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For a reliable prediction of the NMSSM Higgs boson signatures at present and future high-energy

colliders and a proper distinction of the NMSSM and MSSM Higgs sector the precise knowledge of the

Higgs boson masses including higher-order corrections is indispensable. In this paper, the one-loop

corrections to the neutral NMSSM Higgs boson masses and mixings are calculated in three different

renormalization schemes. In addition to the DR renormalization scheme, existing in the literature, two

other schemes are adopted. Furthermore, the dependence on the value of the top quark mass is

investigated. From this and the variation of the renormalization scale, at one-loop level, the residual

theory error due to missing higher-order corrections can be estimated to be of the order of 10%.
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I. INTRODUCTION

Supersymmetric theories [1,2] provide a natural solution
to the hierarchy problem [2,3]. The latter is related to the
fact that the standard model (SM) Higgs boson mass
receives radiative corrections which are quadratic in the
cut-off scale, usually chosen to be the GUT scale MGUT ¼
1016 GeV. To keep the Higgs mass of the order of the
electroweak (EW) scale an extreme fine-tuning of the
model parameters is necessary. Supersymmetry (SUSY)
introduces a new symmetry between fermionic and bosonic
degrees of freedom, leading to extra contributions to the
radiative corrections of the Higgs boson mass due to
the new SUSY particles which cancel the dangerous qua-
dratic divergence of their corresponding SM counterpart. In
this way the Higgs mass is naturally kept at a phenomeno-
logically valid level even in the presence of high mass
scales.

As the superpotential must be analytic in the chiral
superfields, two complex Higgs doublets have to be intro-
duced, Hu to provide masses to the up-type fermions and
Hd to ensure nonzero down-type fermion masses. In this
way the theory is also kept anomaly-free. In the super-
potential of the minimal supersymmetric extension of the
standard model (MSSM) [4] the two Higgs doublet fields
mix through the term �Hu�Hd which involves the higg-
sino mass parameter �. While the MSSM suffers from the
� problem [5], in the next-to-minimal supersymmetric
extension of the standard model (NMSSM) [6–9] the
parameter � arises as the vacuum expectation value of
the neutral component of an additional Higgs field S which
is a singlet field with respect to the SM gauge groups. It
couples to the MSSM Higgs fields via the interaction term
�S (Hu�Hd). With the scalar field S acquiring a nonzero

vacuum expectation value (VEV) vs=
ffiffiffi
2

p
an effective �

term is generated with a value of the order of the SUSY-

breaking scale, � ¼ �hSi � �vs=
ffiffiffi
2

p
. Furthermore, new

contributions to the quartic coupling increase the tree-level
mass value of the lightest Higgs boson. In the MSSM the
tree-level mass of the lightest Higgs boson is predicted to
be below the mass of the Z boson. Large radiative correc-
tions involving top and stop loops are necessary to lift the
Higgs mass value beyond the lower bound from direct
searches at LEP [10]. The additional NMSSM contribu-
tions lift the mass of the SM-like Higgs boson more easily
beyond the LEP bound.
The extension of the Higgs sector by two more degrees

of freedom through the introduction of an additional singlet

superfield field Ŝ1 leads to a total of 7 Higgs bosons after
electroweak symmetry breaking, three neutral CP-even,
two neutral CP-odd and two charged Higgs bosons. The

fermionic component of Ŝmixes with theMSSM higgsinos
and neutral gauginos to yield five neutralinos. Among the
considerable phenomenological modifications in the Higgs
and neutralino sector compared to the MSSM are possible
new Higgs-to-Higgs decays, as e.g. the decay of a SM-like
scalar Higgs boson into a pair of lighter pseudoscalar
Higgs states, so that the present Tevatron and LHC search
studies for supersymmetric Higgs particles have to be
revisited [11]. Such a Higgs boson could have escaped
the LEP bounds [12].
From the above discussions it is clear that the precise

knowledge of the Higgs boson masses is indispensable to
distinguish between MSSM and NMSSM predictions, to
properly define scenarios with new Higgs-to-Higgs decays
within the NMSSM and to correctly interpret the experi-
mental data. In the MSSM, where radiative corrections are
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1We denote superfields by a hat over the field. Fields without
hat are the corresponding component fields.
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crucial to accommodate the lightHiggs bosonmasswith the
LEP limits, the Higgs boson masses have been calculated
with impressive accuracy. After the calculation of the domi-
nant one-loop contributions due to top/stop loops [13] the
full one-loop corrections have been provided in [14].
The leading logarithmic two-loop effects obtained through
renormalization group equations [15] have been completed
by the genuine Oð�t�sÞ [16–20], Oð�2

t Þ [16,19,21],
Oð�b�sÞ [22] andOð�t�b þ �2

bÞ [23] two-loop corrections
in the limit of zero external momentum. The electroweak
two-loop effects including part of the external momentum
dependence have been calculated [24] and the leading
three-loop contributions have been evaluated in [25]. Also
in the case of a CP-violating MSSM a great effort has been
undertaken to calculate the higher-order corrections. After
first investigations [26], they have been evaluated at one-
loop order in the effective potential approach [27] and with
the renormalization group improved effective potential
method through next-to-leading order [28]. In the
Feynman diagrammatic approach the one-loop leading m4

t

corrections have been provided in [29], a full one-loop
calculation in [30], and more recently the leading two-
loop contributions of Oð�t�sÞ have been evaluated in
[31]. The corrections have been implemented in the public
computer code FeynHiggs [18,30,32]. CPsuperH [33],
another public code, is based on the renormalization group
improved effective potential approach [28]. The MSSM
Higgs mass spectrum for real parameters can also be
obtained from the spectrum calculators [34–37].

In the NMSSM, however, the higher-order calculations to
the Higgs boson masses have not yet reached the same level
of accuracy as in the MSSM. The leading one-loop contri-
butions due to top/stop and bottom/sbottom loops have been
calculated in the effective potential approach [38], the one-
loop contributions due to chargino, neutralino and scalar
loops have been evaluated in leading logarithmic order in
Ref. [39]. These corrections and the leading logarithmic
two-loop terms of Oð�t�sÞ and Oð�2

t Þ, taken over from
the MSSM results, have been implemented in the public
computer code NMHDECAY [40]. Furthermore, the full
one-loop contributions have been computed in the DR
renormalization scheme [37,41] and the Oð�t�s þ �b�sÞ
corrections have been provided in the approximation of zero
external momentum [41]. They have been implemented in
NMHDECAY as well as in the spectrum calculator SPheno
[36,37].

In this paper we complement the effort to reach a higher
level of accuracy in the computation of the NMSSM Higgs
boson masses by providing the full one-loop corrections in
a mixed DR—on-shell and in an on-shell (OS) renormal-
ization scheme. By comparison with the results of Ref. [41]
in the DR scheme, the dependence on the renormalization
schemes can be studied. In this way an estimate of the
theoretical error due to missing higher-order corrections
can be derived. Having available the corrections in the

mixed and in the OS renormalization scheme in addition
enables a comparison of the NMSSM results in the MSSM
limit with the corresponding MSSM corrections given in
the OS-scheme.
The paper is organized as follows. In Sec. II we present

the details of our calculation starting by introducing the
NMSSM Higgs sector and setting up our notation in II A.
After presenting the chargino and neutralino sector in II B
we list the parameters that we employ in Sec. II C. The
renormalization is explained in detail in Sec. II D. The
explicit computation of the one-loop corrected Higgs
boson masses and mixing matrix elements is described in
Sec. II E. Section III finally is devoted to the numerical
analysis. Our results are summarized in Sec. IV.

II. CALCULATION

A. The NMSSM Higgs boson sector

The Higgs mass matrix is obtained from the NMSSM
Higgs potential, which is derived from the NMSSM super-
potential WNMSSM, the corresponding soft SUSY breaking
terms and the D term contributions. The NMSSM super-

potential for the Higgs superfields Ĥu, Ĥd, Ŝ in our con-
ventions reads

WNMSSM ¼ WMSSM � �ab�ŜĤ
a
dĤ

b
u þ 1

3
�Ŝ3; (1)

where a, b ¼ 1, 2 are the SUð2ÞL fundamental representa-
tion indices and �ab denotes the totally antisymmetric
tensor with �12 ¼ �12 ¼ 1. The Higgs superfield which
couples to up-type (down-type) fermion superfields is

given by ĤuðdÞ. The parameters � and � are dimensionless

and, working in the CP-invariant NMSSM, are chosen to
be real. The first term in Eq. (1) is the MSSM superpoten-

tial, which in terms of the quark and lepton superfields Q̂,

Ûc, D̂c, L̂, Êc reads2

WMSSM¼�ab½yeĤa
dL̂

bÊcþydĤ
a
dQ̂

bD̂c�yuĤ
a
uQ̂

bÛc�; (2)

where we have omitted color and generation indices. Note
that the MSSM � term in NMSSM constructions is com-
monly assumed to be zero as well as terms linear and

quadratic in Ŝ. The soft SUSY breaking terms in the
NMSSM in terms of the component fields Hu, Hd, S are
given by

Lsoft¼Lsoft;MSSM�m2
SjSj2

þ
�
�ab�A�SH

a
dH

b
u�1

3
�A�S

3þH:c:

�
; (3)

with the MSSM soft SUSY breaking Lagrangian

2The superscript c denotes charge conjugation.
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Lsoft;MSSM¼�m2
Hd
Hy

dHd�m2
Hu
Hy

uHu�m2
Q
~Qy ~Q

�m2
L
~Ly ~L�m2

U~u
�
R~uR�m2

D
~d�R ~dR�m2

E~e
�
R~eR

�ð�ab½yeAeH
a
d
~Lb~e�RþydAdH

a
d
~Qb ~d�R

�yuAuH
a
u
~Qb~u�R�þH:c:Þ

�1

2
ðM1

~B ~BþM2
~Wi

~WiþM3
~G ~GþH:c:Þ; (4)

where in the first four lines tilde denotes the scalar com-
ponent of the corresponding quark and lepton superfield,

and ~Q ¼ ð~uL; ~dLÞT , ~L ¼ ð~�L; ~eLÞT . Note that e.g. ~u�R is the

scalar component of Ûc. In the last line the soft SUSY
breaking gaugino mass terms for the gaugino fields ~B, ~Wi

(i ¼ 1, 2, 3) and ~G are given. All soft SUSY breaking
trilinear couplings Ak (k ¼ �, �, d, u, e) and gaugino mass
parameters Mi (i ¼ 1, 2, 3) are assumed to be real, and
squark and slepton mixing between the generations is
neglected. Furthermore, possible soft SUSY breaking
terms linear and quadratic in the singlet field S are set to
zero in accordance with the majority of phenomenological
NMSSM constructions.3

