit. If computation were
the only problem, and Bob had sufficient state to keep
track of the maximum number of connect requests that
could possibly arrive within the time window before he
is allowed to give up and delete the state for the uncom-
pleted connection, it would not be necessary for the
cookie to be stateless. But memoryis a resource at Bob
that can be swamped during a denial of service attack,
so it is desirable for Bob not to need to keep any state
until he receives a valid cookie.

OAKLEY [O98] allowed the cookies to be
optional. If Bob was not being attacked and therefore
had sufficient resources, he could accept connection
requests without cookies. A round trip delay and two
messages could be saved. In Photuris the cookie (and
the extra two messages) was always required. The idea
behind the OAKLEY stateless cookies is:

Surprisingly, although IKE was designed years after
Photuris, and it has fields in the messages named “cook-
ies”, none of the IKE variants allows Bob to be stateless.
This was pointed out in [S99]. In the “main mode” vari-
ants the cookie protects Bob from being forced to do a
significant amount of computation. However, IKE
requires Bob to keep state from the first message, before
he knows whether the other side would be able to return
a cookie. It would be straightforward to add two mes-
sages to IKE to allow for a stateless cookie. However,
we claim that stateless cookies can be implemented in
IKE main mode without additional messages by repeat-

ing in message 3 the information in message 1. Furth
more, it might be nice, in aggressive mode, to allo
cookies to be optional, turned on only by the serv
when it is experiencing a potential denial of servic
attack, using the OAKLEY technique.

4.3 Hiding Endpoint Identities
One of the main intentions of main mode was th

ability to hide the endpoint identifiers. Although it’s
easy to hide the identifier from a passive attacker, wi
some key types it is difficult to design a protocol to pre
vent an active attacker from learning the identity of on
end or the other.

If it is impossible to hide one side’s identity from an
active attacker, we argue it would be better for the prot
col to hide the initiator’s identity rather than the
responder’s (because the responder is likely to be a
fixed IP address so that it can be easily found while t
initiator may roam and arrive from a different IP addres
each day). Keeping that in mind, we’ll summarize ho
well the IKE variants do at hiding endpoint identifiers.

In all of the aggressive mode variants, both en
point identities are exposed, as would be expected. S
prisingly, however, we noticed that the signature ke
variant of aggressive mode could have easily been mo
ified, with no technical disadvantages, to hide both en
point identifiers from an eavesdropper, and th
initiator’s identity even from an active attacker! The re
evant portion of that protocol is:

The endpoint identifiers could have been hidden b
removing them from messages 1 and 2 and includi
them, encrypted with the Diffie-Hellman shared valu
in messages 2 (Bob’s identifier) and 3 (Alice’s ident
fier).

In the next sections we discuss how the main mo
protocols hide endpoint identifiers

4.3.1 Public Signature Keys
In the public signature key main mode, Bob’s iden

tity is hidden even from an active attacker, but Alice’
identity is exposed to an active attacker impersonati

Alice Bobconnect request

try again, sending cookie=C

connect request, C

C=f(IP, secret)

verify C=f(IP, secret)

Alice Bob

Diffie-Hellman value, “Alice”

“Bob”, Diffie-Hellman value,

msgs signed by Alice

msgs signed by Bob

d
n-
o
h
re-
’t

y,
who

-
fi-
no
ob

y
se
e
te
ed
is
m-
n
-

on
c-
e
d 6.
n-
e
s-
r
e
e,
his
it

-

et
to
-
e
re
ere
-
n
in
f
y

Bob’s address to Alice. The relevant part of the IKE pro-
tocol is the following:

An active attacker impersonating Bob’s address to
Alice will negotiate a Diffie-Hellman key with Alice
and discover her identity in msg 5. The active attacker
will not be able to complete the protocol since it will not
be able to generate Bob’s signature in msg 6.

The protocol could be modified to hide Alice’s
identity instead of Bob’s from an active attacker. This
would be done by moving the information from msg 6
into msg 4. This even completes the protocol in one
fewer message. And as we said earlier, it is probably in
practice more important to hide Alice’s identity than
Bob’s.

