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Abstract OLSR is a promising routing protocol for multi-hop wireless networks, recently 
standardized by the IETF. It intensively uses the concept of MPR to minimize 
the routing messages and limit the harmful effects of the broadcasting in such 
networks. In this article, we are interested in the performances of the Multi- 
Point Relay selection. We analyze the mean number of selected MPR per node 
and their spatial distribution with a theoretical approach and simulations. Then, 
we discuss the implications of these results on the efficiency of a broadcasting 
and on the reliability of OLSR when links between nodes may fail. 
keywords: ad hoc, OLSR, MPR, performances, Palm. 

1. Introduction 
With the emergence of wireless technologies such as 802.11 or bluetooth, 

new challenges arise such as connecting wireless nodes without any infrastruc- 
ture. If nodes are not in each other's radio range, packets need to be relayed 
by intermediate nodes which thus require forwarding capabilities and a rout- 
ing protocol to find the available path to any destination. Nodes are mobile 
and may vanish or appear due to the wireless nature of the physical layer. The 
topology is thus in constant evolution. However, routing advertisements are 
expensive in resources since a node spends energy while transmitting as well 
as receiving and each message sent by a node is systematically received by all 
node in its transmission range. Therefore, not only the number of broadcast 
advertisements must be limited, but also the number of nodes which propagate 
them through the network. One of the recent proactive standardized protocols 
is OLSR (Optimized Link State Routing Algorithm) [ l ,  21. Proactive routing 
protocols deeply rely on network broadcasting features and aim to reduce the 
impact of message flooding and reach scalability. In OLSR, only a subset of 
preselected nodes called MPR (Multi-Point Relays) are used to perform topo- 
logical advertisements and to broadcast control messages. Thus, the number 
of emitter nodes is reduced, overhead and useless receptions of messages on 
nodes are minimized and the well known storm problem [3] avoided. 
In this article, we are interested in the performances of the MPR selection. We 
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analyze the mean number of selected MPR by a single node and their spatial 
distribution, using a theoretical approach and simulations. We then show that 
the selecting algorithm is efficient for certain quantities (as e.g. the number of 
redundant packets received by a node) and that the different proposed variants 
always lead to very close performances (as at least 75% of the selected MPR 
are the same nodes whatever the selection algorithm). We also discuss the 
implication of the different analytical results on the reliability of the protocol. 

The remaining of the paper is as follows. In Section 2, we briefly detail 
the OLSR protocol and the MPR selection algorithm. In Section 3, we give 
results about probabilities and mean quantities relative to the MPR selection 
algorithm. We then discuss about the implication of these results on the perfor- 
mances of OLSR in Section 5. Numerical results and simulations are presented 
in Section 4. We lastly conclude and discuss of future works in Section 6. 

2. OLSR 
OLSR is a proactive routing protocol for ad-hoc networks, i.e., it perma- 

nently maintains a network topology view on each node in order to provide a 
route as soon as needed. It uses the concept of Multi-Point Relays (MPR) to 
minimize the control traffic and to provide shortest routes (in number of hops) 
for all destination in the network. Each node chooses a subset of nodes in its 
neighborhood as its MPR (A MPR set is thus relative to each node) and keeps 
the list of its neighbors which have selected itself as a MPR. The shortest path 
to all possible destination is then computed from these lists, a path between two 
nodes being a sequence of MPR. When receiving a broadcast message M from 
a node u, a node v forwards it iff it is the first time v receives M and if node 
v is MPR of node u. This allows to reduce the number of transmitter nodes. 
The algorithm which allows a node u to select its MPR within its neighbor- 
hood consists in choosing nodes in such a way that the whole 2-neighborhood 
of u is covered by its MPR. In this way, MPR are selected in order to reach 
the 2-neighborhood of u in two hops from u, the k-neighborhood of u being 
reached within k hops. Paths are thus the shortest expected ones. 

MPR selection: As the optimal MPR selection is NP-complet [7],  we give 
here the one currently used: the Simple Greedy MPR Heuristic. 