The neutral components of the Higgs fields can be
parametrized in terms of CP-even and CP-odd fluctuations
around their vacuum expectation values,

H1
d¼

1ffiffiffi
2

p ðvdþhdþ iadÞ; H2
u¼ 1ffiffiffi

2
p ðvuþhuþ iauÞ;

S¼ 1ffiffiffi
2

p ðvsþhsþ iasÞ;
(5)

with the VEVs vd, vu, vs chosen to be real and positive.
The parameter � then arises dynamically from the singlet
field expanded about its VEV, cf. Eq. (1),

� ¼ �vsffiffiffi
2

p : (6)

The minimization conditions of the tree-level scalar poten-
tial can be applied to replace the soft SUSY breaking Higgs
mass parameters m2

Hu
, m2

Hd
, m2

S by combinations of �, �,

the electroweak gauge couplings g and g0, the VEVs and
the trilinear couplings A�, A�, so that the tree-level mass
matrix M2

S of the neutral CP-even Higgs bosons obtained

from the second derivative of the Higgs potential with
respect to the fields in the vacuum, in the basis hS ¼
ðhd; hu; hsÞT can be cast into the form

M2
S ¼

�g2v2
d þ ðR�þRvs=2Þvuvs

vd
ð�2 � �g2Þvuvd � ðR� þ Rvs=2Þvs �2vdvs � ðR� þ RvsÞvu

ð�2 � �g2Þvuvd � ðR� þ Rvs=2Þvs �g2v2
u þ ðR�þRvs=2Þvdvs

vu
�2vuvs � ðR� þ RvsÞvd

�2vdvs � ðR� þ RvsÞvu �2vuvs � ðR� þ RvsÞvd 2�2v2
s þ R�vuvd

vs
þ R�vs

0
BB@

1
CCA (7)

where we have defined

�g2 ¼ 1

4
ðg2 þ g02Þ; R ¼ ��;

R� ¼ 1ffiffiffi
2

p �A�; R� ¼ 1ffiffiffi
2

p �A�:
(8)

Note, that the MSSM limit can be recovered by �, � ! 0
(with the ratio �=� kept constant for a smooth approach)
and keeping the parameter � ¼ �vs=

ffiffiffi
2

p
as well as the

parameters A� and A� fixed. In this limit we hence have
vs ! 1.

The CP-even mass eigenstates Hi (i ¼ 1, 2, 3) are
obtained by an orthogonal transformationRS (the summa-
tion over paired indices is implicit),

Hi ¼ RS
ijh

S
j : (9)

They are ordered by ascending mass with MH1
� MH2

�
MH3

. The CP-odd fields (ad, au, as) can be rotated first to

separate a massless Goldstone boson G

a
as
G

0
@

1
A ¼

s�n
c�n

0
0 0 1
c�n

�s�n
0

0
B@

1
CA ad

au
as

0
@

1
A; (10)

with the abbreviations cx � cosx and sx � sinx, in the
following also tx � tanx. Starting from the tree-level
CP-odd mass matrix squared in the basis ðad; au; asÞT
and using Eq. (10) results in the mass matrix squared M2

P

in the basis hP ¼ ða; as; GÞT , which reads

M2
P ¼

ð2R� þ RvsÞvs

c2
��

s2�
ðR� � RvsÞvc�� ðR� þ Rvs=2Þvs

s2��
s2�

ðR� � RvsÞvc�� ð2Rþ R�=vsÞ v
2s2�
2 � 3R�vs ðR� � RvsÞvs��

ðR� þ Rvs=2Þvs
s2��
s2�

ðR� � RvsÞvs�� ð2R� þ RvsÞvs

s2
��

s2�

0
BBBB@

1
CCCCA (11)

3In the MSSM there is an additional soft SUSY breaking term m2
HdHu

�abH
a
dH

b
u with m2

HdHu
usually expressed in terms of the soft

SUSY breaking parameter B and the higgsino parameter � as m2
HdHu

¼ B�. This term is not explicitly added to the NMSSM soft
SUSY breaking Lagrangian but is generated dynamically via the term �ab�A�SH

a
dH

b
u .
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with �� ¼ �� �n and v2 � v2
u þ v2

d. The angle �n co-
incides at tree-level with the angle � defined through the
ratio of the VEVs vu, vd, tan� ¼ vu=vd. Hence�� ¼ 0 at
tree-level leading to a massless Goldstone boson, which
decouples as it should. The first entry ðM2

PÞ11 at tree-level,

ðM2
PÞ11 ¼

ð2R� þ RvsÞvs

s2�
; (12)

becomes the mass of the pseudoscalar Higgs boson in the
MSSM limit.4 Applying an orthogonal rotation RP to
hP ¼ ða; as; GÞT , the CP-odd mass eigenstates Ai � A1,
A2, G (i ¼ 1, 2, 3) are obtained,

Ai ¼ RP
ijh

P
j ; (13)

where at tree-level RP
33 ¼ 1 and RP

3i ¼ RP
i3 ¼ 0 for

i � 3. The pseudoscalar masses are ordered by ascending
mass, MA1

� MA2
. The CP-even and CP-odd Higgs mass

values squared are given by the eigenvalues of the respec-
tive mass matrices M2

S and M2
P. Analytic expressions

would be rather complicated if not expanded in special
parameter regions as e.g. in Ref. [42], where a comprehen-
sive investigation of the NMSSM Higgs boson sector has
been performed. In our analysis the mass eigenvalues are
derived numerically. The charged Higgs boson mass on the
other hand takes a simple form after the massless charged
Goldstone boson has been separated by an orthogonal
rotation with a mixing angle �c. At Born level we have
�c ¼ � and get

M2
H� ¼ M2

W þ ffiffiffi
2

p
�
vs

s2�

�
A� þ �

vsffiffiffi
2

p
�
� �2v2

2

¼ M2
W þ ðM2

PÞ11 �
�2v2

2
; (14)

with MW being the W boson mass and where we have
applied the definition given in Eq. (12).

B. The neutralino and chargino sector

The chargino sector remains unchanged with respect to
the MSSM. For completeness and to set up our notation we
briefly repeat the chargino system. The chargino mass
matrix depends on the wino mass parameterM2, the effec-

tive Higgsino parameter � ¼ �vs=
ffiffiffi
2

p
and the ratio of the

vacuum expectation values tan�. In the interaction eigen-
basis it is given by [43]

MC ¼ M2

ffiffiffi
2

p
MWs�ffiffiffi

2
p

MWc� �

 !
: (15)

It is diagonalized by two real matrices U and V,

U�MCV
y!U¼O� and V¼

�Oþ if detMC>0

�3Oþ if detMC<0
; (16)

with the Pauli matrix �3 to render the chargino masses
positive. The rotation matricesO� are given in terms of the
mixing angles

tan2	� ¼ 2
ffiffiffi
2

p
MWðM2c� þ�s�Þ

M2
2 ��2 � 2M2

Wc�
;

tan2	þ ¼ 2
ffiffiffi
2

p
MWðM2s� þ�c�Þ

M2
2 ��2 þ 2M2

Wc�
;

(17)

and the two chargino masses read

m2

�
1;2
¼1

2

�
M2

2þ�2þ2M2
W�½ðM2

2��2Þ2

þ4M2
WðM2

Wc
2
2�þM2

2þ�2þ2M2�s2�Þ�1=2
�
: (18)

In the neutralino sector, the mixing of the fermionic

component of the singlet superfields Ŝ with the neutral
gauginos ~B, ~W3 and higgsinos ~H0

d,
~H0
u yields in the Weyl

spinor basis c 0 ¼ ð ~B; ~W3; ~H
0
d;

~H0
u; ~SÞT the 5� 5 neutra-

lino mass matrix

MN ¼

M1 0 �c�sWMZ s�sWMZ 0
0 M2 c�cWMZ �s�cWMZ 0

�c�sWMZ c�cWMZ 0 ��vs=
ffiffiffi
2

p ��vu=
ffiffiffi
2

p
s�sWMZ �s�cWMZ ��vs=

ffiffiffi
2

p
0 ��vd=

ffiffiffi
2

p
0 0 ��vu=

ffiffiffi
2

p ��vd=
ffiffiffi
2

p ffiffiffi
2

p
�vs

0
BBBBBB@

1
CCCCCCA: (19)

We have introduced the short-hand notation sW � sin	W ,
cW � cos	W for the Weinberg angle 	W , and MZ

denotes the Z boson mass. Diagonalization with a unitary
matrix N yields the five neutralino mass eigenstates 
0

i

(i ¼ 1; . . . ; 5),


0
i ¼ N ijc

0
j ; j ¼ 1; . . . ; 5: (20)

They are ordered by ascending mass, m
0
1
� . . . � m
0

5
.

With our assumption of CP invariance and allowing for
negative neutralino mass eigenvalues, the rotation matrix
N is real.

C. Parameter basis

The NMSSM Higgs potential depends on 12 indepen-
dent parameters in the CP-conserving case. They are given
by the soft SUSY breaking mass parametersm2

Hu
,m2

Hd
,m2

S,

4A� takes the role of the soft SUSY breaking parameter B in
the MSSM.
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the gauge couplings g, g0, the vacuum expectation values
vu, vd, vs, the dimensionless parameters �, � and the soft
SUSY breaking couplings A�, A�. For the physical inter-
pretation it is convenient to replace some of these parame-
ters: The minimization of the Higgs potential V requires
the terms linear in the Higgs fields to vanish in the vacuum.
Hence for the scalar fields,

�
@V

@hu

�
¼
�
@V

@hd

�
¼
�
@V

@hs

�
¼ 0; (21)

where the brackets denote the vacuum. The corresponding
coefficients, which are called tadpoles, therefore have to
be zero. At lowest order the tadpole conditions for the
CP-even fields read5

�
@V

@hd

�
� thd ¼ vdm

2
Hd

� R�vuvs þ g2 þ g02

8
vdðv2

d � v2
uÞ þ �2

2
vdðv2

u þ v2
sÞ � R

2
vuv

2
s ¼ 0 (22)

�
@V

@hu

�
� thu ¼ vum

2
Hu

� R�vdvs þ g2 þ g02

8
vuðv2

u � v2
dÞ þ

�2

2
vuðv2

d þ v2
sÞ � R

2
vdv

2
s ¼ 0 (23)

�
@V

@hs

�
� ths ¼ vsm

2
S � R�vdvu þ R�v

2
s þ �2

2
vsðv2

d þ v2
uÞ þ �2v3

s � Rvdvuvs ¼ 0: (24)

Equations (22)–(24), can be exploited to replacem2
Hu
,m2

Hd
,

m2
S by the tadpole parameters thu , thd and ths . The parame-

ters g, g0, vu, vd are replaced by the electric charge e, the
gauge boson masses MW , MZ and the ratio of the vacuum
expectation values tan� � t� ¼ vu=vd through the rela-
tions

g ¼ eMZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Z �M2
W

q g0 ¼ eMZ

MW

(25)

vu¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Z�M2
W

1þ t2�

vuut 2MWt�
eMZ

vd¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Z�M2
W

1þ t2�

vuut 2MW

eMZ

: (26)

