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Cryptanalytic time memory tradeo	 algorithms are tools for inverting one-way functions, and they are used in practice to recover
passwords that restrict access to digital documents. �is work provides an accurate complexity analysis of the perfect table fuzzy
rainbow tradeo	 algorithm. Based on the analysis results, we show that the lesser known fuzzy rainbow tradeo	 performs better
than the original rainbow tradeo	, which is widely believed to be the best tradeo	 algorithm.�e fuzzy rainbow tradeo	 can attain
higher online e
ciency than the rainbow tradeo	 and do so at a lower precomputation cost.

1. Introduction

Cryptanalytic time memory tradeo	 algorithms are tools
for inverting generic one-way functions. �ey are actively
used by law enforcement agencies and hackers to recover
passwords protecting accesses to digital documents and to
obtain system login passwords from the stored password
hashes. A�er a one-time precomputation phase, whose com-
putational complexity order is typical as that of an exhaustive
computation of the one-way function on all inputs under
consideration, a digest of the computation is written to a table
of size that is of much smaller order than the complete dic-
tionary. In the online phase, referencing the precomputation
table, the input corresponding to a given inversion target is
recovered with a computational complexity that is of much
smaller order than that of an exhaustive trial of inputs. �ese
algorithms allow tradeo	s to be made between the size of
the precomputation table and the expected time for inversion
through adjustments of various algorithm parameters.

�e �rst time memory tradeo	 method was the classical
algorithm by Hellman [1] and this was soon followed by the
distinguished points variant. Rivest is given credit [2, page
100] for suggesting to apply the notion of distinguished points
to the classical Hellman tradeo	. Currently, the rainbow
tradeo	 [3] is the most widely used algorithm.

�e fuzzy rainbow tradeo	 [4, 5] is a more recent
algorithm that combines the distinguished point and rainbow

methods. �e algorithm has already been used in the multi-
target setting as an integral component of a fully functional
attack [6, 7] on GSM phones, and an elementary analysis
of the fuzzy rainbow tradeo	 appeared in [8]. �e latter
work cites a work related to [6] and refers to the attack by
the name Kraken, but none of these works cite the original
publication [4, 5], indicating these to be an independent
line of work. In fact, the analyses of [8] fall short of even
the preliminary discussions given by [4, 5]. For now, the
execution complexities of the fuzzy rainbow tradeo	 are not
known accurately enough for the purpose of comparing the
performances of di	erent tradeo	 algorithms.

�e fuzzy rainbow tradeo	, as with most other tradeo	
algorithms, comes in the nonperfect table and perfect table
versions.�e perfect table version is expected to perform bet-
ter during the online phase than the nonperfect version, but
this must be paid for with a larger precomputation e	ort. Our
previous work [9] gave an accurate performance analysis of
the nonperfect table fuzzy rainbow tradeo	 and compared the
results with the performances of the original nonperfect and
perfect table rainbow tradeo	s, which are widely believed to
be the best tradeo	 algorithms. �e conclusions made there
were that the nonperfect fuzzy rainbow tradeo	 was always
advantageous over the nonperfect rainbow tradeo	 and that,
while the perfect rainbow tradeo	 could achieve somewhat
better online e
ciency than the nonperfect fuzzy rainbow
tradeo	, for online e
ciency levels that could be reached by
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both algorithms, the nonperfect fuzzy rainbow tradeo	 could
do so with a smaller amount of precomputation.

In this work, we analyze perfect table fuzzy rainbow
tradeo	 algorithm to present its performance accurately and
compare this with the performances of the perfect rainbow
tradeo	 and the nonperfect fuzzy rainbow tradeo	. Our
conclusion in rough terms is that the perfect fuzzy rainbow
tradeo	 outperforms the two comparison algorithms. �is
implies that the perfect fuzzy rainbow tradeo	, which has not
yet received widespread recognition, is preferable to all the
well-known tradeo	 algorithms. We remark that the analysis
given in this paper is completely di	erent from that of our
previous paper [9], which dealt with the nonperfect table case.

One clari�cation must be made concerning the subject
algorithm of this work. �e fuzzy rainbow tradeo	, as origi-
nally presented by [4, 5], was a tradeo	 algorithm designed to
be used in the multitarget setting. �is is where the attacker
is givenmultiple inversion targets and is deemed successful if
he is able to recover the input corresponding to at least one of
targets. However, our analysis of the algorithm in this paper
will be done under the single-target setting.

Recall that a simple multitarget adaptation of the original
rainbow tradeo	 is quite inferior in performance [10] to the
existing multitarget adaptations [11] of the classical Hellman
and distinguished point tradeo	s and that the fuzzy rainbow
tradeo	 was designed to be a variant of the rainbow tradeo	
that performs at a similar level. We have done some prelim-
inary investigations and believe that it will not be di
cult
to transform the existing analysis results for the Hellman
and distinguished point algorithms that were claimed for
the single-target setting and the results of the present paper
to the multitarget setting. In fact, we expect the existing
equations concerning algorithm performances to remain
essentially valid under the multitarget setting. Nevertheless,
this transformation still requires a nontrivial amount of work
and is relegated to a separate future work that focuses on the
multitarget versions of the tradeo	 algorithms. �e current
work will stay within the single-target setting.