For a node u, let N (u) be the neighborhood of u e.g the set of nodes in u's 
range and which share a bidirectional link with u: v E N(u) e u E N(v). 
N2(u) is the Zneighborhood of u, e.g, the set of nodes which are neighbors 
of at least one node of N(u)  but which do not belong to N(u): N2(u) = 
{V s.t. 3 w E N(u) I v E N(w)\  {u) U N(u)). A message sent by node u 
and relayed by a node v E N(u)  reaches a node w E N2(u) n N(v) in 2 hops. 
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For a node v E N (u) ,  let d,f ( v )  be the number of nodes of N2 (u )  which are 
in N (v )  : d$ ( v )  = I N2 (u )  n N (v )  1. This quantity is the number of nodes of 
N2(u) that node u can reach in 2 hops via node v. For a node v E N2(u),  let 
d; ( v )  be the number of nodes of N (u )  which are in N ( v )  : d; ( v )  = IN (u )  f l  
N ( v )  I. This quantity is the number of nodes in N(u)  which allow to connect 
nodes u and v in 2 hops. If d; ( v )  = 1, there is only one node w in N ( u ) n  N ( v )  
which allows to connect v and u in 2 hops. We say that v is an isolated node 
of node u. Note that "isolated nodes" are also relative to a node. 

This algorithm is run at every node and selects the MPR in two steps. A 
node u selects in N (u) ,  a set of nodes which integrally covers N2(u). We 
define as MPR(u)  this set of MPR selected by u. MPR(u)  is such that: 
u U N2(u) c U V E M P q U )  N(v) .  We call MPRl (u )  c MPR(u)  the nodes 
that u elects at the first step. u selects as MPRl(u)  the nodes which cover 
its isolated nodes. MPRl(u)  are thus the only way to reach isolated nodes 
of u in 2 hops from u. Thus the first step is mandatory to totally cover Nz(u) 
with MPR(u). At the second step, u considers the nodes in N2(u) not already 
covered by the MPRl (u) .  It chooses as MPR the node of N(u)  allowing to 
cover the maximal number of uncovered nodes of N2 (u) ,  and so on till getting 
N2(u) all covered. To better understand this algorithm, let's run it on the green 
node u on Figure 1. The isolated points of node u appear in red and MPRl (u)  
in blue. Node t is an isolated node as only node h allows to connect t and u in 
2 hops. Node h is thus elected at the first step: h E MPRl(u) ,  as well as all 
red hatched nodes. Nodes I c ,  j ,  t ,  s, r,  q, o, m, I in N2(u) are covered by them. 
Then, node u goes to step 2. It considers nodes of N2(u) not already covered 
(nodes p and n)  and nodes in Nl not selected as MPR1 (nodes b, f ,  e and d). 
It thus only keeps the view of the topology illustrated by Figure l(b). It first 
selects the node of N(u)  which has the highest degree on Graph I@): node 
e (e covers 2 nodes, n and p, f and d only cover one node, resp. p and n). 
From here, all nodes of N2 (u )  are covered by the selected MPR, the algorithm 
stops. We have: MPR(u)  = {c, e, i, h ,  g } .  Then, it is easy to see that nodes of 
N ( u )  which cover "isolated nodes" must be included into the set of MPR if we 
want to integrally cover the N2(u),  whatever the selection process. Thus, we 
can not skip or "compress" the first step of the algorithm in the MPR selection. 
Moreover, this step must be run first in order to minimize the number of MPR. 
Therefore, only the second step of the algorithm can be improved in order to 
find the minimum number of MPR. 

Related works: Most of the literature about the performances of OLSR deals 
with the efficiency of the OLSR routing protocol itself or the different tech- 
niques using MPR ([4-71). The goal is to minimize the number of transmitters 
and thus the number of selected MPR per node. Therefore, alternative algo- 
rithms to the classical MPR selection algorithm as [I 1, 101 aim to optimize the 
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overlap between MPR or the global bandwidth. But, all results for the pro- 
posed algorithms are quite similar, particularly for the mean number of MPR 
per node. Therefore, in order to understand this phenomenon, we wished to an- 
alyze this selection more in details as only few papers have studied the different 
algorithm performances of the MPR selection. Only [ l l ]  gives an analysis of 
the MPR selection on the line. Other analytical results in different graphs are 
also given in [ 5 ] .  Other interesting results are presented in [lo]. 

3. Analysis 
We are interested in the properties of the MPR of a typical node. Therefore, 

we do not consider the whole network but only a "typical point" located at the 
origin of the plane and its 1 and 2-neighborhood. Our model is similar to the 
classical unit random graph used to model ad-hoc networks. This is a general 
model as we do not make any assumption about the wireless technology used. 

