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TheMagnus moment characteristics of rotating missiles withMach numbers of 1.3 and 1.5 at different altitudes and angles of attack
were numerically simulated based on the transition SST model. It was found that the Magnus moment direction of the missiles
changed with the increase of the angle of attack. At a low altitude, with the increase of the angle of attack, the Magnus moment
direction changed from positive to negative; however, at high altitudes, with the increase of the angle of attack, the Magnus
moment direction changed from positive to negative and then again to positive. The Magnus force direction did not change
with the change of the altitude and the angle of attack at low angles of attack; however, it changed with altitude at an angle of
attack of 30°. When the angle of attack was 20°, the interference of the tail fin to the lateral force of the missile body was
different from that for other angles of attack, leading to an increase of the lateral force of the rear part of the missile body. With
the increasing altitude, the position of the boundary layer with a larger thickness of the missile body moved forward, making the
lateral force distribution of the missile body even. Consequently, Magnus moments generated by different boundary layer
thicknesses at the front and rear of the missile body decreased and the Magnus moment generated by the tail fin became larger.
As lateral force directions of the missile body and the tail were opposite, the Magnus moment direction changed noticeably.
Under a high angle of attack, the Magnus moment direction of the missile body changed with the increasing altitude. The
absolute value of the pitch moment coefficient of the missile body decreased with the increasing altitude.

1. Introduction

Rotating missiles produce the Magnus effect during flight [1].
For nontailed rotor missiles, the asymmetric distortion of the
boundary layer and the asymmetric separation of flow in the
leeward region are the main causes of the Magnus force [2].
For tailed missiles, the tail fin is coupled with the separation
vortex of the missile body and causes a more complex effect
[3, 4]. Although the Magnus force is only 1/100 to 1/10 of
the normal force, the Magnus moment has an important
effect on the flight stability of a missile. The Magnus moment
leads to a coning motion, reduces the missile shooting range,
and even causes the flight to fail [5].

Altitude has a great influence on the aerodynamic char-
acteristics of a missile. For a rotating tail-stabilized missile,
the Magnus moment is greatly affected by the altitude, lead-
ing to a large-angle conical pendulum movement and greatly
affecting the flight stability of the missile. The Qinghai-Tibet

Plateau in China has an average elevation of over 4000 meters
and experiences low air density and low atmospheric pres-
sure. Hence, many missiles with good flight stability cannot
meet stability requirements in this plateau [6, 7]. The change
of aerodynamic characteristics with altitude is the fundamen-
tal reason for this phenomenon.

Zhai et al. and Dang et al. [6, 7] studied the variation law
of aerodynamic characteristics with altitude and its influence
on the ballistic characteristics of a tail-stabilized missile.
Zhong et al. [8, 9] studied the periodic movement of a missile
under the conditions of a low density and a high altitude and
obtained the range of the Magnus moment coefficient during
a stable periodic movement of the missile. Liu et al. [10] ana-
lyzed the main reasons for the instability of a certain type of
curving tail missile in the Qinghai-Tibet Plateau and put for-
ward an improvement scheme for adopting a straight tail.
Zhang et al. [11] propounded that a missile could have a large
attack angle cone pendulum movement at a large angle of
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fire. Ma et al. [12] analyzed key differences in the dynamic
stability of a rotating missile under plateau and plain condi-
tions and pointed out that the change of the Magnus torque
direction was an important factor for the high angle of attack
cone pendulum movement of the missile at a high altitude.
However, the variation of the Magnus moment characteris-
tics of a rotating missile with altitude is still not clear.

The aerodynamic characteristics of tailed rotating mis-
siles have been also investigated through numerical simula-
tions. Yin et al. [13] carried out numerical calculations on a
finner, compared the calculated results with the experimental
values of AEDC [14], and found that the calculated values of
the transition SST model were close to the experimental
values. Therefore, the transition SST model was adopted in
the present work.

2. Numerical Method

2.1. Numerical Calculation Conditions and Physical Models.
The ballistic altitude of a long-range missile ranges between
50 and 80 km. With increasing altitude, variations in pres-
sure, density, and temperature cause a change of the Reyn-
olds number, which has a direct impact on boundary layer
transition and flow separation.