�e rest of this paper is organized as follows. In Section 2,
we quickly review the fuzzy rainbow tradeo	 algorithm and
�x the notation. �e execution behavior of the perfect table
fuzzy rainbow tradeo	 is fully analyzed in Section 3. �is
is a highly technical section and is the main contribution
of this paper. Some experimental data that support the
theoretical �ndings of this section are given in the appendix.
In Section 4, we combine the results of our analysis with
the existing analyses of other tradeo	 algorithms to compare
their performances. �is could be more valuable to the
practitioner than the details provided by Section 3. Finally,
this paper is summarized in Section 5.

2. Preliminaries

Let us review the terminology concerning the fuzzy rain-
bow tradeo	 algorithm and �x our notation. �e reader
is assumed to be familiar with the basic theory of the
time memory tradeo	 technique. In particular, we assume
knowledge of the precomputation phase and online phase
algorithms of the distinguished point (DP) and rainbow

tradeo	s. �e few sections in the beginning of [12] could be
helpful in recalling these basics.

�roughout this paper, the one-way function � : N →
H to be inverted is taken to act on a search space N of size
N. We �x �-many reduction functions �� : H → N (� =1, . . . , �) and let �� : N → N denote the composition
of the one-way function � and the reduction function �� of
the �th color. �e number of colors � will typically be in the
range 30 ≤ � ≤ 150.

�e structure of the precomputation matrix for the fuzzy
rainbow tradeo	 is a combination of those of the rainbow
tradeo	 and the DP tradeo	. One �xes a distinguishing
property of probability 1/� and generates precomputation
chains of the form

SP
�1			→ ∘ ⋅ ⋅ ⋅ ∘ �1			→ DP

�2			→ ∘ ⋅ ⋅ ⋅ ∘ �2			→ DP
�3			→ ∘ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ∘ ��−1				→ DP
��		→ ∘ ⋅ ⋅ ⋅ ∘ ��		→ DP = EP,

(1)

which could be referred to as a fuzzy rainbow chain. �at is,
one iterates the one-way function �� of a �xed color � until
the �rst appearance of a DP and the ending point of this
DP subchain is used as the starting point for the next DP
subchain. �e color of the iteration function is changed at
each intermediate DP until one reaches the end of the �th
DP subchain. In short, each iteration of a rainbow chain is
replaced by a DP chain, except that the number of colors used
by each precomputation table is � and that the expected chain
length of each DP subchain is �.

Any implementation of an algorithm that relies on DPs to
terminate a task must employ a mechanism to detect chains
falling into loops. Typically, a bound on the chain length is
set, and chains reaching this bound are discarded, possibly to
be replaced with newly generated chains. We will assume the
chain length bound is large enough to make the discarding of
chains very infrequent, so that any e	ect the discarding may
have on the algorithm performance can be ignored.

�is paper deals with the perfect table version of the fuzzy
rainbow tradeo	 and the number of ending points for each
perfect table is set to �. �at is, one generates su
ciently
many precomputation chains for each precomputation table,
so that � nonmerging precomputation chains can be col-
lected. As with any tradeo	 algorithm, the � ordered pairs,
each consisting of a starting point and an ending point, are
sorted according to the ending points and recorded as the
precomputation table. A total of ℓ precomputation tables are
created during the precomputation phase.

�e reader is cautioned to distinguish between the terms
precomputation table andprecomputationmatrixwhile read-
ing this paper. A precomputation table consists of just the
starting and ending point pairs of the precomputation chains,
whereas a matrix consists of all points of the precomputation
chains, including the intermediate points that are not written
to the table.�eprecomputationmatrix ismentally visualized
as a collection of chains, with some of them possibly merging
into each other in the nonperfect case, rather than as a
structureless set of points.

One can regard a single nonperfect fuzzy rainbow pre-
computationmatrix as a concatenation of �-many nonperfect
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DP submatrices. We will write DM� to refer to the �th DP
submatrix (1 ≤ � ≤ �) residing within a single nonperfect
fuzzy rainbow matrix and use |DM�| to denote the number of
distinct points contained therein. �e ending points of one
DP submatrix become the starting points of the following
DP submatrix, and the only di	erence between a standard
nonperfect DP matrix and any DM� is that the latter may
contain duplicate starting points that lead to completely iden-
tical chains, should one insist on treating them as separate
chains. �e expected number of distinct starting points and
ending points for DM� is written as ��−1 and ��, respectively.
In particular, �0 is the number of starting points that are
initially used in creating a perfect fuzzy rainbow matrix,
and �� = � is the number of distinct terminal ending points
of the fuzzy rainbow matrix.

�e process of removing chain merges during the pre-
computation phase requires further clari�cation. �e cre-
ation of a precomputation table for the perfect fuzzy rainbow
tradeo	 begins with a choice of �0 starting points and the
generation of the �rst nonperfect DP submatrix DM1. A�er
the generation of each nonperfect DP submatrix DM�, the
chains are sorted according to the ending points of DM� and
duplicate ending points are located to remove chain merges.
Speci�cally, from each group of merging chains, one retains
the chain with the longest �th color DP chain segment and
discards the other chains. We denote the resulting (tempo-
rary) perfect DP submatrix as D̃M�. �e set of ending points
from D̃M� is identical to the set of ending points from DM�, and
these are used as the starting points for the next nonperfect
DP submatrix DM�+1. For an appropriate choice of �0, which
will be discussed later, the �nal perfect DP submatrix D̃M� is
expected to contain � = �� nonmerging chains. �e
collection of all DP chains in D̃M� that eventually reach one
of the � DP chains that remain in D̃M� is denoted by DM�.
In particular, we have DM� = D̃M�, and only the elements of
the �nal perfect DP submatrices DM� can contribute to the
success of inversions.