Let B(x,  R) denote a ball of radius R centered in x. Let be a Poisson point 
process on B(O,2R) of intensity X > 0. The intensity X of such a process 
represents the mean number of points of the process by surface unit. We add 
a point 0 at the origin for which we study the MPR selection algorithm (Palm 
distribution). We assume that there is a bidirectional link between two nodes 
iff d(u, v) 5 R where d(u, v)  is the Euclidean distance between u and v and 
R E I R f  * a constant. The neighborhood of 0 is thus constituted of the points 
of the Poisson process which are in B(0, R). We still use N (resp. N2) to 
design the 1-neighborhood (resp. the 2-neighborhood) of the point 0. 

General results: Let A(r) be the area of the intersection of two balls of ra- 
dius R where the distance between the centers of the balls is r: 
A(r) = 2 R~ arccos (& ) - r JG and AI (u, r, R) the area of the union 
of 2 discs of radius R and u where the centers of the 2 balls are distant from r: 

2 ~ 2 - ~ 2  ~ 2 - ~ 2 - ~ 2  
Al(u,r,R) = r R  / 1 -  (R~;::'~) 2 -  R' ~ C C O S  -2RT -u2 arccos 2uT 

The next proposition gives several general results as the mean value of the 
quantities d$ and do as well as the mean size of the 1 and Zneighborhood of 
a node when considering a Poisson point process distribution. 

(a) Real topology - Isolated points (b) Topology considered 
of u appear in horizontal red, by node u at the second 
MPR1 (u) in vertical blue. step 

Figure I .  Illustration of the MPR selection algorithm. 
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Proposition 1 Let u be a point uniformly distributed in B(0, R). u is thus 
such that u E N. 
The mean number of node u 's neighbors lying in B(O,2R)/B(O, R) is given 

2~ R 
by: E [di(u)] = So So (aR2 - A(r))rdrdB = X R ~ ~ .  
The idea is to count the number of the process points lying in the intersection 
of B(u, R) and B(O,2R)/B(O, R). 

Let v be a point uniformly distributed in B (O,2 R) \B (0, R). The mean number 
of node v S neighbors lying in B(0, R) is given by: 
E [d{(v)] = A& SSR A(r)rdr = X R ~ $ .  
The idea here is to count the number of process points in the intersection of 
B(v, R)  and B(0, R). Node v may lie in B(O,2R)\ B(0, R)  without belonging 
to N2 i fN(v )  fl N = 8. So, to obtain the quantity above for nodes in N2 we 
have to condition it by the probability that v E N2. 

We obtain: E [d; (v)  lv E N ~ ]  = 
P(d; (v)>O) ' 

with P (d,(v) > 0) = 1 - exp{-XA(r)}rdr. 
This last equation gives the probability that a node in B(O,2R)/B(O, R) has 
at least one neighbor in B(0, R) which makes it a 2-neighbor of node 0. 

The mean number of nodes in N is given by: IE [IN I ]  = XIT R ~ .  
The mean number of nodes in N2 is given by: 

E [IN2\] = 3ha~~lF' (d;(v) > 0) = 3 X a ~ ~  1 - & J'SR exp{-X~(r)}rdr) .  

All these quantities can be computed in the same way. We use the fol- 
lowing properties of a Poisson point process: conditioned by the number of 
points in B(0, R)  (resp. in B(O,2R)\B(O, R)), the points are independently 
and uniformly distributed in B (0 ,  R) (resp. in B (O,2 R) \ B (0, R))  and are in- 
dependent of the points of B(O,2 R)\B(O, R) (resp. B(0, R)). 

Analysis of the  first step of the  MPR selection: In this section, we com- 
pute several quantities relative to the first step of the algorithm. In the next 
proposition, we give the mean number of points v E N2 such that d; (v)  = 1. 
These points are the isolated points of 0. The points of N, neighbors of these 
isolated points, necessarily belong to MPRl as they are the only way to reach 
them from node 0 in 2 hops. However, this quantity does not give the size of 
MPR1, since several isolated points can be reached by the same MPR1 point. 
For instance, on Figure l(a), we have four MPR1 nodes but seven "isolated 
points". MPR1 i covers two isolated points: j and k. 

Proposition 2 Let v be uniformly distributed in B(O,2R)\B(O, R) and D the 
set ofpoints v such that d o  (v)  = 1: 

P ( d ,  (v )  = 1) = SSR XA(r)exp{-XA(r)}rdr 
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As in Proposition 1, we only consider nodes v such that v E N2: 
 do (v)=l) 

P(d,(v) = llv E N2)  = 
~ ( d ;  (v )  >o) ' 

The mean number of "isolatedpoints" is then deduced and given by: 
K [ID!] = 27rX2 J? A(r)exp{--XA(r)}rdr. 

Proposition 3 gives lower and upper bounds on the number of M P R l .  