Table 1 presents the variation of parameters with altitude.
When the altitude is less than 50 km, the continuum hypoth-
esis is true; thus, the Navier-Stokes (N-S) equation can be
used. The finner shown in Figure 1 was used for numerical
calculations with the following parameters: altitude = 0 – 60

km, Ma = 1:3 and 1.5, α = 10°, 20°, and 30°, relative rotating
speed p = 0:02ðωxd/2V∞

Þ, reference length Lref = 0:04572m

, reference area Sref = 0:00164m2, and center of mass =

0:2286m away from the missile head.

2.2. Turbulence Model. In the aerodynamic calculation of a
rotating missile, the correct prediction of separation flow
and boundary layer transition is the key to accurately calcu-
late the Magnus force. Nobile et al. [15] numerically simu-
lated the aerodynamic characteristics of a rotary wind
turbine under strong wind and compared the results of SST
k‐ω, k‐ω, and k‐ε turbulence models with experimental data.
It was found that the SST k‐ω model performed well in an
adverse pressure gradient and separation flow. However,
the SST k‐ωmodel causes the phenomenon of overprediction
in the calculation of the rotating missile Magnus force [13].
The transition SST model works based on the SST k‐ωmodel
and considers the following two parameters—intermittent
factor and local boundary layer momentum thickness—to
construct two transport equations. Combining these two
transport equations and relevant empirical formulas with
the SST k‐ω turbulence model, the four-equation transition
SST model can be established. The turbulence model is more
sensitive to factors affecting transition, such as turbulence
intensity, separation, and pressure gradient, and is more
accurate than other turbulence models in the calculation of
the rotational missile Magnus force [13].

2.2.1. Intermittent Factor Transport Equation. The transition
in a boundary layer and the vortex viscosity coefficient in a

turbulence model are mainly controlled by intermittent fac-
tors. The intermittent factor transport equation can be
expressed as [16]
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where ρ is density, t is time, μ is the laminar viscosity coeffi-
cient, μt is the turbulent viscosity coefficient, uj is speed, x j is

the coordinate, Pγ is the generated term, Dγ is the dissipative

term, and γ is the intermittent factor.

2.2.2. Reynolds Number Transport Equation of Transition
Momentum Thickness. The Reynolds number of transition
momentum thickness is a decisive factor for the transition
starting point, and the corresponding transport equation
can be expressed as [16]
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where ~Reθt
is the Reynolds number of local transition

momentum thickness, Pθt is the generated term, and σθt is
the diffusion term coefficient.

The generated term of the transport equation can be fur-
ther written as

Pθt = cθt
ρ

t
Reθt −

~Reθt
� �

1:0 − Fθtð Þ, ð3Þ

where cθt is a constant, Fθt is the switching function, and its
value ranges from 1 to 0 from the inside to outside of a
boundary layer, and Reθt is the local transition Reynolds

Table 1: Variation of parameters with altitude.

Altitude (km) Temperature (K) Pressure (Pa) μ × 10−5

0 289.10 101325 1.7940

2 276.44 78535 1.7323

4 263.79 60990 1.6694

6 251.13 46780 1.6050

8 238.48 35391 1.5391

10 226.15 26370 1.4733

12 221.46 19415 1.4479

14 221.50 14265 1.4481

16 221.50 10481 1.4481

18 221.50 7700 1.4481

20 221.50 5657 1.4481

30 226.51 1211 1.4753

40 250.33 286 1.6008

60 247.06 21 1.5839
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number, and its value is obtained by fitting flow turbulivity
(Tu) and the pressure gradient parameter “λθ” [17].
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2.2.3. SST k‐ω Turbulence Model. The transport equations of
the SST k‐ω turbulence model are presented below [18].
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where U is speed, ~P is the generated term, k is the turbulent
kinetic energy, ω is the dissipation rate of the turbulent kinetic
energy ratio, σk, σω, γ, a1, β

∗, and β are constants, and F1 and
F2 are the weighting functions of control constants.

2.3. Grid Division and Independence Verification. Three-
dimensional (3D) structured hexahedral grids are displayed
in Figure 2. Under supersonic conditions, the disturbance
could only travel downstream within the Mach cone; thus,
the upstream flow field was not affected by the disturbance
wave. In order to save computing resources, the supersonic
far-field grid was extended forward by one time the missile
length, backward by 10 times the missile length, and radially
by about 20 times the missile radius. Under subsonic condi-
tions, the influence region of the disturbance was the full flow
field. Therefore, the subsonic far-field mesh was extended for-
ward by 10 times the missile length, backward by 10 times the
missile length, and radially by about 20 times themissile diam-
eter. The altitude of the first layer grid was set as 1:8 × 10−6 m

to maintain y+ < 1. The grid inner boundary was set as a no-
slip adiabatic wall. Pressure far-field boundary conditions
were applied in the current simulation. The turbulent intensity
and viscosity of free flow were 0.8% and 1, respectively.