Finally, A� is replaced by the charged Higgs boson mass
M2

H� ,

A�¼
s2�ffiffiffi
2

p
�vs

�
v2�2

2
�M2

WþM2
H�

c2��

�

��vsffiffiffi
2

p �
ffiffiffi
2

p
�vvs

�s�s2�B

c2��
thd þ

c�c
2
�B

c2��
thu

�
(27)

with

v ¼ 2MW

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

W

M2
Z

s
; (28)

where we have kept the dependence on the tadpole
parameters and the mixing angles �c ¼ �n � �B. At
tree-level they coincide with �. It is the angle � which
will be needed for the renormalization: According to our
renormalization schemes, presented in Sec. II D, the
renormalization procedure can be performed before

the transformation into mass eigenstates. This means that
the mixing matrices, also those separating the neutral and
charged Goldstone bosons from the Higgs bosons and
hence the angles �n and �c, which appear in these matri-
ces, do not receive counterterms. Therefore, special care
has to be taken to determine the elements of the mass
matrices without inserting the tree-level relation �B ¼ �
and to apply the renormalization procedure uniquely for
tan� given by the ratio of vu and vd.
To summarize, we work with the following parameter

set

thu ; thd ; ths ; e;M
2
W;M

2
Z; tan�;M

2
H� ; �; �; vs; A�: (29)

D. Renormalization schemes

For the determination of the loop-corrected Higgs boson
masses the Higgs self-energies have to be calculated. They
develop ultraviolet (UV) divergences. Evaluating the self-
energies in D ¼ 4� 2� dimensions, the divergences can
be parametrized by 1=� leading to poles in D ¼ 4 dimen-
sions. To get a finite result the parameters entering the loop
calculation have to be renormalized by the introduction of
appropriate counterterms absorbing the UV divergences.
Note, that at higher orders also the terms linear in the Higgs
fields get loop contributions. Therefore, also the tadpole
parameters thi (i ¼ u, d, s) have to be renormalized, in

order to fulfill the tadpole conditions Eq. (21). Before we
describe the determination of the one-loop corrected Higgs
boson masses in Sec. II E, the renormalization schemes
which have been adopted, shall be presented in detail in the
following.
We start with a renormalization scheme which is a

mixture between on-shell and DR renormalization condi-
tions. In order to make contact and to compare to earlier
results presented in Ref. [41] our result will also be con-
verted to a pure DR scheme. To get an estimate of the

5As we work in the real NMSSM the derivatives of the Higgs
potential with respect to the CP-odd fields are zero and no
additional conditions have to be required.

ANALYSIS OF THE NMSSM HIGGS BOSON MASSES AT . . . PHYSICAL REVIEW D 85, 075024 (2012)

075024-5



uncertainties due to missing higher-order corrections we
study the influence of the renormalization scheme on the
one-loop Higgs mass corrections. We therefore also com-
pare to a pure OS-scheme. In all three renormalization
schemes, mixed, DR and OS, we start out from the
parameter set Eq. (29) and replace the parameters by the
renormalized ones and their corresponding counterterms,

M2
Z!M2

Zþ�M2
Z; M2

W !M2
Wþ�M2

W;

M2
H� !M2

H� þ�M2
H� ;

thu ! thu þ�thu ; thd ! thd þ�thd ; ths ! ths þ�ths ;

e!ð1þ�ZeÞe; tan�! tan�þ�tan�; �!�þ��;

�!�þ��; vs!vsþ�vs; A�!A�þ�A�: (30)

For the field renormalization, the Higgs boson doublet and
singlet fields are replaced by the renormalized ones and a
corresponding single field renormalization constant for
each doublet and the singlet, respectively,

Hu !
ffiffiffiffiffiffiffiffi
ZHu

q
Hu ¼

�
1þ 1

2
�ZHu

�
Hu

Hd !
ffiffiffiffiffiffiffiffi
ZHd

q
Hd ¼

�
1þ 1

2
�ZHd

�
Hd

S ! ffiffiffiffiffiffi
ZS

p
S ¼

�
1þ 1

2
�ZS

�
S:

(31)

Applying this renormalization procedure, the renormalized
self-energies in the basis fhSi ji ¼ 1; 2; 3g ¼ fhd; hu; hsg
for the CP-even Higgs bosons and in the basis
fhPi ji ¼ 1; 2; 3g ¼ fa; as; Gg for the CP-odd ones can be
derived as (X ¼ S, P)

�̂hXi h
X
j
ðk2Þ¼�hXi h

X
j
ðk2Þþ1

2
k2½�ZhXj h

X
i
þ�ZhXi h

X
j
�

�1

2
½�ZhX

k
hXi
ðM2

XÞkjþðM2
XÞik�ZhX

k
hXj
���ðM2

XÞij
with i;j¼1;2;3; (32)

where

�ZhS
1
hS
1
¼�ZHd

; �ZhS
2
hS
2
¼�ZHu

;

�ZhS
3
hS
3
¼�ZS; �ZhSi h

S
j
¼0 for i� j;

(33)

and

�ZhP
1
hP
1
¼ s2��ZHd

þ c2��ZHu
; �ZhP

2
hP
2
¼ �ZS;

�ZhP
3
hP
3
¼ c2��ZHd

þ s2��ZHu

(34)

�ZhP
1
hP
3
¼ �ZhP

3
hP
1
¼ s�c�ð�ZHd

� �ZHu
Þ; (35)

�ZhP
1
hP
2
¼ �ZhP

2
hP
1
¼ �ZhP

2
hP
3
¼ �ZhP

3
hP
2
¼ 0: (36)

Here, M2
S and M2

P are the tree-level CP-even and CP-odd
Higgs boson mass matrices squared, respectively. For the
derivation of the counterterm matrices �ðM2

SÞ and �ðM2
PÞ,

the CP-even and CP-odd Higgs boson mass matrices
squared are expressed in terms of the parameter set
Eq. (29) including also their dependence on the tadpole
parameters as well as on the mixing angle �B. As the
expressions are quite lengthy they are given in
Appendix A. Then, the parameters entering these matrices
are replaced according to Eqs. (30) and an expansion about
the counterterms is performed. The part of M2

S and M2
P,

respectively, which is linear in the counterterms, corre-
sponds to �ðM2

SÞ and �ðM2
PÞ.

The renormalized self energies in Eq. (32) are related
to the ones in the basis of the mass eigenstates through,
cf. Eqs. (9) and (13),

�̂ HiHj
ðk2Þ ¼ RS

ikR
S
jl�̂hS

k
hS
l
ðk2Þ (37)

�̂AiAj
ðk2Þ¼RP

ikR
P
jl�̂hP

k
hP
l
ðk2Þ with i;j;k;l¼1;2;3: (38)

The field renormalization constants �ZHd
, �ZHu

, �ZS are

obtained from

�ZHiHi
¼ jRS

i1j2�ZHd
þ jRS

i2j2�ZHu

þ jRS
i3j2�ZS; i ¼ 1; 2; 3; (39)

with

�ZHiHi
¼ � @�HiHi

ðk2Þ
@k2

��������div

k2¼ðMð0Þ
Hi
Þ2
; i ¼ 1; 2; 3; (40)

where ðMð0Þ
Hi
Þ2 denotes the corresponding tree-level mass

squared. The field renormalization constants are defined
in all three renormalization schemes via DR conditions.
This is indicated by the superscript ’div’ and means that in
the field renormalization only the divergent part � ¼
2=ð4�DÞ � �E þ lnð4
Þ is kept with �E being the
Euler constant. Solving Eq. (39) for �ZHd

, �ZHu
, �ZS

results in

�ZHd
¼ ½ðjRS

23j2jRS
32j2 � jRS

22j2jRS
33j2Þ�ZH1H1

þ ðjRS
12j2jRS

33j2 � jRS
13j2jRS

32j2Þ�ZH2H2

þ ðjRS
13j2jRS

22j2 � jRS
12j2jRS

23j2Þ�ZH3H3
�=RS

r

(41)

�ZHu
¼ ½ðjRS

21j2jRS
33j2 � jRS

23j2jRS
31j2Þ�ZH1H1

þ ðjRS
13j2jRS

31j2 � jRS
11j2jRS

33j2Þ�ZH2H2

þ ðjRS
11j2jRS

23j2 � jRS
13j2jRS

21j2Þ�ZH3H3
�=RS

r

(42)

�ZS ¼ ½ðjRS
22j2jRS

31j2 � jRS
21j2jRS

32j2Þ�ZH1H1

þ ðjRS
11j2jRS

32j2 � jRS
12j2jRS

31j2Þ�ZH2H2

þ ðjRS
12j2jRS

21j2 � jRS
11j2jRS

22j2Þ�ZH3H3
�=RS

r

(43)
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where

RS
r ¼�jRS

11j2jRS
22j2jRS

33j2þjRS
11j2jRS

23j2jRS
32j2

þjRS
12j2jRS

21j2jRS
33j2�jRS

12j2jRS
23j2jRS

31j2
�jRS

13j2jRS
21j2jRS

32j2þjRS
13j2jRS

22j2jRS
31j2: (44)

Contrary to the field renormalization constants the renor-
malization conditions for the remaining parameters are
different in the three chosen renormalization schemes, as
will be described in the following.

Mixed renormalization scheme
In the mixed renormalization scheme we divide the

parameters into parameters defined through on-shell con-
ditions6 and into parameters defined via DR conditions:

MZ;MW;MH� ; thu ; thd ; ths ; e|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
on-shell scheme

; tan�; �; vs; �; A�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
DR scheme

: (45)

In the following, the various counterterms shall be speci-
fied in more detail.