Proposition 3 Let u be a point uniformly distributed in B(0,  R):  
IP (U E MPR1) > SIP (d, f(u) > 0)  

x J ~ J F ~  f (x , r ,  R)exp {-A ( ~ ~ R ~ - A ~ ( R , X ,  ~ ) ) ) r d x d r  

The next formula gives the mean number of MPR1.  It is the direct conse- 
quence of the formula above: 
E [ J M P R I I ]  2 2XnP (d:(u) > 0 )  

R R+T 
x Jo JR f ( x ,  r ,  R )  exp {-A ( 2 7 ~ ~ ~  -A1 (R,  z ,  ~ ) ) ) r d z d r  

Moreovel; since there is at least one isolated point by point of MPR1,  the 
mean number of isolatedpoints ofers an upper bound: K [I MPR1 I ]  5 IE [I Dl]. 

Proof 1 To obtain a bound on the probability that a point in N belongs to 
MPR1,  we use a sujicient condition. Because ofpage restriction, we do not 
give here the proof but it can be found in [9]. 

We are now interested in the spatial distribution of the MPRl  points. For 
a node u such that d(0, u )  = r ,  r 5 R ,  Proposition 4 gives lower and upper 
bounds on the probability that u belongs to MPR1.  

Proposition 4 Let u be a point at distance r (r 5 R) from the origin. We& 
the two points 0 and u and we distribute the Poisson point process in B(0,2R)  
independently of these two points. 
IP (U E M P R 1 )  > (1 - exp { - x ( T R ~  - ~ ( r ) ) ) )  

x f" f (v ,  r ,  R )  exp {-X(27rR2 - A l ( R ,  v ,  R)))dv  

P ( u € M P R 1 ) 5 1 -  ( 1 -  exP {-A*}) 

Proof 2 The lower bound is obtained in the same way as the bound in Propo- 
sition 3 but given d (0, u )  , u E N.  Because of page restriction, we do not give 
detail the proof here but it can be found in [9]. 
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(a) Mean number of M P R  and M P R l  ob- (b) Lower and upper bounds on the 
tained by simulation when AT varies and com- probability of belonging to M P R l  
parison with analytical bounds. wxt .  the distance from the origin. 

Figure 2. Simulation results. 

4. Numerical results and simulations 
The nodes are deployed using a Poisson process in B(O,2) for R = 1 and 

X > 0. We add a point at 0 and study the number of MPR it selects at each 
step of the MPR selection. Figure 2(a) shows the mean number of M P R  and 
M P R 1  obtained by simulation. We observe that approximately 75% of the 
MPR actually are M P R I ,  which confirms that the M PRl  almost cover the 
whole 2-neighborood. Figure 2(a) also show the analytic bounds. As explained 
before, the lower bound is very close to the mean size of the set MPR1.  

Figure 3 plots samples for different values of Xn (AT being the number of 
a node's neighbors). The point 0 for which we compute the MPR is the black 
point in the middle. Points in the central circle are the points of N ,  the larger 
ones being the MPR1.  Points outside the circle are the points of N2, the 
blue ones being the points of N2 covered by the MPR1.  We note that in all 
cases, almost all nodes of N2 are is covered by the MPR1.  Only one more 
MPR might suffice to cover the rest of N2. We have shown in the previous 
section that there is an appreciable number of isolated points giving rise to a 
certain number of MPR1.  These M P R 1  seem to be distributed very close 
to the boundary of B(0,  R )  and regularly scattered on it (which confirms the 
results of the Proposition 4). Therefore, they cover a very large part of N2. 
The lower and upper bounds given in Proposition 4 allow us to show that the 
M P R l  are very close to the boundary. Figure 2(b) show these bounds when 
the distance between 0 and its neighbors varies from 0.2 to 0.999 and with 
X = 15. These curves incontestably show that M P R 1  points are distributed 
closely to the boundary of B ( 0 , l ) .  We point out that these results depend on 
A: as X increases, the distance between M P R 1  points and 0 increases too. 

5. Consequences 

About the MPR distribution: When a message is sent by node u ,  only 
M P R ( u )  forward the message. Neighbors commun to u and M P R ( u )  thus 
receive several copies of the same message and spend energy uselessly. Yet, 
as shown in Section 4, most of M P R l ( u )  (and thus most of M P R ( u ) )  are 
distributed very closely to the boundaries of the radio range of u. That means 



K. A1 Agha, I. Gue'rin Lassous and G. Pujolle 

Figure 3. MPR selection with Xn = 15 and Xn = 45. 

that the intersection between u and its of each MPR radio areas is minimized 
and so the number of common neighbors and so the energy uselessly spent. 