The rotation of the missile was realized by the grid move-
ment of the sliding grid area (Figure 3). The sliding grid tech-
nology divided the computational domain into two or more
elemental regions. During the calculation, these cell regions
slid along the mesh interface, the grid of each region did
not change, and the data was exchanged between region
boundaries. From the warhead to the tail of the missile, the
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Figure 1: Geometric model of the finner.
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Figure 2: Schematic diagram of slip grids.
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Figure 3: Overall grid diagram.

Table 2: Grid independence verification.

Number of grids Cz Cmy

2.89M 0.00872 −0.19414

4.52M 0.04035 −0.17457

7.86M 0.03957 −0.17231

12.20M 0.04002 −0.17187
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x-axis is positive, the XY plane is the angle of attack plane,
and the z-axis is determined by the right-hand rule. The pos-
itive directions of the z- and y-axes denote the directions of
the lateral force coefficient (Cz) and the lateral moment coef-
ficient (Cmy), respectively. The pitching moment coefficient
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Figure 4: Time step independence verification.
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Figure 6: Lateral moment coefficient.
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Figure 7: Variation curves of the Magnus moment coefficient with
altitude at Ma = 1:3 and p = 0:02.

0 10 20 30 40 50 60

Altitude

a = 10° (Wind tunnel test conditions)

a = 10° (Atmospheric conditions)

a = 20° (Atmospheric conditions)

a = 30° (Atmospheric conditions)

Wind tunnel test value[9]

Wind tunnel test value[9]

Wind tunnel test value[9]

a = 20° (Wind tunnel test conditions)

a = 30° (Wind tunnel test conditions)

–0.6

–0.4

–0.2

0.0

0.2

0.4

C
m
y

Figure 8: Variation curves of the Magnus moment coefficient with
altitude at Ma = 1:5 and p = 0:02.
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(Cmz) direction is negative to the z-axis. When viewed from
the warhead to the tail, the missile rotates clockwise with a
positive spin angle.

The lateral force coefficient and lateral moment coeffi-
cient of the missile under different mesh quantities with the
Mach number of 1.5 were calculated in Table 2. When the
number of meshes was too small, calculation results of the
lateral force coefficient and the lateral moment coefficient
were inaccurate. In order to save computing resources and
ensure calculation accuracy, 7.8 million and 10.2 million
grids (after expanding the front field) were selected under
supersonic and subsonic conditions. Three groups of time
steps (ωxΔt = 0:25°, 0.50°, and 1.00°) were selected for time
step independence verification; it indicates that each calcu-
lated step rotated the missile by 0.25°, 0.50°, and 1.00°.
Figure 4 displays the variation curve of the lateral force
coefficient with the spin angle under three different time
steps. It is clear that with the decrease of the time step,

the calculation results of ωxΔt = 0:25° and ωxΔt = 0:50° grad-
ually approached each other, whereas a certain gap existed
between the results of ωxΔt = 0:50° and ωxΔt = 1:00°. In
order to save computing resources, the time step was set to
ωxΔt = 0:50°.

2.4. Validation of the Numerical Method. The lateral force
coefficient and lateral moment coefficient of the missile under
different turbulence models are exhibited in Figures 5 and 6,
respectively. The following experimental conditions were
selected for the validation of the proposed numerical method:
Mach number Ma = 1:5, Reynolds number (based on the
model diameter) Re = 4:13 × 105, total pressure P0 = 65374

Pa, total temperature T0 = 311K, angle of attack α = 10:1°,
20.3°, and 30.7°, and nondimensional spin rate p = ωxd/ð2
V

∞
Þ = 0:02. The corresponding freestream conditions were

P
∞
= 17808:1 Pa, T

∞
= 214:48K, V

∞
= 440m/s, and spin

rate ωx = 385:25 rad/s, respectively.
It is evident that the calculated results of the transition

SST model were close to the experimental values. Therefore,
the adoption of the transition SST model has a certain
credibility.