�e method for handling merges explained above does
notmake reference to the total lengths of the chains and relies
only on the �th DP chain segment lengths. We chose to work
with such a merge removal rule, because it allowed existing
results concerning the perfect DP tradeo	 to be used during
our analysis of the perfect fuzzy rainbow tradeo	. However,
since some readers may object that it is more reasonable to
base the merge removal rule on the total chain lengths, let us
present two remarks concerning this matter.

First, we argue that the choice of merge removal method
is not very important for the fuzzy rainbow tradeo	. Note
that the rule for selecting one chain from a set of merging
chains was an important issue for the perfect DP tradeo	
that required attention because the chain lengths of a DP
matrix form a geometric distribution. However, the lengths
of the fuzzy rainbow chains form a distribution that very
quickly approaches the normal distribution as � is increased.
Intuitively, this is to be expected, since the concatenation of
multiple DP chains will create an averaging a	ect. In fact, it is
not di
cult to work out the distribution explicitly and verify
the claimdirectly.Hence, the variation in fuzzy rainbow chain
lengths is small, and the impact of choices based on chain

lengths on the performance of the fuzzy rainbow tradeo	
can only be limited. Furthermore, the averaging e	ect implies
that, except at small � values, our merge removal rule that
references just the �th DP chain segment is likely to return
the chain that is the longest in overall length.

Second, we question whether it is reasonable to retain
the longer chains in the �rst place. �e practice is widely
accepted with the perfect DP tradeo	, because it is expected
to bring about higher success rate for the same amount of
storage use. However, the approach also increases both the
number of false alarms and the average cost of resolving
each false alarm. Although we strongly believe that the
positive e	ect of choosing longer chains on the success rate
is likely to outweigh its negative e	ects on the online cost,
currently, there is no publicly available theoretical argument
or experimental evidence to support such a claim. A separate
detailed study would be required to arrive at a de�nitive
answer concerning this matter.

�is completes our description of the precomputation
phase for the perfect fuzzy rainbow tradeo	. To the reader
with some experience in the tradeo	 technique, the online
phase algorithm should now be mostly obvious from the
structure of the precomputation matrix. Given an inversion
target, for each precomputation table and starting color 1 ≤� ≤ �, one generates a partial fuzzy rainbow chain that starts
from the �th color. If the terminal DP of this online chain
can be found among the ending points of the precomputation
table, the corresponding starting point is used to regenerate
the precomputation chain, which could possibly return the
correct input to the inversion target. However, most of the
collisions will turn out to be false alarms, in which case the
regeneration of the precomputation chain may be stopped
at the DP for the color from which the online chain was
started.

Some clari�cations must be made concerning the order
in which the online chains are created. In short, the multiple
precomputation tables of the fuzzy rainbow tradeo	 are
processed in parallel, in a manner similar to the approach
taken by the rainbow tradeo	. In practice, a round-robin style
method can be used to simulate the parallel treatment of
tables with even a single CPU, and this modi�cation will not
have a visible e	ect on the computational complexity, unless
a small � is used.

Let us make this more explicit. �e online phase of
the fuzzy rainbow tradeo	 is performed in � discrete steps.
On the 1st step, the online DP chains for the �th colors,
corresponding to the ℓ precomputation tables, are generated.
All generated alarms are resolved before one moves onto
the 2nd step. On the �th step, fuzzy rainbow chains that start
from the (� − � + 1)th colors, for the ℓ precomputation tables,
are generated, and all resulting alarms are treated.�e online
phase is terminated when either the correct answer to the
inversion target is found, or all � steps have been completed.
Even though it is likely for the answer to be obtained in the
middle of the processing of some �th step, our analysis will
assume that any step that has been initiated is fully completed,
regardless of whether the answer has been secured.�e e	ect
of this simpli�cation on the analysis results will be small,
unless a small � is used.
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Our analysis of the perfect fuzzy rainbow tradeo	 will
frequently utilize two approximation techniques. �e �rst is

the approximation (1 − (1/�))� ≈ �−�/�. As explained in [12,
Appendix A], this is appropriate when � = �(�). �e second
technique is the approximation of a sum over a large index set
into a de�nite integral. Both of these approximations will be
very accurate, whenever we use them, as long as the tradeo	
algorithmparameters are chosen reasonably.�roughout this
paper, we will ignore multiplicative factors of 1 + �(1/�) size
and write approximations of such order as equalities.

3. Analysis of the Perfect Table Fuzzy
Rainbow Tradeoff

In this section, we analyze the online e
ciency and the
storage optimization issues for the perfect table fuzzy rainbow
tradeo	.�e expected computational complexity, rather than
the worst case complexity, is computed and the e	ects of
false alarms are fully taken into account. We always assume
that the parameters �, �, and �, for the perfect fuzzy rainbow
tradeo	, are chosen to satisfy ��2� = FmscN, with a matrix
stopping constant Fmsc that is neither too large nor very close
to zero.