The easiest way to broadcast a message over a network is the blind flooding, 
where each node re-emits the message upon first reception of it. To illustrate 
the number of receptions saved by the MPR, we computed by simulation the 
number of receptions per node of a broadcast message. The nodes are ran- 
domly deployed using a Poisson process in a 1 x 1 square with various levels 
of intensity X (and thus various numbers of nodes) for R = 0.1. x and y 
are connected if and only if d(x, y) 5 R. Figure 4(a) compares the results 
obtained by both metrics.For the blind flooding, the number of receptions per 
node corresponds to the mean number of neighbors (as every node forwards 
the message once). With OLSR, approximately 40% of the nodes participate 
to the diffusion. It is drastically less than the blind flooding and it is a priori 
sufficiently high to be robust. 

ill,, , , , , , , , I 1  
' L m m m m m ~ ~ m w , ~  --- 

(a) Number of receptions per node of 
a broadcast message inltlated at a ran- a broadcast message when apply~ng a 
dom source. fa~lure probability on Imnks. 

(c) MPR failure. 

I " n d " L I  

(b) Proportion of nodes still receiving 

Figure 4. Some consequences with X = 1000. 

About the MPR1: The number of MPR elected per node aims to be as low 
as possible. The Greedy heuristic of MPR selection presented here is the origi- 
nal one. As we mentioned in Section 1, some works have been lead in order to 
enhance this algorithm and elect less MPR per node. But, only the second step 
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of the Greedy algorithm may be improved as the first one is mandatory to cover 
the whole 2-neighborhood of a node and can not be reduced. And, as the first 
step leads to the election of more than 75% of the MPR, the improvements can 
only concern less than 25% of the MPR and thus can not be significant, which 
explains that all works lead to similar results and minor improvements. Un- 
fortunately, this feature also underlines a robustness problem. Indeed, if 75% 
of node U'S MPR cover at least one isolated, if some M P R ( u )  fail, there is a 
great probability that at least one node v in N2(u) does not receive messages 
fiom u. Of course, v may receive it fiom another path but, this path would not 
be optimal anymore. Because of it, parts of the network can be isolted during 
the broadcasting task as illustrated by Figure 4(c). Clouds represent parts of the 
network. As node e is an isolated point for node a, a has to elect node c as one 
of its MPR but does not elect node b as node d is already covered by c. Let's 
suppose that the link between a and c fails and a diffision is performed before 
a re-computes its MPR. The network is still connected, nevertheless, as node b 
is not a MPR of node a, it does not forward the message. A whole part of the 
network is isolated. In order to measure this robustness problem, we simulate 
a broadcasting task, applying a failure probability over links. We measure the 
proportion of nodes still receiving the broadcast message. Figure 4(b) shows 
the results. As in the blind flooding, every node retransmits the message, if 
some nodes do not receive it, that means that the network is disconnected. We 
can see that this happens when 85% or more of links are down. However, 
every node does not receive the message with the MPR heuristic when only 
45% of links are down whereas the network is still connected. This failure 
model may seem not very realist as links can fail because of congestion and, as 
the blind flooding induces more messages than the MPR protocol, more links 
fail. Nevertheless, we use the results of the blind flooding in this situation to 
give an information on the network connectivity. However, failures of a MPR 
may also be due to the node mobility. Indeed, if a MPR moves, it may leave 
the radio scope of the node for which it is a MPR or does not cover the same 
set of nodes in the 2-neighborhood anymore. 

6. Conclusion 
In this article, we have computed several quantities relative to the MPR se- 

lection algorithm in OLSR. We have shown that approximately 75% of the 
MPR are chosen during the first step of the algorithm. Since this step always is 
necessary for the MPR set to cover the whole 2-neighborhood, variants of the 
algorithm used in OLSR, trying to minimize the number of selected MPR, lead 
to similar performances. We have also highlighted the fact that these MPR are 
distributed close to the radio range boundaries, limiting the overlap between 
MPR. This feature also underlines a robustness problem. This robustness prob- 
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lem is intented to be analyzed with other robustness models. A deeper study 
about the influences of isolated points on the reliability of OLSR will be lead 
in future works. These results have been presented for a particular model using 
Poisson point process. Other models, more realistic, which take into account 
the properties of the radio layer could be considered in future works. Results 
obtained here could be compared to simulations considering CDMA network 
or 802.1 1 network. 
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