(i,ii) Gauge boson masses
The gauge boson masses are defined through on-shell

conditions,

Re �̂
T
ZZðM2

ZÞ ¼ 0; Re�̂
T
WWðM2

WÞ ¼ 0; (46)

where T denotes the transverse part of the respective
self-energy. For the mass counterterms this yields

�M2
Z ¼ Re�T

ZZðM2
ZÞ; �M2

W ¼ Re�T
WWðM2

WÞ: (47)

Note, that the NMSSM gauge boson self-energies differ
from the MSSM case due to the introduction of an addi-

tional superfield Ŝ.
(iii) Mass of the charged Higgs boson
The mass of the charged Higgs boson is determined

through the on-shell condition,

Re �̂H�H�ðM2
H�Þ ¼ 0; (48)

resulting in the corresponding counterterm

�M2
H� ¼ Re�H�H�ðM2

H�Þ: (49)

(iv-vi) Tadpole parameters
The tadpole coefficients are required to vanish also at

one-loop order, yielding

tð1Þhi
� �thi ¼ 0; i ¼ d; u; s; (50)

where tð1Þhi
stands for the contributions coming from the

corresponding genuine Higgs boson tadpole graphs. As
the tadpole graphs are calculated in the mass eigenstate
basis, they have to be transformed to the interaction basis.
Applying Eq. (9) we have

�thi ¼ RS
jit

ð1Þ
Hj
; i ¼ d; u; s; j ¼ 1; 2; 3: (51)

(vii) Electric charge
The electric charge is defined to be the full electron-

positron photon coupling for on-shell external particles in
the Thomson limit, so that all corrections to this vertex
vanish on-shell and for zero momentum transfer. The
counterterm for the electric charge is then given in terms
of the transverse part of the photon-photon and photon-Z
self-energies [44],7

�Ze ¼ 1

2

@�T
��ðk2Þ
@k2

��������k2¼0
þ sW
cW

�T
�Zð0Þ
M2

Z

: (52)

(viii) tan�
For the renormalization of tan� we adopt the DR

scheme. Applying Eq. (31) and

vi ! vi þ �vi i ¼ u; d (53)

results in

� tan� ¼ tan�



1

2
ð�ZHu

� �ZHd
Þ þ

�
�vu

vu

� �vd

vd

��
div

¼


tan�

2
ð�ZHu

� �ZHd
Þ
�
div
; (54)

where we have used in the last step �vu=vujdiv ¼
�vd=vdjdiv [45]. The field renormalization constants
�ZHd

and �ZHu
are given in Eqs. (41) and (42).

(ix) Coupling �
In the mixed renormalization scheme � is defined as a

DR parameter. The counterterm is determined via the

renormalized self-energy �̂hP
1
hP
1
, see Eq. (32), using that

�̂hP
1
hP
1
ððM2

PÞ11Þjdiv ¼ 0

()�ðM2
PÞ11;div ¼ �hP

1
hP
1
ððM2

PÞ11Þjdiv: (55)

As �ðM2
PÞ11 contains the counterterm ��,8 Eq. (55) can be

solved for �� resulting in,

�� ¼ e2

4�M2
Ws

2
W



�hP

1
hP
1
ððM2

PÞ11Þ � �M2
H�

þ �M2
W

�
1þ 2�2ðc2W � s2WÞ

e2

�

� 2�2c4W
e2

�M2
Z þ

4�2M2
Ws

2
W

e2
�Ze

�
div
: (56)

The self-energy �hP
1
hP
1
is obtained from the self-energies in

the mass eigenstate basis �AiAj
(i, j ¼ 1, 2, 3) through

�hP
1
hP
1
¼ RP

i1�AiAj
RP

j1: (57)

6In slight abuse of the language we also call the renormaliza-
tion conditions for the tadpole parameters on-shell.

7Note that the sign of the second term in Eq. (52) differs from
the one in [44] due to our conventions in the Feynman rules.

8Compare with Eq. (12).
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(x) Singlet vacuum expectation value vs

The vacuum expectation value vs of the singlet field
is renormalized in the DR scheme. The counterterm is
derived by exploiting the chargino sector. In fact, the
lower right entry of the chargino mass matrix MC in the
interaction basis reads, cf. Eq. (15),

ðMCÞ22 ¼ �vsffiffiffi
2

p : (58)

Applying Eq. (30), expanding around the counterterms and
extracting the terms linear in the counterterms yields

�vs ¼

 ffiffiffi

2
p
�

�ðMCÞ22 � vs

��

�

�
div
; (59)

with �� given by Eq. (56). The counterterm �ðMCÞ22 is
obtained from the renormalized chargino self-energies in
the following way. Defining the general structure of a
fermionic self-energy9 as,

�ijðk2Þ¼ 6k�L
ijðk2ÞP Lþ6k�R

ijðk2ÞP Rþ�Ls
ij ðk2ÞP L

þ�Rs
ij ðk2ÞP R; (60)

where P L;R ¼ ð1� �5Þ=2 are the left- and right-handed

projectors, we use the condition

½ðMCÞ22½Vy�̂L

�ðk2ÞVþUT�̂

R

�ðk2ÞU��22

þ½UT�̂
Ls

�ðk2ÞVþVy�̂Rs


�ðk2ÞU��22�div¼0: (61)

Note that �̂
� is a 2� 2 matrix with the entries given by

the renormalized self-energies of the charginos in the mass
eigenbasis. The renormalized self-energies in terms
of the unrenormalized ones, the mass counterterms and
field renormalization constants are given in Appendix B,
Eqs. (B5)–(B8). The structure of the condition Eq. (61) has
been chosen such that the (divergent) contributions of the
chargino field renormalization constants drop out.
Replacing the renormalized self-energy by the relations
(B5)–(B8) leads to the counterterm �ðMCÞ22;div,

�ðMCÞ22;div¼1

2
½ðMCÞ22½Vy�L


�ðk2ÞVþUT�R

�ðk2ÞU��22

þ½UT�Ls

�ðk2ÞVþVy�Rs


�ðk2ÞU��22�div: (62)

Note that the k2 dependence in Eq. (62) drops out as only
the divergent part is taken.

(xi) Coupling �
The counterterm for theDR renormalized parameter � is

derived from the neutralino sector in an analogous proce-
dure as the chargino sector was exploited to determine �vs.
The lower right entry ðMNÞ55 of the neutralino mass matrix
Eq. (19) reads

ðMNÞ55 ¼
ffiffiffi
2

p
�vs; (63)

leading to the counterterm ��,

�� ¼ 1ffiffiffi
2

p
vs

�ðMNÞ55 � �
�vs

vs

: (64)

The determination of �vs has been described in the pre-
vious paragraph. For the determination of �ðMNÞ55 we use
the condition

½ðMNÞ55½N Tð�̂L

0ðk2Þþ�̂

R

0ðk2ÞÞN �55

þ½N Tð�̂Ls

0ðk2Þþ �̂

Rs

0 ðk2ÞÞN �55�div¼0; (65)

where the fermionic self-energy structure Eq. (60) has been
applied for the decomposition of the renormalized neutra-

lino 5� 5 self-energy matrix �̂
0 . Once again the condi-

tion has been chosen such that the divergent parts of the
field renormalization constants cancel in Eq. (65).
Rewriting the equation in terms of the unrenormalized
self-energies, cf. Eqs. (B9)–(B12), yields

�ðMNÞ55;div¼1

2
½ðMNÞ55½N Tð�L


0ðk2Þþ�R

0ðk2ÞÞN �55

þ½N Tð�Ls

0ðk2Þþ�Rs


0 ðk2ÞÞN �55�div; (66)

which is inserted in Eq. (64) to determine ��.
(xii) Trilinear coupling A�

The trilinear coupling A� is also defined as a DR
parameter. For the derivation of the countertermwe use that

�̂ hP
2
hP
2
ððM2

PÞ22Þjdiv ¼ 0: (67)

Equation (67) depends on �A� via the mass matrix squared
counterterm �ðM2

PÞ22. Solving for �A� we have

�A�¼


�

ffiffiffi
2

p
3�vs

½�hP2 h
P
2
ððM2

PÞ22Þ��f��A�



��

�
þ�vs

vs

��
div
:

(68)

The counterterm �f is derived from

f ¼ ths
vs

� 2MWsWs�c
2
�c

2
�B

ev2
sc

2
��

½thu þ thd t�t
2
�B
�

þM2
Ws

2
Ws

2
2�

e2v2
sc

2
��

½M2
H� �M2

Wc
2
���

þ �M2
Ws

2
Ws2�

e4v2
s

½2�M2
Ws

2
Ws2� þ 3�e2v2

s�; (69)

with �� ¼ �� �B. This is done by replacing the para-
meters thu , thd , ths , e, MZ, MW , MH� , tan�, �, �, and vs

according to Eq. (30), performing an expansion about the
counterterms, extracting the part linear in the counterterms
and finally applying the tree-level relations for the tadpole
parameters thu ¼ thd ¼ ths ¼ 0 and for the mixing angle,

�B ¼ �.
The self-energy �hP

2
hP
2
in terms of the corresponding

self-energies in the mass eigenbasis is given by

9The decomposition can be applied both for unrenormalized
self-energies � and renormalized self-energies �̂.
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�hP
2
hP
2
¼ RP

i2�AiAj
RP

j2; i; j ¼ 1; 2; 3: (70)

Alternatively, we could have derived the counterterms
�vs and �� from the Higgs sector instead of resorting
to the chargino and neutralino sector. We have explicitly
verified that this leads to the same results for the one-loop
corrected Higgs boson masses. Our choice of renormaliza-
tion allows a nontrivial cross-check of the renormalization
procedure. Moreover, it paves the way for an extension of
the one-loop corrections to the Higgs decays into charginos
and neutralinos.

On-shell renormalization scheme
In this renormalization scheme we keep the conditions

(i)–(viii) ( tan� is still renormalized in the DR scheme) but
the parameters vs, �, � and A� are determined via on-shell
renormalization conditions. This is done by applying on-
shell renormalization conditions on the two CP-odd Higgs
boson mass eigenstates A1, A2, on the mass eigenstates of
the two charginos and on the mass eigenstates of the two
lightest neutralinos. As OS conditions are imposed on the
mass eigenstates not only single elements of the counter-
termmassmatrices occur in the conditions, in contrast to the
DR conditions exploited within the mixed scheme. Thus,
the equations get more involved and include also the para-
metersM1,M2. This is why six renormalization conditions
are required, although in the end the counterterms for M1,
M2 are not needed. Because of these OS conditions the
counterterms for the parametersvs,�,� andA� also include
a finite part, which ensures that the physical masses of the
particle states on which we imposed the OS conditions
remain at their tree-level value even at one-loop level.