3. Stability Analysis of Rotating Missiles

For rotating missiles with tail fins, the dynamic stability fac-
tor (Sd) can be expressed as [12]

Sd =
CLα/2mð Þ + d2CMpα

/2Ix

� �

CLα/2mð Þ − d2CMq
/2Iy

� � , ð8Þ

where CLα is the lift coefficient, CMpα is the Magnus

moment coefficient, and CMq is the damping moment coef-

ficient of pitch.
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altitude at Ma = 1:3 and p = 0:02.
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The dynamic stability condition of a rotating missile with
a tail fin can be formulated as

4M

p2
< Sd 2 − Sdð Þ, ð9Þ

where P = ðIx/IyÞðpd/VÞ,M = ρSd3CMα
/2Iy, CMα is the pitch-

ing moment coefficient, and p is rotating speed.
When 0 < Sd < 2, as long as the missile remains statically

stable (pitch moment coefficient CMα < 0), it must also be
dynamically stable.

For axisymmetric missiles, CLα > 0 and CMq < 0. The

direction of the Magnus torque tends to change during the
transonic phase; thus, at this time, CMpα < 0 and Sd < 0:

When Sd < 0, the dynamic stability condition of a rotat-
ing missile with a tail fin can be expressed as [12]

P2 <
4M

Sd 2 − Sdð Þ
: ð10Þ

Generally, three variables determine the stability of a
rotating missile—pitch moment coefficient (CMα), rotating
speed (p), and dynamic stability factor (Sd). The absolute
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Figure 12: Variations of the average lateral pressure difference of
the missile body along the missile axis at Ma = 1:5 and p = 0:02.
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value of CMα decreases, whereas those of Sd and p increase.
These three factors, whether acting alone or together, may
lead to a failure of inequality 10. At this point, the missile
cannot satisfy the dynamic stability condition. Under a low
upper-air density, if the absolute value of CMα decreases
and p is too high, dynamic instability will occur. Zhang
et al. [11] conducted telemetry on a missile at the plateau
and found that under a large angle of attack, the missile
had a large attack angle cone pendulum movement and the
attack angle reached greater than 30°.

Theoretically, the following situation may occur. When a
missile is launched at a high angle of launch, transonic con-
ditions tend to occur at the highest point of its trajectory
[11]. With the increasing altitude, the center of pressure of
the missile moves forward, the static stability decreases, and
the angle of attack increases. The Magnus torque coefficient
becomes negative due to the low upper-air density. When
the static stability is reduced and the missile does not meet
the dynamic stability condition, the attack angle further
increases. However, with the increase of the angle of attack,
the Magnus moment coefficient of the missile changes from
negative to positive; consequently, the dynamic stability con-
dition is satisfied. Therefore, it is important to understand
how the Magnus moment varies with altitude.

4. Analysis of Magnus Torque Characteristics

4.1. Variation of the Magnus Moment with Altitude. Figures 7
and 8 display the variations of the time-averaged Magnus
moment coefficient with altitude for Ma = 1:3 and 1.5,
respectively. The experimental values in the figure refer to
wind tunnel test values corresponding to the same Reynolds
numbers at different altitudes, indicating that the Reynolds
numbers of the missile at different altitudes were similar to
those of the wind tunnel test. The variations of the Magnus
moment coefficient with altitude at different angles of attack
were also similar to those of the wind tunnel test. The differ-
ence between simulated and experimental values under
atmospheric conditions occurred due to the difference
between wind tunnel test and atmospheric conditions. Simu-
lation results under wind tunnel test conditions were in good
agreement with experimental values. With the increase of the
angle of attack, the direction of the Magnus moment coeffi-
cient changed, especially at high altitudes, the Magnus

moment coefficient first changed from positive to negative
and then from negative to positive.