3.1. Number of Color Boundary Points. Let us consider a
nonperfect fuzzy rainbow matrix created from �0 starting
points and its nonperfect DP submatrices DM�. For each 0 ≤� ≤ �, the collection of �� points that form the boundaries of
the nonperfect DP submatrices will be referred to as the �th
color boundary points of the nonperfect fuzzy rainbowmatrix.

Our previous work [9] stated the relation

����DM����� = ��� (2)

and gave the iterative formula

���0 =
��−1�0

2
1 + √1 + 2 ((Fmsc/�) (��−1/�0)) , (3)

for computing ��, where Fmsc = (�0�2�)/N is the matrix
stopping constant for the nonperfect fuzzy rainbow matrix.
�e work also derived the closed-form approximation

�� = 2�02 + Fmsc (�/�) , (4)

under the assumption that � is large, and claimed this to
be accurate for even small � values. �e claimed accuracy
is veri�ed once more through experiments for parameters
of our interest in the Appendix, and we will assume (4)
is su
ciently accurate for the purpose of this work in the
remainder of this paper.

Let us rewrite (4) in terms of the perfect fuzzy rainbow
tradeo	 parameters, so that the expression is more suitable
for this work.

Lemma 1. To create a perfect fuzzy rainbow matrix con-
taining � nonmerging chains, one must expect to generate

�0 = (2/(2 − F���))� chains. Furthermore, the number of �th
color boundary points in the nonperfect fuzzy rainbow matrix
generated during this process is expected to be

�� = 2�
(2 − F���) + F��� (�/�) , (5)

for � = 0, 1, . . . , �.
Proof. Substituting � = � into (4), we know that a nonperfect
fuzzy rainbow matrix created with �0 starting points is
expected to contain �� = (2/(2 + Fmsc))�0 nonmerging

chains, where Fmsc = (�0�2�)/N. �e requirement of � =�� = (2/(2 + Fmsc))�0 may be written as

Fmsc = 2Fmsc2 + Fmsc

. (6)

Solving this equation for Fmsc, we can rewrite it as

Fmsc = 2Fmsc2 − Fmsc

, (7)

which is equivalent to the �rst statement of this lemma.
Substituting the �rst claim and the above equation into (4),
we �nd

�� = 2 (2/ (2 − Fmsc))�2 + ((2Fmsc/ (2 − Fmsc)) (�/�)) , (8)

and this is the second claim of this lemma.

�e �rst two displayed equations appearing in this
proof both imply that Fmsc < 2 is always satis�ed, which
is similar to the situation with perfect rainbow tradeo	s.
�e reader may have guessed that taking Fmsc very close
to 2 corresponds to making bad parameter choices. In fact,
we will later observe in Section 4.4 that Fmsc is bounded
su
ciently away from 2 for any meaningful parameters and
that the precomputation requirement grows unrealistically
large as Fmsc approaches 2.

Because of its frequent appearances in the remainder of
this section, we will introduce the notation

f� = ���2
N

= 2Fmsc(2 − Fmsc) + Fmsc (�/�)
1� . (9)

When a small � is in use, the symbol f� should be under-
stood as designating the middle term, with the second
equality interpreted as an approximation. However, we
will mostly take the �nal term as the de�nition of f�,
assuming � to be su
ciently large, and use this notation even
for � = � + 1 and � = � + 2. Since Fmsc is bounded away
from 2 for all practical parameter sets, we may assume f� to
be of Θ(1/�) order. Our use of the lower case letter f,
rather than F, is meant to serve as a reminder that f� is not
of Θ(1) order.

One can directly verify from the de�nition that

f�
f	

= 1 + � − �2 f� = 1
1 + (((� − �) /2) f	) . (10)



Journal of Applied Mathematics 5

Combination of the middle expression with the knowledge
of f� = Θ(1/�) implies (f�/f	) = Θ(1), for � ≥ �, and the
right-hand side expression similarly implies the same claim,
for � ≥ �.
3.2. Probability of Success. An expression for the probability
of success of the perfect fuzzy rainbow tradeo	 is obtained in
this subsection. We �rst de�ne and present a formula for the
precomputation coe�cient of the algorithm.

Proposition 2. 	e precomputation phase of the perfect table
fuzzy rainbow tradeo
 is expected to require F
�N iterations of
the one-way function, where the precomputation coe�cient is

F
� = ℓ�
�−1∑
�=0

2F���(2 − F���) + F��� (�/�)
1� . (11)

Proof. Since each DP chain is expected to be of length �,
on average, the computation of each temporary submatrix
D̃M� from its ��−1 distinct starting points requires ��−1� itera-
tions of the one-way function.�e e	ort of sorting the ending
points of D̃M�, so that duplicates can be removed and the
distinct starting points for the next submatrix are obtained,
is of � log� order, which is much smaller than the e	ort of
generating the submatrix, and can be ignored. Taking account
of the ℓ tables, the cost of precomputation can be stated as

(�0 + �1 + ⋅ ⋅ ⋅ + ��−1) �ℓ. (12)

Applying Lemma 1, we can write this as

�ℓ�−1∑
�=0

2�
(2 − Fmsc) + Fmsc (�/�) (13)

to obtain the claimed formula.