4.3.2 Public Encryption Keys
In this variant both sides’ identities are protected

even against an active attacker. Although the protocol is
much more complex, the main idea is that the identities
(as well as the Diffie-Hellman values in the Diffie-Hell-
man exchange) are transmitted encrypted with the other
side’s public key, so they will be hidden from anyone
that doesn’t know the other side’s private key.

We offer no optimizations to the public encryption
key variants of IKE other than suggesting their removal.

4.3.3 Pre-Shared Key
In this variant, both endpoints’ identities are

revealed, even to an eavesdropper! The relevant part of
the protocol is the following:

Since the endpoint identifiers are exchange
encrypted, it would seem as though both endpoint ide
tifiers would be hidden. However, Bob has no idea wh
he is talking to after message 4, and the key with whic
messages 5 and 6 are encrypted is a function of the p
shared key between Alice and Bob. So Bob can
decrypt message 5, which reveals Alice’s identit
unless he already knows, based on messages 1-4,
he is talking to!

The IKE spec recognizes this property of the proto
col, and specifies that in this mode the endpoint identi
ers have to be the IP addresses! In which case, there’s
reason to include them in messages 5 and 6 since B
(and an eavesdropper) already knows them!

Main mode with pre-shared keys is the onl
required protocol. One of the reasons you’d want to u
IPSec is in the scenario in which Alice, an employe
travelling with her laptop, connects into the corpora
network from across the Internet. IPSec with pre-shar
keys would seem a logical choice for implementing th
scenario. However the protocol as designed is co
pletely useless for this scenario since by definitio
Alice’s IP address will be unpredictable if she’s attach
ing to the Internet from different locations.

It would be easy to fix the protocol. The fix is to
encrypt messages 5 and 6 with a key which is a functi
of the shared Diffie-Hellman value, and not also a fun
tion of the pre-shared key. Proof of knowledge of th
pre-shared key is already done inside messages 5 an
In this way an active attacker who is acting as a man-i
the middle in the Diffie-Hellman exchange would b
able to discover the endpoint identifiers, but an eave
dropper would not. And more importantly than whethe
the endpoint identifiers are hidden, it allows use of tru
endpoint identifiers, such as the employee’s nam
rather than IP addresses. This change would make t
mode useful in the scenario (road warrior) in which
would be most valuable.

5. Negotiating Security Parameters
IKE allows the two sides to negotiate which encryp

tion, hash, integrity protection, and Diffie-Hellman
parameters they will use. Alice makes a proposal of a s
of algorithms and Bob chooses. Bob does not get
choose 1 from column A, 1 from column B, 1 from col
umn C, and 1 from column D, so to speak. Instead Alic
transmits a set of complete proposals. While this is mo
powerful in the sense that it can express the case wh
Alice can only support certain combinations of algo
rithms, it greatly expands the encoding in the commo
case where Alice is capable of using the algorithms
any combination. For instance, if Alice can support 3 o
each type of algorithm, and would be happy with an

Alice Bob

D-H exchange, K=gAB mod p

msgs 1,2
param negotiation

msgs 3,4

msg 5

{“Alice”, sig on msgs}K

msg 6
{“Bob”, sig on msgs}K

Alice Bob

D-H exchange
msgs 1,2

param negotiation

msgs 3,4

msg 5,6

ID’s exchanged, encrypted in
a key=f(S,gAB mod p)

share S

n-

eak
if-

me
ed
s
d

sed
a-
or
to-

en
the

ord
a

ed
ro-
r

uld

ent
er
.
h

s
tes

the
is

hat
combination, she’d have to specify 81 (34) sets of
choices to Bob in order to tell Bob all the combinations
she can support! Each choice takes 20 bytes to specify--
4 bytes for a header and 4 bytes for each of encryption,
hash, authentication, and Diffie-Hellman.

6. Additional Functionality
Most of this paper dealt with simplifications we

suggest for IKE. But in this section we propose some
additional functionality that might be useful.