Figures 9 and 10 present the variation curves of the mis-
sile pitching moment with altitude. With the increasing alti-
tude, the absolute value of the missile pitch moment
coefficient decreased and the pressure center moved forward;
hence, the static stability of the missile decreased; conse-
quently, the equilibrium angle of attack increased. However,
the phenomenon of negative Magnus moment occurred at
larger angles of attack; thus, the missile did not meet the
dynamic stability condition, and its angle of attack further
increased. When the missile flew under the conditions of
Ma = 1:3 and H = 16 km, with the increase of the angle of
attack, the Magnus moment was always negative, causing a
divergence of the conical pendulum. When the missile flew
under the conditions of Ma = 1:5 and H = 16 km, with the
increase of the angle of attack, the Magnus moment changed
from negative to positive and the missile met the dynamic
stability condition; thus, it experienced a large attack angle
cone pendulum movement. The variation of the missile sta-
bility factor (λs) with altitude is exhibited in Figure 11 and
further confirms the possibility of the above working condi-
tions. Generally, the stability factor λs is used to analyze the
dynamic stability of a missile on an external trajectory. When
λs < 0, the greater the absolute value of λs, the faster the con-
vergence speed of flight attack angle to the equilibrium point
and the better the dynamic stability. When λs > 0, a missile
becomes unstable [12]. At an angle of attack of 20°, with
the increasing altitude, the stability factor changed from neg-
ative to positive and the missile gradually became unstable.
At an angle of attack of 30°, with the increasing altitude, the
stability factor changed from positive to negative and the
missile gradually became stable; therefore, it experiences a
large attack angle cone pendulum movement.

Two important characteristics were noticed in the varia-
tion of the Magnus moment characteristics of the missile.
First, the direction of the Magnus moment changed with
the increase of the angle of attack. Second, at high angles of
attack, the direction of the Magnus moment changed with
the increasing altitude.

Figure 12 displays the distribution curve of lateral pres-
sure difference along the missile axis when Ma = 1:5 and H
= 16 km. It is noticeable that the lateral force direction gener-
ated by the missile body was opposite to that generated by the
tail fin. However, when the angle of attack was 20°, the lateral
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x

Figure 16: Cloud maps of the intermittent factor at x = 0:36 cross section of the missile body and an angle of attack of 30°.
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force along the missile axis was different from that generated
by other angles of attack. The lateral force generated by the
latter part of the missile body was larger than that generated
by the other two angles of attack. However, the lateral force of
the tail fin was similar to that generated by the angle of attack

of 10°; thus, the Magnus moment direction changed with the
increase of the angle of attack.

Figure 13 displays the variation of the lateral force coeffi-
cient curve of the single tail fin. With the increasing altitude,
the lateral force coefficient of the tail fin decreased and its
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Figure 17: Streamlines at H = 16 km and Ma = 1:5.
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periodic average decreased from 0.016218 to 0.006778. As
the lateral force of the missile body was opposite to that of
the tail fin and the lateral force of the tail fin decreased with
the increasing altitude, the direction of the Magnus moment
changed with the increasing altitude.

4.2. Variation of the Magnus Force with Altitude. Figures 14
and 15 display the variation curves of the Magnus force with
altitude. It is noticeable that the Magnus force direction
changed with altitude at an angle of attack of 30°. Figure 16
presents the variations of the intermittent factor (γ) cloud
with altitude at x = 0:36 cross section of the missile body
and an angle of attack of 30°. The intermittent factor was
used to measure the timeshare of turbulence at a point in
the transition region. When the intermittent factor was 1,
the flow was completely turbulent, whereas when the inter-

mission factor was 0, the flow was completely laminar. With
the increasing altitude, the air density decreased, causing a
decrease in the Reynolds number. With the increasing alti-
tude, the upper surface of the missile body changed from a
turbulent boundary layer to a laminar one. This phenome-
non had a great influence on the flow separation on the mis-
sile surface and caused the direction of the Magnus force to
change.

Figure 17 presents the streamline diagrams of the missile
at different angles of attack when the altitude was 16 km and
the Mach number was 1.5. The colors of the streamline dia-
grams represent pressures at the streamline. The streamline
diagram at the angle of attack of 20° was different from those
of the other two angles of attack. At the angle of attack of 20°,
the wash flow generated by the left lower part of the head was
partially wash to the right side of the missile body on the
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leeward side. From the colors of the streamline diagrams, it is
evident that this part of the wash flow caused a high pressure
on the right rear side of the missile body, resulting in the phe-
nomenon shown in Figure 12.