Let us use the notation

Fcr,� =
����DM������� , (14)

where |DM�| denotes the number of distinct points expected
in the �th submatrix of a perfect fuzzy rainbow matrix, and
de�ne the coverage rate of a perfect fuzzy rainbow matrix to
be

Fcr = 1���
�∑
�=1

����DM����� = 1�
�∑
�=1
Fcr,�. (15)

Note that the de�nitions allow us to expect both Fcr,� and
Fcr to be of Θ(1) order.

�e coverage rate (15) of a perfect fuzzy rainbow matrix
may be computed from � and Fmsc through the following
formula.

Lemma 3. 	e coverage rate of the DP submatrix DM� is given
by

Fcr,� = 2N���2 ln(1 +
���22N ) = 2

f�
ln(1 + f�2 ) . (16)

Proof. Recall that DM� is a subcollection of the chains appear-
ing in D̃M�. Note that the selection of chains from D̃M� to
be retained in DM� depends on the behavior of the chains
that extend out from the ending points of D̃M� and is inde-
pendent of the �th submatrix itself. In other words, the
chains of DM� have been selected at random from the chains
of D̃M�. Hence, the averages of chain lengths contained
in D̃M� and DM� will be the same, and we canmake the crucial
observation that

Fcr,� =
����DM������� = ����D̃M�������� . (17)

In other words, the coverage rate of DM� is equal to the
coverage rate of D̃M�.

Now, recall that each D̃M� is simply a normal perfect DP
matrix and also recall from [13] that the coverage rate of a
perfect DP matrix Dcr may be computed as

Dcr = 2
Dmsc

ln(1 + Dmsc2 ) , (18)

where Dmsc = ���2/N is the matrix stopping constant for the
perfect DP matrix of �� ending points. �us we can write

Fcr,� = 2���2/N ln(1 + ���2/N2 ) , (19)

as claimed.

We are now ready to state the success probability of the
perfect fuzzy rainbow tradeo	 as a function of the algorithm
parameters.

Proposition4. Consider an input to the one-way function that
is chosen uniformly at random from the input space. Given
the image of this input under the one-way function as the
inversion target, the online phase of the perfect table fuzzy
rainbow tradeo
 will succeed in recovering the original input
with probability

Fps = 1 − exp(−F���F�� ℓ� ) . (20)

Proof. �e probability of success one can expect from the
online processing of a single DP submatrix DM� is |DM�|/N.
Since the submatrices were generated by di	erent reduction
functions, wemay treat them as being independent.�us, the
probability of success for the complete online phase, taking all
the ℓ tables into account, may be written as

Fps = 1 − �∏
�=1
(1 − ����DM�����

N
)ℓ = 1 − �∏

�=1
(1 − FmscFcr,��� )ℓ. (21)

�is can be approximated by

Fps = 1 − exp(−Fmsc

�∑
�=1
Fcr,�

ℓ��) = 1 − exp (−FmscFcr

ℓ� ) ,
(22)

as claimed.
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Given any set of parameters, one can compute the success
rate by combining the above formula with de�nition (15),
Lemma 3, and notation (9). More precisely, the success rate
may be seen as a function of Fmsc, ℓ/�, and �, rather than as a
function of the more basic constant and parameters N, �, �,ℓ, and �.

�e proposition also shows that one can �x positive
integer � and Fmsc < 2 to any value and still attain any
success rate requirement Fps by adhering to the relation

ℓ� =
{− ln (1 − Fps)}

FmscFcr

. (23)

Note that this implies that, unless the requirement for the
probability of success Fps is unrealistically close to 1, we will
have ℓ/� = Θ(1). In other words, the parameters ℓ and � will
be of the same order.

3.3. Online Complexity. �e time memory tradeo	 curve
for the perfect fuzzy rainbow tradeo	 is obtained in this
subsection through a careful computation of the average case
online execution complexities. �is is the most complicated
part of this paper.

We start by assessing how likely each step of the online
phase is to be executed.

Lemma 5. 	e probability for an online chain that starts from
the �th color of a perfect fuzzy rainbow matrix to be generated,
that is, the probability for the �th DP submatrix DM� to be
searched for the correct answer, is

exp(−F��� ℓ� 1�
�∑
�=�+1

F��,�) = (1 − F
�)(∑��=�+1 F��,�)/�F�� , (24)

where F
� is as given by Proposition 4.

Proof. �e online chain that starts from the �th color of a
perfect fuzzy rainbow matrix will be generated if and only
if the correct answer to the inversion target does not belong
to the submatrices DM�+1, . . . , DM� contained in the ℓ perfect
fuzzy rainbowmatrices. Hence, the probability under consid-
eration is

�∏
�=�+1

(1 − ����DM�����
N

)ℓ = exp(−Fmsc

ℓ� 1�
�∑
�=�+1

Fcr,�) . (25)

�e equality claimed in the lemma statement follows from an
application of Proposition 4.

�e cost of generating the online chains is a direct
corollary to this lemma. It su
ces to realize that an online
chain that starts from the �th color is expected to be of
length �(� − � + 1) and that there are ℓ tables to consider.

Proposition 6. 	e generation of the online chains for the
perfect fuzzy rainbow tradeo
 is expected to require

�ℓ �∑
�=1

(� − � + 1) (1 − F
�)(∑��=�+1 F��,�)/�F�� (26)

iterations of the one-way function.