6.1 Unidirectional Authentication
In some cases only one side has a cryptographic

identity. For example, a common use case for SSL is
where the server has a certificate and the user does not.
In this case SSL creates an encrypted tunnel. The client
side knows it is talking to the server, but the server does
not know who it is talking to. If the server needs to
authenticate the user, the application typically asks for a
name and password. The one-way authentication is vital
in this case because the user has to know he is sending
his password to the correct server, and the protocol also
ensures that the password will be encrypted when trans-
mitted. In some cases security is useful even if it is only
one-way. For instance, a server might be disseminating
public information, and the client would like to know
that it is receiving this information from a reliable
source, but the server does not need to authenticate the
client.

Since this is a useful case in SSL, it would be desir-
able to allow for unidirectional authentication within
IPSec. None of the IKE protocols allow this.

6.2 Weak Pre-shared Secret Key
The IKE protocol for pre-shared secrets depends on

the secret being cryptographically strong. If the secret
were weak, say because it was a function of a password,
an active attacker (someone impersonating one side to
the other) could obtain information with which to do an
off-line dictionary attack. The relevant portion of the
IKE protocols is that first the two sides generate a Dif-
fie-Hellman key, and then one side sends the other
something which is encrypted with a function of the
Diffie-Hellman key and the shared secret. If someone
were impersonating the side that receives this quantity,
they know the Diffie-Hellman value, so the encryption
key is a function of a known quantity (the Diffie-Hell-
man value) and the weak secret. They can test a dictio-
nary full of values and recognize when they have
guessed the user’s secret.

The variant we suggest at the end of section 4.3.3
improves on the IKE pre-shared secret protocol by

allowing identities other than IP addresses to be authe
ticated, but it is still vulnerable to dictionary attack by
an active attacker, in the case where the secret is a w
secret. Our variant first establishes an anonymous D
fie-Hellman value, and then sends the identity, and so
proof of knowledge of the pre-shared secret, encrypt
with the Diffie-Hellman value. Whichever side receive
this proof first will be able to do a dictionary attack an
verify when they’ve guessed the user secret.

There is a family of protocols [BM92], [BM94],
[Jab96], [Jab97], [Wu98], [KP01], in which a weak
secret, such as one derived from a password, can be u
in a cryptographic exchange in a way that is invulner
ble to dictionary attack, either by an eavesdropper
someone impersonating either side. The first such pro
col, EKE, worked by encrypting a Diffie-Hellman
exchange with a hash of the weak secret, and th
authenticating based on the strong secret created by
Diffie-Hellman exchange.

The ability to use a weak secret such as a passw
in a secure way is very powerful in the case where it is
user being authenticated. The current IKE pre-shar
secret protocol could be replaced with one of these p
tocols at no loss in security or performance. Fo
instance, a 3-message protocol based on EKE wo
look like:

The user types her name and password at the cli
machine, so that it can compute W. Alice sends h
name, and her Diffie-Hellman value encrypted with W
Bob responds with his Diffie-Hellman value, and a has
of the Diffie-Hellman key, which could only agree with
the one computed by Alice if Alice used the same W a
Bob has stored. In the third message, Alice authentica
by sending a different hash of the Diffie-Hellman key.

This protocol does not hide Alice’s identity from a
passive attacker. Hiding Alice’s identity could be
accomplished by adding two additional messages at
beginning, where a separate Diffie-Hellman exchange
done, and the remaining 3 messages encrypted with t
initially established Diffie-Hellman key.

7. Summary
The main points covered in the paper are:

Alice Bob
stores W=h(pwd)

“Alice”, {g A mod p}W

gB mod p, h(gAB mod p)

h’(gAB mod p)

o-

d

-

-
r

ty

-

-
.

",
• By operating below layer 3, IPSec avoids the prob-
lem of an active attacker fatally disrupting a session
by injecting a single rogue packet. Solutions such
as SSL, which operate above TCP, are vulnerable to
this threat.

• We agree with many in the security community that
AH is unnecessary,

• Although IPSec can be deployed without changes
to applications, the power of IPSec cannot be
exploited until the API is changed to inform the
application of the endpoint identifier, and the appli-
cation is modified to use the information in the
modified API.