Figures 18 and 19 illustrate the boundary layer thickness
and Cp curves at different cross sections and altitudes. With

the increasing altitude, the boundary layer thickness
increased. The asymmetric distortion of the boundary layer
was the main cause of the lateral force. It is noticeable from
Figure 18 that the thickness peak of the boundary layer on
the right side was more serious than that on the leeward side
of the missile. When the altitude was low, the boundary layer
thickness became larger only in the region near the tail
(x = 0:33), leading to an asymmetric distortion. The larger
the boundary layer thickness, the greater the lateral force
intensity produced by the asymmetric distortion; thus, the
body behind the center of mass (especially in front of the tail

wing) had a larger lateral force and the Magnus moment gen-
erated by the missile body became larger. With the increasing
altitude, the position with a larger boundary layer thickness
gradually moved forward. When the altitude was 16 km, the
boundary layer thickness at x = 0:05 was relatively small;
however, the boundary layer thickness at x = 0:21 was larger.
When the altitude was 40 km, the boundary layer thickness of
the missile was relatively larger. The forward movement of
the thicker boundary layer made the lateral force distribution
of the missile body uniform; hence, Magnus moments pro-
duced by different thicknesses of front and rear boundary
layers of the missile body decreased and the Magnus moment
generated by the tail wing increased, causing a change in the
Magnus torque direction.

4.3. Interference of the Missile Body with the Lateral Force of
the Tail Fin. The normal force was obtained by calculating
the effective angle of attack of the rotating tail fin, and the lift
force was projected to the z-axis to obtain the lateral force
generated by the tail fin. The effective angle of attack of the
tail fin during rotation was calculated as

αe = α ±
ωxy

V
∞

, ð11Þ

where the former is the angle of attack of the missile and the
latter is the additional angle of attack caused by rotation.

Now, using the derivative formula of the normal force
coefficient of a quadrangle airfoil proposed by Harmon
[19], the normal force of the single tail fin could be expressed
as

Fn =

ðd

d/2

qCnα
′ αec yð Þdy = qCnα

′ 0:00104α ± 3:44 ×
10−5ωx

V
∞

� �

,

ð12Þ

where c is the chord length, cðyÞ = C − ðy − d/2Þ/tan θ, the

sweeping angle of the leading edge is 36.9°, C’
nα = 4ð1 − 0:5

ABÞ/B, A is the aspect ratio of the wing, and B =

ðMa2 − 1Þ
1/2
.

Therefore, the lateral force coefficient of the tail fin is

Cz = − cos φð ÞqCnα
′ α sin φð Þ +

ωx

V
∞

� �

: ð13Þ

Figure 20 displays the periodic variation curves of the lat-
eral force coefficient of the single tail fin calculated by Equa-
tion (13) and CFD simulations at Ma = 1:5 and H = 16 km.
Calculation results of Equation (13) were relatively consistent
with those of CFD simulations; thus, the proposed method
could be used to quickly predict the periodic lateral force
coefficient of a single tail fin. The ratios of the influence of
the missile body on the lateral force coefficient of the tail
fin at different angles of attack and altitudes were obtained
by subtracting the lateral force coefficient of the tail fin alone
and dividing it by the maximum value of the lateral force
coefficient of the tail fin.
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Figures 21 and 22, respectively, exhibit the interferences
of the missile body with the lateral force coefficient of the tail
fin at different altitudes and angles of attack when Ma = 1:5.
In the leeward area, the missile body had a greater distur-
bance to the lateral force coefficient of the tail fin. When
the angles of attack were 20° and 30°, the interference of the
missile body with the tail fin was greater than that at the angle
of attack of 10°. It happened because with the increase of the
angle of attack, the shielding of the missile body against the
tail affected the aerodynamic characteristics of the tail and
the influence was abrupt. It also explains the reason why lat-
eral forces generated by the missile tail fin were similar at the
angles of attack of 10° and 20° (Figure 12). When the angle of
attack is 20°, the interference of the missile body with the tail
fin suddenly increased.

4.4. Frequency Analysis of the Interference of the Missile Body
with the Lateral Force of the Tail Fin.With the increase of the
angle of attack, the lateral force characteristics of the missile
body changed because of the interference of the tail fin with
the missile body. The lateral force coefficient curve of the
missile body was fitted by the following Fourier series.

Cz = A0 +〠
n

An sin nωt + θnð Þ, ð14Þ

where A0 represents the time-averaged body Magnus force
coefficient and An and θn are the corresponding Fourier coef-
ficient and phase, respectively. Least-squares fitting was
adopted to obtain the Fourier coefficients at different angles
of attack. R-square describes the correlation between
response values and predicted response values, and it is
defined as the ratio of the sum of squares of regression and
the sum of squares about the mean. Figure 23 presents the fit-
ting results of the lateral force coefficient curve of the missile
based on the 4th- and 8th-order Fourier series, and the corre-
sponding R-square values were 0.89846 and 0.99815, respec-
tively. It is clear that the 8th-order Fourier series can be used
for better fitting.