Our next goal is to obtain the cost of resolving alarms
that appear during the online phase. �is part calls for very
delicate arguments involving random functions and is very
technical.�e practice-oriented reader can skip the following
few lemmas and jump to Proposition 10.

We will consider an online chain that starts from the �th
color and treat the case of it merging into the fuzzy rainbow
matrix within the �th color and the case of it merging at
a strictly later color separately. As a preliminary result, we
require the probability for an online chain to merge into a
fuzzy rainbow matrix.

Lemma 7. An online DP chain segment of the �th color
will not merge into the nonperfect DP submatrix DM� with
probability (1/(1 + f�)) = (f�+2/f�). 	e probability for an
online chain that starts from the �th color not to merge into the
perfect fuzzy rainbow precomputation matrix is ∏��=�(1/(1 +
f�)) = (f�+1/f�)(f�+2/f�+1).
Proof. An online DP chain segment of the �th color will
escape merging into the nonperfect DP submatrix DM� with
probability

∞∑
�=1

(1 − 1� −
����DM�����
N

)�−1 (1� − ��
N
)

= 1 − (���/N)1 + (� ����DM����� /N) ≈
11 + (� ����DM����� /N) ,

(27)

where the approximation is justi�ed by the facts (���/N) =Θ(1/��) and (�|DM�|/N) = Θ(1/�). Substituting (2) into this
expression and then applying (9), the probability can be
written as

1
1 + f�

= (2 − Fmsc) + Fmsc (�/�)(2 − Fmsc) + Fmsc ((� + 2) /�) =
f�+2
f�

. (28)

�e probabilities for an online chain to merge into DM�
and DM� are usually di	erent, but the two are the same when* = �. Now, an online chain that starts from the �th color
does not merge into the perfect precomputation matrix if
and only if none of its DP chain segments merge into the
submatrices DM�, DM�+1, . . . , DM�, and this happens if and only
if the online DP chain segments do not merge into the non-
perfect submatrices DM�, DM�+1, . . . , DM�. Here, we emphasize
that a series of submatrices ending at the terminal �th color
is being considered.�e claimed probability is the product of
the term (1/(1 + f�)) = ((f�+2)/f�) over * = �, . . . , �.

�e following lemma gives the cost of dealing with
an alarm from a possible delayed merge, assuming the
generation of an online chain that starts from the �th color.

Lemma 8. Consider a single perfect fuzzy rainbow precompu-
tation matrix and its associated � colors. Assume the genera-
tion of an online chain for this matrix that starts from the �th
color. 	e cost of resolving an alarm that may be induced by
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a possible merge of this online chain into the fuzzy rainbow
matrix strictly a�er the �th color is expected to be

� ( �∑
�=1

F��,�){f�+2
f�

(1 − f�+1
f�+1

f�+2
f�+2

)

+(1 − f�+2
f�

)(1 − f�
f�
)}

(29)

iterations of the one-way function.

Proof. We require the probability for an online chain that
starts from the �th color to merge into the perfect fuzzy
rainbow precomputation matrix without merging into the
submatrix DM�. Such a merge could occur through the fol-
lowing two separate events. (a)�e �th color online DP chain
segment does not merge into the nonperfect submatrix DM�,
but the online chain part that extends out from the endingDP
of the �th color segment merges into the perfect precompu-
tation matrix. (b)�e �th color online chain merges into DM�,
without merging into DM�, in which case the online chain is
destined to merge into the perfect precomputation matrix at
a later color.

If the �th color online DP chain segment does not merge
into DM�, the chain that extends from its ending pointmay still
be iterated with a random function. Hence, it is clear from
Lemma 7 that the probability for the (a)-event to occur is

f�+2
f�

(1 − f�+1
f�+1

f�+2
f�+2

) . (30)

On the other hand, the extended part of the online chain
is allowed no randomness in the (b)-event. We already know
from the proof of Lemma 3 that an ending point of DM�,
that is, an ending point of D̃M�, has probability (��/��) =(f�/f�) of remaining among the ending points of DM�. Once
again, Lemma 7 allows us to claim

(1 − f�+2
f�

)(1 − f�
f�
) (31)

as the probability for the (b)-event to occur. �e probability
for a merge to appear strictly a�er the �th color is the sum of
the above two probabilities.

A merge of the online chain into the precomputation
matrix that appears strictly a�er the �th color requires one
to regenerate the associated precomputation chain up to the
end of the �th color. Note that (14) allows us to write the aver-
age chain length |DM�|/� of each DP submatrix DM� as Fcr,��.
Hence, to resolve the alarm from the merge discussed above,
one must expect to compute (Fcr,1 + ⋅ ⋅ ⋅ + Fcr,�)� iterations of
the one-way function.

�e claimed cost of resolving alarms is a simple product
of the merge probability and the work factor we have already
stated.

�e cost of dealingwith an immediatemerge of the online
chain into the perfect precomputation matrix is given next.

Lemma 9. Consider a single perfect fuzzy rainbow precom-
putation matrix and its associated � colors. Assume the gen-
eration of an online chain for this matrix that starts from
the �th color. 	e cost of resolving an alarm that may be
induced by a possible merge of this online chain into the fuzzy
rainbow matrix within the �th color segment is expected to be
approximately

� (1 + �∑
�=1

F��,�)(1 − f�+2
f�

) f�
f�

(32)

iterations of the one-way function.