• IKE is far too complex, and the specifications are so
difficult to understand that it has not gotten a thor-
ough review, and many of the properties we point
out were not known.

• IKE’s second phase should be removed.
• The public encryption key variants of IKE should

be removed.
• Modify IKE to allow stateless cookies (section 4.2).
• The encoding should be changed to allow negotiat-

ing sets of independent choices or cryptographic
parameters, to avoid exponential explosion.

• In some modes it is only possible to hide one end-
point’s identity. It is better to hide the initiator’s
identity. In some modes IKE only hides the
responder’s identity.

• The only mandated IKE key type, pre-shared secret
keys, forces the endpoint identifiers to be the IP
addresses in the packet. This makes this mode use-
less for the road warrior case. We describe a variant
that allows arbitrary endpoint identifiers (such as
names), and keeps them hidden from passive
attackers, at no cost in security or performance.

• We describe how to hide both endpoint identifiers in
the aggressive-mode signature key variant, and the
initiator’s identity will be hidden even from an
active attacker.

• We describe how to shorten the main-mode signa-
ture key variant and improve it by hiding the initia-
tor’s identity rather than the responder’s identity
from an active attacker.

• We recommend adding a unidirectional authentica-
tion capability.

• We recommend replacing IKE’s secret key variants
with one of the strong password variants.

8. Bibliography
1. [BM92] S. Bellovin and M. Merritt, "Encrypted Key

Exchange: Password-based protocols secure against dic-
tionary attacks", Proceedings of the IEEE Symposium on
Research in Security and Privacy, May 1992.

2. [BM94] S. Bellovin and M. Merritt, "Augmented

Encrypted Key Exchange: a Password-Based Protocol
Secure Against Dictionary Attacks and Password File
Compromise”, ATT Labs Technical Report, 1994.

3. [FS99] Ferguson, Niels, and Schneier, Bruce, “A Crypt
graphic Evaluation of IPSec”, http://www.counter-
pane.com, April 1999.

4. [Jab96] D. Jablon, "Strong password-only authenticate
key exchange", ACM Computer Communications
Review, October 1996.

5. [Jab97] D. Jablon, "Extended Password Protocols
Immune to Dictionary Attack", Proceedings of the WET
ICE `97 Enterprise Security Workshop, June 1997.

6. [K94] Karn, Phil, “The Photuris Key Management Proto
col”, Internet Draft draft-karn-photuris-00.txt, Decembe
1994.

7. [KP01] Kaufman, Charlie, and Perlman, Radia, “PDM: A
New Strong Password-Based Protocol”, Usenix Securi
Conference, 2001.

8. [O98] Orman, Hilarie, “The OAKLEY Key Determina-
tion Protocol”, RFC 2412, Nov 1998.

9. [PK00] Perlman, R. and Kaufman, C. “Key Exchange in
IPSec: Analysis of IKE”, IEEE Ineternet Computing,
Nov/Dec 2000.

10. [R01] Rescorla, Eric,SSL and TLS: Designing and
Building Secure Systems, Addison Wesley, 2001.

11. [RFC2402] Kent, Steve, and Atkinson, Ran, “IP Authen
tication Header”, RFC 2402, Nov 1998.

12. [RFC2406] Kent, Steve, and Atkinson, Ran, “IP Encap
sulating Security Payload (ESP),” RFC 2406, Nov 1998

13. [RFC2409] Harkins,D., and Carrel, D., “The Internet Key
Exchange (IKE)”, RFC 2409, Nov 1998.

14. [S99] Simpson, W. A., “IKE/ISAKMP Considered Dan-
gerous”, Internet Draft, draft-simpson-danger-isakmp-
00.txt, April 1999.

15. [Wu98] T. Wu, "The Secure Remote Password Protocol
ISOC NDSS Symposium, 1998.

	Analysis of the IPSec Key Exchange Standard
	1 Abstract
	2 Background
	2.1 ESP vs AH
	2.2 Layer 3 vs Layer 4

	4 Overview of Phase I IKE
	4.1 Key Types
	4.2 Cookies