Requiring on-shell masses for the CP-odd Higgs bosons
as well as for the two charginos and for the lightest
and next-to-lightest neutralinos leads to the following
relations,

ðRP�ðM2
PÞðRPÞTÞj11¼Re�A1A1

ððMð0Þ
A1
Þ2Þ;

ðRP�ðM2
PÞðRPÞTÞj22¼Re�A2A2

ððMð0Þ
A2
Þ2Þ;

ðU��ðMCÞVyÞj11¼1

2
Re½m
�

1
ð�L


�
11

ðm2

�
1

Þþ�R

�
11

ðm2

�
1

ÞÞ
þ�Ls


�
11

ðm2

�
1

Þþ�Rs

�
11

ðm2

�
1

Þ�;

ðU��ðMCÞVyÞj22¼1

2
Re½m
�

2
ð�L


�
22
ðm2


�
2
Þþ�R


�
22
ðm2


�
2
ÞÞ

þ�Ls

�
22

ðm2

�
2
Þþ�Rs


�
22

ðm2

�
2
Þ�;

ðN �ðMNÞN TÞj11¼1

2
Re½m
0

1
ð�L


0
11

ðm2

0
1

Þþ�R

0
11

ðm2

0
1

ÞÞ
þ�Ls


0
11

ðm2

0
1

Þþ�Rs

0
11

ðm2

0
1

Þ�;

ðN �ðMNÞN TÞj22¼1

2
Re½m
0

2
ð�L


0
22

ðm2

0
2

Þþ�R

0
22

ðm2

0
2

ÞÞ
þ�Ls


0
22

ðm2

0
2

Þþ�Rs

0
22

ðm2

0
2

Þ�; (71)

where ðMð0Þ
A1;2

Þ2 are the tree-level masses squared of the

pseudoscalar mass eigenstates A1, A2. The counterterm
matrix �ðM2

PÞ is derived as described above. The entries
�ðMCÞij (i, j ¼ 1, 2) of the counterterm matrix �ðMCÞ for
the charginos read

�MC11
¼ �M2 (72)

�MC12
¼ �M2

W

s�ffiffiffi
2

p
MW

þ � tan�
ffiffiffi
2

p
c3�MW (73)

�MC21
¼ �M2

W

c�ffiffiffi
2

p
MW

� � tan�
ffiffiffi
2

p
c2�MWs� (74)

�MC22
¼ ��

vsffiffiffi
2

p þ �vs

�ffiffiffi
2

p : (75)

And finally, the entries �ðMNÞij ¼ �ðMNÞji (i, j ¼ 1 . . . 5)

of the counterterm matrix �ðMNÞ for the neutralinos can be
cast into the form

�MN11
¼ �M1 (76)

�MN13
¼ð�M2

W��M2
ZÞ

c�
2MZsW

þ�tan�
c�MZsWs2�

2
(77)

�MN14
¼ð�M2

Z��M2
WÞ

s�
2MZsW

þ�tan�
c3�MWsW

cW
(78)

�MN22
¼ �M2 (79)

�MN23
¼ �M2

W

c�
2MW

� � tan�c2�MWs� (80)

�MN24
¼ ��M2

W

s�
2MW

� � tan�c3�MW (81)

�MN34
¼ ���

vsffiffiffi
2

p � �vs

�ffiffiffi
2

p (82)

�MN35
¼ �ðc4W�M2

Z � 2c2W�M
2
W þ �M2

WÞ
�s�ffiffiffi

2
p

eMWsW

� � tan�

ffiffiffi
2

p
�c3�MWsW

e

þ ð��Ze � ��Þ
ffiffiffi
2

p
MWsWs�
e

(83)

�MN45
¼ �ðc4W�M2

Z � 2c2W�M
2
W þ �M2

WÞ
�c�ffiffiffi

2
p

eMWsW

þ � tan�
�c�MWsWs2�ffiffiffi

2
p

e

þ ð��Ze � ��Þ
ffiffiffi
2

p
c�MWsW

e
(84)

�MN55
¼ ffiffiffi

2
p

��vs þ
ffiffiffi
2

p
��vs (85)

�MN12
¼ �MN15

¼ �MN25
¼ �MN33

¼ �MN44
¼ 0: (86)
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With these ingredients the explicit expressions for the
Eqs. (71) can be derived. In our calculation, the system
of Eqs. (71) is solved numerically, keeping, however, the
dependence on the divergent part � explicitly.

DR renormalization scheme
TheDR renormalization scheme differs in the conditions

for the parametersMZ,MW ,MH� and e from themixed one.
Note that a change of the renormalization condition for
MH� can be interpreted as a change of the condition for
A�, cf. Eq. (14). For these parameters instead of OS con-
ditions DR renormalization conditions are adopted now.

The other renormalization conditions do not change. So,
all parameters with the exception of the tadpole parameters
are renormalized using DR conditions, whereas on-shell
conditions are used for the tadpole parameters.

E. Loop corrected Higgs boson masses and
mixing matrix elements

The one-loop corrected scalar Higgs boson masses
squared are extracted numerically as the zeroes of the

determinant of the two-point vertex function �̂S,

�̂Sðk2Þ ¼ i

k2 � ðMð0Þ
H1
Þ2 þ �̂H1H1

ðk2Þ �̂H1H2
ðk2Þ �̂H1H3

ðk2Þ
�̂H2H1

ðk2Þ k2 � ðMð0Þ
H2
Þ2 þ �̂H2H2

ðk2Þ �̂H2H3
ðk2Þ

�̂H3H1
ðk2Þ �̂H3H2

ðk2Þ k2 � ðMð0Þ
H3
Þ2 þ �̂H3H3

ðk2Þ

0
BBBB@

1
CCCCA: (87)

In the same way the pseudoscalar masses squared are obtained from �̂P,

�̂Pðk2Þ ¼ i
k2 � ðMð0Þ

A1
Þ2 þ �̂A1A1

ðk2Þ �̂A1A2
ðk2Þ

�̂A2A1
ðk2Þ k2 � ðMð0Þ

A2
Þ2 þ �̂A2A2

ðk2Þ

0
@

1
A: (88)

The superscript (0) denotes the tree-level values of the
masses squared. It should be noted that in Eq. (88) the
mixing with the Goldstone bosons is not taken into ac-
count. We have checked explicitly that the numerical effect
is negligible. The unrenormalized self-energy and tadpole
contributions that occur implicitly in Eqs. (87) and (88) are
evaluated at one-loop order. They contain fermion,
Goldstone and Higgs boson, gauge boson and ghost loops
as well as loops from the corresponding superpartners i.e.
sfermions, charginos and neutralinos.

The mass eigenvalues are obtained iteratively. In order
to obtain the lightest scalar Higgs boson mass e.g., in the
first iteration the external momentum squared k2 in the

renormalized self-energies �̂HiHj
is set equal to the lightest

scalar tree-level mass squared. Then, the mass matrix part

of �̂S, meaning (i�̂S þ k21), is diagonalized and the result-
ing mass eigenvalues squared are used in the next iteration
where k2 is set equal to the lightest of the obtained mass
eigenvalues. Once again the mass eigenvalues are obtained.
The procedure is repeated until the deviation between the
lightest eigenvalue and the one of the previous iteration is
less than 10�9. The other Higgs mass eigenvalues are
derived accordingly.

Because of the radiative corrections, not only the masses
of the particles receive contributions but also the fields are
affected. To take these effects into account, new matrices,
RS;1l, RP;1l, are introduced which transform the fields hu,
hd, hs and a, as into the corresponding one-loop mass
eigenstates, respectively. These matrices are no physical
observables and beyond lowest order they depend on the

external momentum in the self-energies. For the derivation
of the radiatively corrected matrices, RS;1l, RP;1l, we
follow the procedure applied in Ref. [30]. It ensures the
correct on-shell properties for the external particle in pro-
cesses with external on-shell Higgs bosons at higher orders
and thus accounts also for the mixing between the Higgs
bosons. This leads to finite wave function correction fac-
tors. In the scalar case e.g. we have to apply the additional
factor ZS

f to the tree-level matrix RS, which rotates the

interaction states ðhd; hu; hsÞT to the mass eigenstates
ðH1; H2; H3ÞT , to get the one-loop matrix elements,

RS;1l
il ¼ðZS

fÞijRS
jl; i;j¼H1;H2;H3; l¼hd;hu;hs: (89)

The correction factor is given by

ðZS
fÞij ¼

ffiffiffiffiffiffi
ẐS
i

q
ẐS
ij; (90)

with

Ẑ S
i ¼ 1

1þ ðRe�̂eff
ii Þ0ðMHi

Þ2 : (91)

The prime denotes the derivative with respect to k2, and
M2

Hi
is the one-loop corrected Higgs boson mass squared.

The effective self-energy �̂
eff

appears in the diagonal
Higgs boson propagators

�iiðk2Þ¼�½ð�̂Sðk2ÞÞ�1�ii¼ i

k2�ðMð0Þ
Hi
Þ2þ�̂

eff
ii ðk2Þ

: (92)

It is given by (no summation over i, j, l)
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�̂
eff
ii ðk2Þ ¼ �̂ii � i

2�̂S
ijðk2Þ�̂S

jlðk2Þ�̂S
liðk2Þ � ^ð�SÞ2liðk2Þ�̂S

jjðk2Þ � ^ð�SÞ2ijðk2Þ�̂S
llðk2Þ

�̂S
jjðk2Þ�̂S

llðk2Þ � ð�̂SÞ2jlðk2Þ
: (93)

The off-diagonal Higgs boson propagator �ij (i � j, no summation over i, j, l) reads

�ijðk2Þ ¼
�̂S
ij�̂

S
ll � �̂S

jl�̂
S
li

�̂S
ii�̂

S
jj�̂

S
ll þ 2�̂S

ij�̂
S
jl�̂

S
li � �̂S

iið�̂SÞ2jl � �̂S
jjð�̂SÞ2ji � �̂S

llð�̂SÞ2ij
: (94)

The argument k2 in �̂S
ij has been dropped for better readability. For ẐS

ij we have in terms of the propagators (again no
summation over the indices)

Ẑ S
ij ¼

�ijðk2Þ
�iiðk2Þ

��������k2¼M2
Hi

¼i�j �̂ijðM2
Hi
ÞðM2

Hi
� ðMð0Þ

Hl
Þ2 þ �̂llðM2

Hi
ÞÞ � �̂jlðM2

Hi
Þ�̂liðM2

Hi
Þ

�̂
2
jlðM2

Hi
Þ � ðM2

Hi
� ðMð0Þ

Hj
Þ2 þ �̂jjðM2

Hi
ÞÞðM2

Hi
� ðMð0Þ

Hl
Þ2 þ �̂llðM2

Hi
ÞÞ (95)

Ẑ S
ii ¼ 1: (96)

In case of the pseudoscalar 2� 2 mixing matrix RP;1l
il the

effective self-energy reduces to

�̂
eff
ii ðk2Þ ¼ �̂ii þ i

^ð�PÞ2ijðk2Þ
�̂P
jjðk2Þ

; i; j ¼ A1; A2; (97)

and the off-diagonal propagator reads

�ijðk2Þ ¼
�̂P
ij

�̂P
ii�̂

P
jj � ^ð�PÞ2ij

: (98)

The thus derived mixing matrix elements include the full
momentum dependence and imaginary parts of the Higgs
boson self-energies. Therefore, the matrix is not unitary in
general. Alternatively we could have set k2 ¼ 0 which
corresponds to the result in the effective potential approxi-
mation and yields a unitary mixing matrix. For our para-
meter sets used in the numerical analysis we found that
the differences in the two approaches are negligible.
Furthermore, the imaginary parts of the mixing matrix
elements are small compared to the real parts.