Figure 24 presents the fitting result of the lateral force
coefficient curve of the missile body without tail fins based
on the 8th-order Fourier series, and it is observable that the
amplitudes of A1 – A3 varied significantly. Figure 25 displays
the fitting result of the lateral force coefficient curve of the
missile body with tail fins based on the 8th-order Fourier
series. In this case, the amplitudes of A1 and A3 increased
with the increase of the angle of attack, whereas that of A2

first increased and then decreased with the increase of the
angle of attack. The first three Fourier series frequencies,
especiallyA1 and A2, dominated the fitting curves. The values
of A4 – A8 in Figure 24 are very small. In comparison to
Figure 25, the increase of A4 – A8 in Figure 24 is over 80%.
In addition, the R -square values in Figure 24 are all greater
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Figure 24: Fourier coefficient of the missile body without tail fins.

�
e 

m
is

si
le

 b
o

d
y 

in
te

rf
er

es
 w

it
h

 t
h

e
la

te
ra

l f
o

rc
e 

co
e�

ci
en

t 
o

f 
th

e 
ta

il
 �

n

–2.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

0 60 120 180 240 300 360
�

H = 0 km � = 20°

H = 8 km � = 20°

H = 16 km � = 20°

H = 20 km � = 20°

H = 40 km � = 20°

Figure 22: Interference of the missile body with the lateral force
coefficient of the tail fin at Ma = 1:5.

0 30 60 90 120 150 180

–0.070

–0.065

–0.060

–0.055

–0.050

–0.045

–0.040

C
m
z

CFD
Fourier series of the 4th order
Fourier series of the 8th order

�

Figure 23: Comparison of lateral force coefficient curves obtained
by different Fourier series.

11International Journal of Aerospace Engineering



than 0.99, indicating that the fitting results of the 8th-order
Fourier series are accurate. The high-frequency variation of
the lateral force coefficient of the missile body occurred by
the interference of the tail fin with the missile body.

Now, subtracting Figure 24 from Figure 25, the amount
of interference of the tail fin against the lateral force coeffi-
cient of the missile body could be obtained (Figure 26). When
the angles of attack were 10° and 30°, the corresponding Fou-
rier series frequency varied similarly. However, when the
angle of attack was 20°, the changes in the amplitudes of A3

and A4 were negative and the change in the amplitude of
A1 was also less than that of the other two angles of attack.
Therefore, the influence of the tail fin on the lateral force of

the missile body the angle of attack of 20° was different from
that of other angles of attack, causing a change in the direc-
tion of the Magnus moment.

5. Conclusion

The Magnus moment characteristics of rotating missiles with
Mach numbers of 1.3 and 1.5 at different altitudes and angles
of attack were numerically simulated based on the transition
SST model. The main observations are presented below.

(1) The Magnus moment direction of the rotating mis-
siles changed with the increase of the angle of attack.
When the altitude was low, the Magnus moment
direction changed from positive to negative with the
increase of the angle of attack. At higher altitudes,
the Magnus moment direction changed from positive
to negative and then again to positive with the
increase of the angle of attack

(2) When the angle of attack was 20°, the interference of
the tail fin to the lateral force of the missile body was
different from that for other angles of attack, leading
to an increase of the lateral force of the rear part of
the missile body. With the increasing altitude, the
position of the boundary layer with a larger thickness
of the missile body moved forward, making the lat-
eral force distribution of the missile body even. Con-
sequently, Magnus moments generated by different
boundary layer thicknesses at the front and rear of
the missile body decreased and the Magnus moment
generated by the tail fin became larger. As lateral
force directions of the missile body and the tail were
opposite, the Magnus moment direction changed
noticeably

(3) Under a high angle of attack, the Magnus moment
direction changed with the increase of the angle of
attack. The absolute value of the pitch moment coef-
ficient of the missile body decreased with the increas-
ing altitude

Data Availability
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Supplementary Materials

These data are the variation of aerodynamic parameters of
spinning missile with altitude when Mach number is 1.3
and 1.5. (Supplementary Materials)
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