Proof. Arguments given in the proof of Lemma 8 already
show that the probability for a merge to occur within the �th
color segment into the perfect DP submatrix is

(1 − f�+2
f�

) f�
f�
. (33)

Since the online chain will merge into at most one precom-
putation chain in DM�, it only remains to �nd out how much
work is required to resolve such a merge.

An alarm will require the associated precomputation
chain to be regenerated at least up to the start of the �th DP
submatrix, and we saw during the proof of Lemma 8 that this
costs (Fcr,1 + ⋅ ⋅ ⋅ + Fcr,�−1)� iterations of the one-way function.
�e number of additional �th color segment iterations that
are required must be handled more carefully. One can expect
this to be larger than Fcr,��, because longer precomputation
chains are more likely to be involved in merges.

�e work [12] stated in its Lemma 12 that the cost of
resolving alarms expected from the processing of a single
nonperfect DP table is 2Dmsc� iterations of the one-way
function, where Dmsc is the matrix stopping constant of the
nonperfect DP matrix. Following the arguments given in the
proof of the same lemma, one can write the number of false
alarms expected during the processing of a single DP table as

Dmsc ∫∞
0

∫∞
0

exp (−7) exp (−V) {exp (min (7, V)) − 1} ;7 ;V
= Dmsc.

(34)

Computing the ratio of these two numbers, we can conclude
that, during the processing of a single nonperfect DP table,
each alarm calls for 2� iterations of the one-way function to
resolve, on average.

Now, since (10) implies that (��/��−1) = 1 − Θ(1/2�),
we know that only a small portion of DM� is discarded in
creating D̃M�, so that the DP matrices DM� and D̃M� must be
similar in their distributions of chain lengths. We also
saw during the proof of Lemma 3 that the selection
of DM� from D̃M� does not a	ect the distribution of chain
lengths. Hence, it is reasonable to expect amerge of the online
chain within the �th color segment into either DM� or DM� to
call for approximately 2� iterations of the �th colored one-
way function, on average.
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Wewish to add a small tweak to the 2� claim.Note that the
average chain length of a nonperfect DP matrix is �, whereas
that of DM� is Fcr,��. Since the average chain length may be
understood as a concise representation of the distribution of
chain lengths, onemight expect chain lengths, and onemight
expect 2Fcr,��, which take the average chain length of DM� into
account, to be a better approximation of the additional work
than 2�. In any case, since Lemma 3 implies that Fcr,� =1 − Θ(1/4�), we know that 2� know that 2� and 2Fcr,�� are
very close to each other. In similarity, we choose to take (1 +
Fcr,�)� as the number of extra �th color iterations required,
since this will make our later formulas look slightly simpler.

�e claimed cost of resolving alarms is a simple combi-
nation of the three factors (1 − (f�+2/f�))(f�/f�), (Fcr,1 + ⋅ ⋅ ⋅ +
Fcr,�−1)�, and (1 + Fcr,�)� that we have discussed so far.

Combining Lemmas 8 and 9, we can state that the cost of
dealing with an alarm thatmay be induced by an online chain
generated from the �th color is

� {( �∑
�=1

Fcr,�)(1 − f�+1
f�

f�+2
f�+1

) + f�+2
f�

f�} , (35)

where we have relied on (10) to replace (1 − (f�+2/f�))(f�/f�)
with (f�+2/f�)f�. Since, unlike other results of this paper, we
have stated Lemma 9 only as an approximation, let us brie�y
explain that this is still very accurate. Using relation (10)

and the rough approximations ∑��=1 Fcr,� = Θ(�) and f� =Θ(1/�), it is easy to verify the facts
( �∑
�=1

Fcr,�)(1 − f�+1
f�

f�+2
f�+1

) = Θ(� (� − � + 1)� ) ,
f�+2
f�

f� = Θ(1� ) .
(36)

�is shows that, unless � is very small, the �rst factor of (35)
is at least � times larger than the second factor. On the other
hand, the proof of Lemma 9 shows that the error given by
formula (35) will be more than su
ciently bounded by its
second factor. Hence, we can expect (35) to be accurate up
to a 1 + �(1/�) factor, at the worst. In fact, our testing to be
presented in the Appendix con�rms that the accuracy of (35)
is much higher than what we have claimed here.

�e computational cost of dealing with the alarms is now
a direct corollary to Lemmas 5, 8, and 9.

Proposition 10. 	e treatment of alarms during the online
phase of a perfect fuzzy rainbow tradeo
 is expected to require

�ℓ �∑
�=1
(1 − F
�)(∑��=�+1 F��,�)/�F��

× {( �∑
�=1

F��,�)(1 − f�+1
f�

f�+2
f�+1

) + f�+2
f�

f�}
(37)

iterations of the one-way function.