III. NUMERICAL ANALYSIS

The calculation of the Higgs and gauge boson self-
energies, of the tadpoles and the counterterms has been
performed numerically in two different calculations. In the
first calculation all necessary Feynman rules have been
derived from the NMSSM Lagrangian and implemented
in a FeynArts model file [46]. In the second calculation
the Feynman rules have been obtained with the
Mathematica package SARAH [47]. The Feynman rules
in the two approaches have been cross-checked against
each other and also against the rules given in Ref. [8].
Subsequently, in both calculations FormCalc [48] was
used to evaluate the self-energy and tadpole diagrams in
the ’t Hooft-Feynman gauge, in which the Goldstone
bosons and the ghost fields have the same masses as the
corresponding gauge bosons. The divergent integrals

are regularized applying the constrained differential
renormalization scheme [49] which has been shown to be
equivalent [50] to the SUSY conserving dimensional
reduction scheme [51]. The numerical computation of the
integrals has been performed with LoopTools [48]. Two
Mathematica programs have been written to evaluate the
counterterms, diagonalize numerically the one-loop cor-
rected Higgs boson mass matrices and extract the mass
eigenvalues.
For our numerical analysis we follow the SUSY Les

Houches Accord (SLHA) [52] and use as input values the
Fermi constant GF ¼ 1:16637� 10�5 GeV�2 and the Z
boson mass MZ ¼ 91:187 GeV. For the electroweak cou-
pling we set� ¼ 1=137. From these input values we derive
the parameters of our input set defined in Eq. (29). The top
quark pole mass is given by Mt ¼ 173:3 GeV. As we
cross-check our results against the ones of Ref. [41] which
uses the running DR quark masses, we need to calculate
these as well. In order to obtain the DR top quark mass we
convert Mt at the scale Qt ¼ Mt in the corresponding
running mass. The SM renormalization group equations
are then used to evolve the top mass up to a common scale
Q chosen to be of the order of the SUSY breaking scale,
where the gluino corrections are added. We denote the
running top mass by mt in the following. The same proce-
dure is applied to the bottom mass starting from the SLHA

input valuembðmbÞMS set equal to 4.19 GeV. The masses of
the light quarks are chosen as mu ¼ 2:5 MeV, mc ¼
1:27 GeV, md ¼ 4:95 MeV, ms ¼ 101 MeV [53]. The �
mass has been set to m� ¼ 1:777 GeV.
In the following we will discuss the results for various

scenarios which exemplify different effects of the higher-
order corrections. For our scenarios, we took care not to
violate unitarity bounds by choosing �, � such thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
& 0:7. Furthermore, vs has been chosen to be

of the order of the vacuum expectation value v. As the one-
loop corrections to the pseudoscalar masses are small, we
mostly show plots for the scalar masses and comment
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briefly on the pseudoscalar masses. Furthermore, the
corrections for the heaviest scalar Higgs boson are not
shown, as in all cases they are negligible.

Variation of �: We first verify that we reproduce the
results of Ref. [41] by adopting a DR renormalization
scheme and choosing the same parameter set

� ¼ �=5; tan� ¼ 2; A� ¼ 500 GeV;

A� ¼ �10 GeV; � ¼ 250 GeV
(99)

with � being a free parameter and vs given by vs ¼ffiffiffi
2

p
�=�. For the squarks and sleptons a common soft

SUSY breaking mass MS ¼ 300 GeV has been adopted,
and the remaining soft SUSY breaking parameters have
been chosen as

At ¼ Ab ¼ A� ¼ �1:5MS; M1 ¼ MS=3;

M2 ¼ 2=3MS; M3 ¼ 2MS:
(100)

The renormalization scale has been set equal to Q0 ¼ MS

and for the top and bottom quark mass the running DR
mass at the scale Q0 has been used. Furthermore, the light
quark masses have been set to zero as in Ref. [41]. We find
agreement for the one-loop corrected Higgs boson masses.
Starting from this scenario in the DR scheme, in order to
investigate the effect of different renormalization schemes,
the DR input values have been converted to the mixed
renormalization scheme as defined above, as well as to a
pure on-shell scheme, and the Higgs boson masses and
the matrix RS are evaluated accordingly: With the SM
parameters taken to be on-shell input values and the
parameters in Eq. (99) taken to be DR input values all
tree-level masses have been evaluated and were subse-
quently used to obtain the self-energies and counterterms.
The thus calculated counterterms were used to convert
the DR input values into on-shell input values and vice
versa if needed. For the definitions of the schemes, see
Subsec. II D. Using the scheme specific parameter sets,
the tree-level Higgs masses needed in Eq. (87) were

recalculated so that the one-loop Higgs masses could be
obtained using the iterative procedure as described in
Subsec. II E. In Fig. 1 we show the matrix elements squared
ðRS

13Þ2 and ðRS
23Þ2, respectively, of the mixing matrixRS.

These matrix elements are a measure of the strength of the
singlet component of the two lightest Higgs bosons. They
are shown for the three different renormalization schemes
compared to the tree-level result as a function of �. In order
to match the result of Ref. [41] they have been evaluated at
vanishing external momentum k2 ¼ 0. At tree-level, for
small values of �, the lightest CP-even Higgs boson is
dominantly MSSM-like and the next-to-lightest is domi-
nantly singletlike. With increasing � the mixing increases
and at tree-level there is a crossover at � 	 0:94: the next-
to-lightest Higgs boson is now more MSSM-like than the
lightest Higgs boson. The higher-order corrections change
the amount of the singlet component and for this parameter
set there is no crossover below � ¼ 1. Furthermore, we see
that for � * 0:2 the amount of the singlet component is
hardly affected by the renormalization scheme. The curves
for the three renormalization schemes lie on top of each
other for � * 0:65. For smaller values of �, however, after
having passed the values ðRS

13Þ2 ¼ 0 and ðRS
23Þ2 ¼ 1,

respectively, ðRS
13Þ2, ðRS

23Þ2 in the OS-scheme start to

differ largely from the corresponding values in the two
other schemes. The reason is that the finite parts of the
counterterms involved in the conversion from the DR
parameters to on-shell parameters blow up in the limit
� ! 0. The H1 mass squared even turns negative for
� & 0:1. The matrix elements and masses in the OS-
scheme are therefore not plotted any more for � values
below this value.
Figure 2 shows the one-loop corrected mass MH1

of the lightest (left) and MH2
of the next-to-lightest

(right) CP-even Higgs boson as a function of � in the
three different renormalization schemes compared to
the tree-level result. The tree-level masses increase with
rising � due to the NMSSM contribution 
�2sin22�
from the Higgs quartic coupling. As H1 is dominantly

FIG. 1 (color online). The matrix element squared ðRS
13Þ2 (left), ðRS

23Þ2 (right) for the two lightest CP-even Higgs bosons as
function of � at tree-level (yellow/full) and at one-loop level adopting a DR (blue/dotted), a mixed (red/dashed) and an on-shell
(green/small dotted) renormalization scheme.
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MSSM-like its one-loop corrections are much more
important than for the singlet dominated H2. For the latter
they are negligible at small � and more important for large
� where H2 is more MSSM-like. As can be inferred from
the figures the deviations between the different schemes is
negligible. The curves for all three schemes lie on top of
each other, apart from small values of �where the one-loop
corrected H1 and H2 mass in the on-shell scheme start to
differ from the DR and the mixed scheme.

The mass corrections and hence also the strengths of the
singlet and MSSM component, respectively, strongly de-
pend on the value of the top quark mass, which reflects the
fact that the main part of the higher-order corrections stems
from the top sector. Figure 3 shows the mixing matrix
elements squared ðRS

13Þ2, ðRS
23Þ2 as functions of � at

one-loop level, calculated in the DR scheme, with the top
quark mass taken as the running DR mass mt ¼
150:6 GeV at the scale Q0 ¼ 300 GeV (including gluino
effects) in one case and as the pole mass Mt ¼ 173:3 GeV
in the other case. For comparison the tree-level values are
shown as well. Figure 4 displays the corresponding Higgs
masses. In contrast to the case where the top quark mass
has been set to the DR value, using the top pole mass leads

to a one-loop corrected lightest Higgs boson which is
singletlike and to a next-to-lightest Higgs boson being
MSSM-like. Furthermore, the Higgs mass corrections are
more important for a higher top quark mass value. Defining
the relative correction �MH=MH as

�MH

MH

¼ jMH �Mð0Þ
H j

Mð0Þ
H

; (101)

where MH (Mð0Þ
H ) denotes the 1-loop corrected (tree-level)

Higgs boson mass, the relative correction for H1 amounts
to maximally 55% for the running mass and 79% for the
pole mass. The large corrections also explain the change of
the one-loop correctedH1 from aMSSM-like to singletlike
Higgs boson. In fact, due to the large corrections the one-
loop corrected H1 mass gets shifted above the one-loop
corrected mass of H2. Because of our convention to label
by ascending indices the Higgs bosons with increasing
mass, the H1 one-loop corrected mass is assigned to H2

and vice versa, so that H1 and H2 interchange their roles
andH1 becomes singletlike at 1-loop whereasH2 becomes
MSSM-like.

FIG. 2 (color online). The mass MH1
of the lightest (left) and MH2

of the next-to-lightest (right) CP-even Higgs boson as function
of � at tree-level (yellow/full) and at one-loop level adopting a DR (blue/dotted), a mixed (red/dashed) and an on-shell
(green/small dotted) renormalization scheme.

FIG. 3 (color online). The matrix element squared ðRS
13Þ2 (left), ðRS

23Þ2 (right) for the two lightest CP-even Higgs bosons as
function of � at tree-level (yellow/full), at one-loop level with the top quark pole mass (blue/dotted) and with the running DR top quark
mass (red/dashed).
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In order to get an estimate of the missing higher-order
corrections we investigate the influence of the renormal-
ization scaleQ0. The results are shown (in the DR scheme)
in Fig. 5 for the mixing matrix elements squared. They are
plotted as a function of � at tree-level and at one-loop level
for three different values Q0 ¼ 150, 300 and 600 GeV.
Note that the scaleQ0 also changes the value of the running
b and t quark masses. In addition, the DR input values
which are given at the scale of 300 GeV in Eq. (99) have to
be converted to the respective Q0. The corresponding plots
for the masses of the two lightest Higgs bosons are de-
picted in Fig. 6. With rising Q0 the running top quark mass
decreases, leading to smaller one-loop Higgs boson mass
corrections. The relative correction for the lightest Higgs
boson mass is 62% for Q0 ¼ 150 GeV and 50% for Q0 ¼
600 GeV. The relative correction of the next-to-lightest
Higgs boson mass is changed less, with �MH2

=MH2
¼

10% and 12% for Q0 ¼ 150 and 600 GeV. This is due to
the higher tree-level mass value. The residual theoretical
uncertainties due to missing higher-order corrections can
thus be estimated to Oð10%Þ. These uncertainties as

well as the dependence of the corrections on the value of
top quark mass and/or the choice of the renormaliza-
tion scheme, of course, get reduced once two-loop correc-
tions are included in the calculation of the Higgs boson
masses.
The amount of singlet component of the Higgs bosons

strongly affects their couplings to fermions and gauge
bosons and hence their phenomenology. In particular,
with the small H1 and H2 mass values between 
90 and

180 GeV, the question arises if the scenario has been
excluded by LEP, Tevatron or LHC. We have explicitly
verified that there are still regions in � which have not
been excluded. The allowed and excluded regions are
shown in Fig. 7. The exclusion limit for � � 0:6 where
MH1

& 113 GeV is due to the LEP exclusion10 of MH1
in

the channel eþe� ! ZH ! Zb �b [54]. The Tevatron [55]
and the present LHC results [56,57] do not constrain the
scenario. Note, that our limits represent a rough estimate

FIG. 4 (color online). The massMH1
of the lightest (left) andMH2

of the next-to-lightest (right) CP-even Higgs boson as function of
� at tree-level (yellow/full), at one-loop level with the top quark pole mass (blue/dotted) and with the running DR top quark mass
(red/dashed).

FIG. 5 (color online). The matrix element squared ðRS
13Þ2 (left), ðRS

23Þ2 (right) for the two lightest CP-even Higgs bosons as
function of � (taken at Q0 ¼ 300 GeV), at tree-level (yellow/full) and at one-loop level at the renormalization scale Q0 ¼ 150 GeV
(blue/dotted), 300 GeV (red/dashed) and 600 GeV (green/small dotted).

10The exclusion regions always apply to the one-loop corrected
Higgs boson masses.

K. ENDER et al. PHYSICAL REVIEW D 85, 075024 (2012)

075024-14



and cannot replace a sophisticated study of exclusion limits
set by a combination of the experimental results. We have
cross-checked though our exclusion limits against those
obtained with HiggsBounds [58] and have found
agreement.

Concerning the pseudoscalar Higgs bosons, the lighter
state A1 is singletlike, whereas the heavier one is MSSM-
like, and the corrections are small. They are negative and in
this scenario the relative corrections are below 2%. The
masses increase with rising �. The one-loop corrected
mass MA1

of the lighter pseudoscalar Higgs boson ranges

between 40 and 140 GeV, and MA2
takes values of 586 to

598 GeV.
Variation of A�: In the following the variation of the soft

SUSY breaking coupling parameter A� is investigated. We
have chosen a common soft SUSY breaking squark mass
m0 ¼ 1:1TeV and MS ¼ 600 GeV, large enough to fulfill
the present exclusion limits on the squark masses of the
first two generations and the gluino mass set by the LHC
experiments [59]. The full parameter set is given by

�¼0:6; �¼�=3; tan�¼2; A�¼500GeV;

�¼275GeV; At¼Ab¼A�¼�1:5MS;

M1¼MS=3; M2¼2=3MS; M3¼2MS:

(102)

The top and bottom quark masses have been chosen to be

the pole masses, with mpole
b ¼ 4:88 GeV. The renormal-

ization scheme is the mixed scheme as defined in
Sec. II D and the input parameters are chosen accordingly.
The renormalization scale has been set Q0 ¼ 300 GeV.
The mixing matrix elements squared quantifying the
amount of the singlet component of H1 and H2 are
presented in Fig. 8 (left). They have been obtained by
the procedure described in Sec. II E. We have explicitly
verified that the difference to the values obtained by
setting k2 ¼ 0 is negligible. The tree-level and one-loop
corrected H1 and H2 masses are shown in Fig. 8 (right).
As can be inferred from the figure, for large negative
values of A� the lightest Higgs boson is mostly singletlike
and the heavier one MSSM-like. With increasing A� the
mixing increases developing a rapid crossover at A� 	
�294 GeV. The one-loop corrections shift the crossover
to a larger value A� 	 �240 GeV. This behavior is also
reflected in the Higgs boson masses. Below (above) the
crossover the lightest (next-to-lightest) Higgs boson is
mostly singletlike and exhibits a strong dependence on
A�, whereas in the MSSM-like case the Higgs bosons
hardly depend on A�. This behavior results from the fact
that the soft SUSY breaking term which contains A� is a
cubic coupling in the singlet field S. A variation of A� can
hence only be communicated through a singlet contribu-
tion of the Higgs boson fields. Since the mixing is small,
only fields which are mainly singletlike are affected.
Despite the singlet character of H1 for small A� the
one-loop corrections can be important and more than
triple the mass. This is mainly due to the small tree-level
value. In case of the next-to-lightest Higgs boson H2 the
one-loop corrections in the singletlike case are less pro-
nounced and of Oð10 GeVÞ. The corrections to the

FIG. 6 (color online). The massMH1
of the lightest (left) andMH2

of the next-to-lightest (right) CP-even Higgs boson as function of
� (taken at Q0 ¼ 300 GeV), at tree-level (yellow/full) and at one-loop level at the renormalization scale Q0 ¼ 150 GeV (blue/dotted),
300 GeV (red/dashed) and 600 GeV (green/small dotted).

FIG. 7 (color online). The Higgs boson masses at tree-level
(dashed) and one-loop (full) for H1 (blue/dark grey) and H2

(red/light grey) in the DR scheme with the exclusion limits
set by LEP.
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MSSM-like Higgs bosons increase the masses by about
37 GeV. No Higgs boson mass values MH1;2

have been

excluded so far by the experiments. With a slightly higher
value of �, however, the MSSM-like Higgs boson mass
gets shifted above 141 GeV, so that the scenario would be
excluded by the new LHC exclusion limits [57].

For the pseudoscalar masses the relative corrections are
very small, at the 6% level for the singletlike A1 and below
0.2% for the heavier A2. The one-loop masses decrease
with decreasing absolute value of A� and are 110 GeV &

MA1
& 345 GeV and 639 GeV & MA2

& 640 GeV for

0GeV � A� � �400 GeV.
Variation of MH� : Here, we present results for a varia-

tion of the charged Higgs boson mass, cf. Eq. (14). The
other parameters are kept fixed and chosen as

�¼0:65; �¼�=3; tan�¼2; A�¼�10GeV;

�¼225GeV; At¼Ab¼A�¼�1:5MS;

M1¼MS=3; M2¼2=3MS; M3¼2MS:

(103)

The common soft SUSY breaking squark mass is once
again taken to be m0 ¼ 1:1TeV and MS ¼ 600 GeV.
Note, that the input parameters are defined according to
the mixed renormalization scheme and the renormalization
scale Q0 ¼ 300 GeV. The charged Higgs mass is varied
between MH� 	 420 . . . 610 GeV. Outside this parameter
range theH1 mass squared becomes negative.11 The results
for the singlet components and Higgs boson masses at tree-
level and one-loop are shown in Fig. 9. The lightest Higgs
boson H1 is dominantly MSSM-like with a 100% MSSM
component at MH� 	 520 GeV. Here H2 is maximally
singletlike, though not completely. The heaviest scalar
Higgs boson H3 takes over the remaining singlet compo-
nent (not shown here), so that

P
i¼1...3ðRS

i3Þ2 ¼ 1 as

demanded by unitarity of the mixing matrix.12 The one-
loop corrections increase the mixing between H1 and H2

away from the maximum and minimum singlet values.
They lead to a more pronounced maximum and minimum
in the singlet component and slightly shift their positions
to smaller H� masses, MH� 	 518 GeV. The H1 and H2

masses are maximal and minimal, respectively, at the
position of minimal mixing. Because of its MSSM nature
the lightest Higgs boson receives large one-loop correc-
tions. The correction is
35 GeV forMH1

at its maximum

value, which is taken at MH� 	 515 GeV, and can even
triple the tree-level mass at the borders of the MH� range.
The latter is mostly the effect of an already very small tree-
level mass of 
30 GeV. The singletlike H2 on the other
hand receives smaller corrections which can nevertheless
reach 10 GeV. The investigated parameter range has been
partially excluded as indicated in Fig. 9 (right). ForMH� �
452 GeV light Higgs boson masses MH1

& 112 GeV have

been excluded by the LEP searches in ZH ! Zb �b [54].
The right exclusion limit MH� � 585 GeV is also due to
the LEP exclusion ofMH1

& 113:5 GeV in the ZH ! Zb �b

channel. The Tevatron results do not exclude Higgs mass
values. The exclusion limits obtained with HIGGSBOUNDS

agree with ours. The maximum mass value taken by the
MSSM-like lightest scalar Higgs boson is 140.5 GeV. It is
just below the value excluded by the newest LHC limits
[57]. In view of the uncertainties associated with the 1-loop
Higgs mass corrections and also taking into account the
fact that our exclusion limits are only a rough estimate, the
scenario might be excluded for charged Higgs mass values
around 515 GeV.
The influence of the renormalization scheme on the one-

loop corrected H1;2 masses is shown in Fig. 10. They are

FIG. 8 (color online). Left: The matrix elements squared ðRS
i3Þ2 (i ¼ 1, 2) as function of A� at tree-level (dashed) and one-loop (full)

for H1 (blue/dark grey) and H2 (red/light grey). Right: The corresponding tree-level and one-loop corrected masses.

11See also Ref. [42] for a discussion of the Higgs boson masses
and their dependence on the NMSSM parameters.

12It should be noted that this is only approximately true for the
matrix obtained via the procedure described in Sect. II E. In
general this matrix, in contrast to the one obtained using k2 ¼ 0,
is not unitary. As already mentioned the difference between the
two approaches is small for our scenarios.
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shown as functions of MH� in the OS, mixed and pure DR
scheme and compared to the tree-level result. For the OS
and pure DR scheme the input values, which are defined in
the mixed scheme, are then converted to the corresponding
scheme where necessary. For the chosen parameter set the

results of the three different approaches show only minor
differences.
In Fig. 11 we show the tree-level and one-loop corrected

masses of the pseudoscalar Higgs bosons as functions
of MH� . Whereas for the heavier CP-odd boson the

FIG. 9 (color online). Left: The matrix elements squared ðRS
i3Þ2 (i ¼ 1, 2) as function of MH� at tree-level (dashed) and one-loop

(full) for H1 (blue/dark grey) and H2 (red/light grey). Right: The corresponding tree-level and one-loop corrected masses with the
exclusion limits.

FIG. 10 (color online). The mass MH1
of the lightest (left) and MH2

of the next-to-lightest (right) CP-even Higgs boson as function
of MH� at tree-level (yellow/full) and at one-loop level adopting a DR (blue/dotted), a mixed (red/dashed) and an on-shell
(green/small dotted) renormalization scheme.

FIG. 11 (color online). The mass MA1
of the lighter (left) and MA2

of the heavier (right) pseudoscalar Higgs boson as a function of
MH� at tree-level (dashed/blue) and at one-loop (full/red).
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corrections are negligible they can be of Oð5%Þ for the
lighter one at large values of MH� . Nevertheless they are
much smaller than the corrections for the lightest scalar
Higgs boson.

IV. SUMMARYAND CONCLUSIONS

In summary, we have calculated the one-loop correc-
tions to the NMSSM Higgs masses in a renormalization
scheme which mixes on-shell and DR conditions, by ap-
plying the latter solely to the parameters tan�, vs, �, �, A�.
We have compared our result to a pure DR and a pure
OS-scheme. Apart from special parameter regions which
unphysically blow up the counterterms, there is hardly any
difference in the results for the masses of the NMSSM
Higgs bosons in the three different renormalization
schemes. Another estimate of the effect of the missing
higher-order corrections is given by the variation of the
renormalization scale. We found the effect on the Higgs
mass corrections to beOð10%Þ or less. The bulk of the one-
loop corrections stems from the top quark sector as is
known from the MSSM. This is reflected in the difference
of the relative corrections for the lightest Higgs boson
mass. The relative correction in the scenario, which we
investigated, is equal to 55% when adopting the running
DR mass and 79% in case of the top quark pole mass. The
theoretical uncertainty estimated from the effects originat-
ing from the top sector is hence Oð10%Þ. These effects are
reduced significantly of course once the known two-loop
corrections are included. Furthermore, the higher-order
corrections can shift the point of crossover between sin-
gletlike and MSSM-like behavior of the Higgs bosons.
This dictates also the amount of coupling to the gauge
bosons and fermions and hence influences the Higgs
boson phenomenology. The precise knowledge of the
higher-order corrections is therefore indispensable for a
proper investigation of specific production and decay sce-
narios and a proper interpretation of the experimental
results.
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APPENDIX A: THE CP-EVEN AND CP-ODD
MASS MATRICES

In the following we display the mass matrices in terms of
the parameters for which we apply our renormalization
conditions. We repeat them here for completeness, cf.
also Eq. (29),

thu ; thd ; ths ; e;M
2
W;M

2
Z; tan�;M

2
H� ; �; �; vs; A�: (A1)

Note, that in the mass matrices we paid attention to keep
the distinction in the angle � and the angle �B. The
difference of these two angles is denoted as

�� ¼ �� �B: (A2)

Here, � is defined by the ratio of the vacuum expectation
values of the neutral components of the two Higgs doublets
Hu andHd, tan� ¼ vu=vd. The angle�B on the other hand
performs the rotation from the basis (ad, au, as) to the basis
(a, as, G) to separate a massless Goldstone boson. It is the
angle � which receives a counterterm. The angle �B also
enters the scalar mass matrix. This is due to the replace-
ment Eq. (27) of A� in terms of the parameter set Eq. (A1).
The scalar 3� 3 mass matrix M2

S in the basis hS ¼
ðhd; hu; hsÞT is given by the entries M2

Sij
¼ M2

Sji
(i, j ¼ 1,

2, 3), with

M2
S11

¼ ec�c
2
�B

2MWsWc
2
��

½thdð2t�t�B
þ 1Þ � thu t��

þ s2�

c2��
½M2

H� þ ðM2
Zt

�2
� �M2

WÞc2���

þ 2�2M2
Ws

2
Ws

2
�

e2
(A3)

M2
S12

¼ ec�c
2
�B

2MWsWc
2
��

½thdt�t2�B
þ thu�

� s�c�

c2��
½M2

H� þ ðM2
Z �M2

WÞc2��� þ
�2M2

Ws
2
Ws2�

e2

(A4)

M2
S13

¼ s�c�c
2
�B

vsc
2
��

½thdt�t2�B
þ thu�þ

2MWsWs
2
�c�

evsc
2
��

½M2
Wc

2
���M2

H��þ�MWsWc�vs

e
½2���t��þ

�4�2M3
Ws

3
Ws

2
�c�

e3vs

(A5)

M2
S22

¼ ec�c�B

2MWsWc
2
��

½�thds�B
t�B

þ thus�B
ðt�t�B

þ 2Þ� þ c2�

c2��
½M2

H� þ ðM2
Zt

2
� �M2

WÞc2��� þ
2�2M2

Ws
2
Wc

2
�

e2
(A6)
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M2
S23

¼ c2�c
2
�B

vsc
2
��

½thd t�t2�B
þ thu� þ

2MWsWs�c
2
�

evsc
2
��

½M2
Wc

2
�� �M2

H�� þ �MWsWc�vs

e
½2�t� � �� þ �4�2M3

Ws
3
Ws�c

2
�

e3vs

(A7)

M2
S33

¼ �A�

vsffiffiffi
2

p þ 2�2v2
s þ

ths
vs

þ 2MWsWs�c
2
�

e2v2
sc

2
��

½2M2
H�MWsWs� � eðthd t�s2�B

þ thuc
2
�B
Þ�

þM2
Ws

2
Ws2�

e4v2
s

½2�2M2
Ws

2
Ws2� � ��e2v2

s �M2
We

2s2��: (A8)

We have introduced here the shortcuts cW � cos	W ¼ MW=MZ and sW � sin	W . The entriesM
2
Pij

¼ M2
Pji

(i; j ¼ 1, 2, 3)
of the pseudoscalar 3� 3 mass matrix M2

P in the basis hP ¼ ða; as; GÞT read

M2
P11

¼ 2�2M2
Ws

2
Wc

2
��

e2
þM2

H� �M2
Wc

2
�� (A9)

M2
P12

¼ MWsWs2�
evsc��

½M2
H� �M2

Wc
2
��� �

c�c
2
�B

vsc��
½thu þ thd t�t

2
�B
� þ �MWsWc��

e3vs

½2�M2
Ws

2
Ws2� � 3�e2v2

s� (A10)

M2
P13

¼ M2
H�t�� þM2

Ws2��

2e2
½2�2s2W � e2� þ ec�B

2MWsWc��
½thd t�B

� thu� (A11)

M2
P22

¼�3A��
vsffiffiffi
2

p þ ths
vs

�2MWsWs�c
2
�c

2
�B

ev2
sc

2
��

½thu þ thd t�t
2
�B
�þM2

Ws
2
Ws

2
2�

ev2
sc

2
��

½M2
H� �M2

Wc
2
���

þ�M2
Ws

2
Ws2�

e4v2
s

½2�M2
Ws

2
Ws2�þ3�e2v2

s� (A12)

M2
P23

¼ MWsWs2�
2evsc��

½2M2
H� t�� �M2

Ws2��� �
c�c

2
�B
t��

vsc��
½thu þ thdt�t

2
�B
� þ �MWsWs��

e3vs

½2�M2
Ws

2
Ws2� � 3�e2v2

s� (A13)

M2
P33

¼ M2
H� tan2��þM2

Wsin
2��

e2
½2�2s2W � e2� þ e

2MWsWc
2
��

½thdc��2�B
� thus��2�B

�: (A14)

APPENDIX B: FERMIONIC SELF-ENERGIES

In this Appendix we give the renormalized fermionic
self-energies which are needed in the determination
of the counterterms �vs and �� from the chargino and the
neutralino sector, respectively. We start from the general
structure of a fermionic self-energy given by Eq. (60),
which also applies to the corresponding renormalized
self-energies. The left- and right-chiral chargino fields
c�

L;R in the interaction basis are given in terms of the

Weyl spinors for the gaugino fields ~W1, ~W2 and the charged
components of the higgsino fields ~H�

d ,
~H�
u ,

c�
R ¼ ~W�

~H�
d

 !
; cþ

L ¼ ~Wþ
~Hþ
u

� �
; (B1)

with ~W� ¼ ð ~W1 � i ~W2Þ=
ffiffiffi
2

p
. The chargino fields

in the interaction basis are replaced by the renormalized

fields and the corresponding field renormalization
constants,

c�
L;R !

�
1þ 1

2
�ZL;R

�
c�

L;R; with

�ZL;R ¼ �ZL1;R1
0

0 �ZL2;R2

 !
; (B2)

and the 2� 2 chargino mass matrix by

MC ! MC þ �ðMCÞ: (B3)

Performing the rotation of c�
L;R to the fields


�
L;R in themass

eigenbasis with the unitary matrices U and V,


þ
L ¼ Vcþ

L ; 
�
R ¼ Uc�

R ; (B4)

yields for the renormalized self-energies �̂ in the mass
eigenbasis in terms of the unrenormalized self-energies,
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field renormalization constants and mass matrix
counterterm

�̂ R

�ðk2Þ ¼ �R


�ðk2Þ þ 1

2
U�ð�ZR þ �Z�

RÞUT (B5)

�̂ L

�ðk2Þ ¼ �L


�ðk2Þ þ 1

2
Vð�ZL þ �Z�

LÞVy (B6)

�̂
Ls

�ðk2Þ ¼ �Ls


�ðk2Þ � 1

2
U�ð�ZRMC þMC�ZLÞVy

�U��ðMCÞVy (B7)

�̂ Rs

�ðk2Þ ¼ �Rs


�ðk2Þ � 1

2
Vð�Z�

LM
y
C þMy

C�Z
�
RÞUT

� V�ðMy
CÞUT: (B8)

The self-energies are 2� 2 matrices. The corresponding
renormalized self-energies in the neutralino sector, which
are 5� 5 matrices, are obtained analogously and read

�̂ R

0ðk2Þ ¼ �R


0ðk2Þ þ 1

2
N �ð�ZR þ �Z�

RÞN T (B9)

�̂ L

0ðk2Þ ¼ �L


0ðk2Þ þ 1

2
N ð�ZL þ �Z�

LÞN y (B10)

�̂
Ls

0ðk2Þ ¼ �Ls


0ðk2Þ � 1

2
N �ð�ZRMN þMN�ZLÞN y

�N ��ðMNÞN y (B11)

�̂
Rs

0 ðk2Þ ¼ �Rs


0 ðk2Þ � 1

2
N ð�Z�

LM
y
N þMy

N�Z
�
RÞN T

�N �ðMy
NÞN T; (B12)

where N is the unitary 5� 5 matrix which performs the
rotation from the interaction basis to the neutralino mass
eigenbasis. Allowing also for negative neutralino mass
values, as we do, the matrix is real. The neutralino mass
matrix MN is given in Eq. (19) and �ZL;R denote diagonal

5� 5 matrices with the field renormalization constants in
the interaction eigenbasis,13 �ZLi;Ri

(i ¼ 1; . . . ; 5), as en-

tries. Note that�ZL and�ZR are related due to theMajorana
character of the neutralinos.
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