�e online computational complexity of the perfect fuzzy
rainbow tradeo	 can be stated as the sum

B = �ℓ� �∑
�=1
(1 − Fps)(∑��=�+1 Fcr,�)/�Fcr

× (� − � + 1� + 1� f�+2f� f�

+(∑��=1 Fcr,�� )(1 − f�+1
f�

f�+2
f�+1

))

(38)

of its two components stated by Propositions 6 and 10. Recall-
ing from the discussion given under (23) that (ℓ/�) = Θ(1),
it is easy to argue that B is of Θ(�2�2) order. �e following
time memory tradeo	 curve is a direct consequence of our
knowledge secured of the online time complexity B and the
observation that the storage complexity is C = �ℓ.
�eorem 11. 	e time memory tradeo
 curve for the perfect

table fuzzy rainbow tradeo
 is TM2 = F��N
2, where the

tradeo
 coe�cient is

F�� = F
2
���(ℓ� )

3 1�
�∑
�=1
(1 − F
�)(∑��=�+1 F��,�)/�F��

×(� − � + 1� + 1� f�+2f� f�

+(∑��=1 F��,�� )(1 − f�+1
f�

f�+2
f�+1

)) .

(39)

As a corollary to Lemma 5, we can state that the online
phase of the perfect table fuzzy rainbow tradeo	 is expected
to call for

ℓ �∑
�=1
(1 − Fps)(∑��=�+1 Fcr,�)/�Fcr (40)

lookups to the precomputation table. One can easily verify
that this is of Θ(��) order, which is much smaller than the
online computational complexity B = Θ(�2�2).
3.4. Storage Optimization. �e storage complexityC appear-
ing in the tradeo	 curve of �eorem 11 refers to the total
number of entries that need to be stored in the precomputed
tables. However, practical interest would be in the size of the
required physical recording media expressed in number of
bits. Hence, we need to discuss the number of bits occupied
by each starting and ending point pair in the tables.

�e naive approach would allocate 2 logN bits to each
table entry, but there are more e
cient methods. Each
starting point can be recorded in log�0 bits [14–16] through
the use of consecutive starting points. In storing the ending
points, one need not record bits that can be recovered from
the de�nition of the distinguishing property [15, 17]. One can
create an index table [15] for each sorted table and remove
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almost log� most signi�cant bits from each ending point.
Finally, one could simply truncate the ending points [5, 15]
to a certain length before recording them, at the expense
of dealing with additional false alarms arising from partial
matches.

We will not explain the details of the methods mentioned
above, since readable descriptions may be found in [12, 13].
Let us just provide the explicit relation between the degree of
truncation and the amount of online computation increased
by the associated false alarms.

Proposition 12. Assume the use of the ending point truncation
method in which the probability for two truncated randomly
chosen DPs to be identical is 1/�.	en, during the online phase
of the perfect fuzzy rainbow tradeo
, one can expect to observe

�ℓ��
�∑
�=1
(1 − F
�)(∑��=�+1 F��,�)/�F�� f�+1f�+2

f�f�+1

�∑
�=1

F��,� (41)

extra invocations of the one-way function induced by
truncation-related alarms.

Proof. �e probability for the ℓ online chains that start from
the �th color for each precomputation matrix to be generated
is given by Lemma 5. �e probability for such a generated
chain not to merge into the perfect fuzzy rainbow precom-
putation matrix is given by Lemma 7. �e probability for a
nonmerging online chain to cause a truncation-related alarm
with any one of the truncated ending points is 1/� and there
are � of these ending points, each of which could require
separate treatment. Each alarm will require (Fcr,1 + ⋅ ⋅ ⋅ +
Fcr,�)� iterations of the one-way function to resolve. Taking
the ℓ precomputation matrices into account, the claimed
formula is a simple combination of the facts mentioned so
far.

�e cost stated above can easily be checked to be

of Θ(�2�2(�/�)) order. One can show, either by comparing

this against B = Θ(�2�2) or through heuristic arguments,
that the additional cost of resolving alarms induced by the
ending point truncation technique can be suppressed to a
negligible level by having the truncation retain slightly more
than log� bits of information for each ending point. �e
arguments appearing in [12, 13] may then be repeated, almost
word for word, to conclude that each entry of the perfect table
fuzzy rainbow tradeo	 can be recorded in log�0 + D bits,
where D is a small positive integer.

�e �nal conclusion made in the previous paragraph has
not appeared before in the literature for the perfect fuzzy
rainbow tradeo	. However, this is an expected result that
has been obtained through straightforward adaptations of the
arguments given in [12, 13].

4. Algorithm Comparison

�is section may be slightly di
cult to understand in full if
the reader is unfamiliar with the approach that was recently
introduced by [12] to compare di	erent tradeo	 algorithms
and its further developments made by [13, 18]. However, we

will refrain fromproviding lengthy repetitive explanation and
justi�cation of the comparison approach and ask the more
interested reader to refer to the cited articles.

4.1. Overview of the Comparison Method. Recall that the
conclusion of [13], in overly simpli�ed terms, was that the
perfect rainbow tradeo	 algorithm is superior to all the
other widely known tradeo	 algorithms. Also recall from
our recent work [9] that the nonperfect version of the fuzzy
rainbow tradeo	, which is not yet widely known, is preferable
to the perfect rainbow tradeo	 when one is constrained in
precomputation resources. Hence, we wish to compare the
performance of the perfect fuzzy rainbow tradeo	, which
we have analyzed in this paper, against those of the perfect
rainbow and the nonperfect fuzzy rainbow tradeo	s.

In the remainder of this paper, we will use
symbols R and F to extend the notation we had been
using concerning the perfect fuzzy rainbow tradeo	 to the
perfect rainbow and nonperfect fuzzy rainbow tradeo	s,
and we will use the symbol X when we wish to reference a
coe
cient without making the tradeo	 algorithm speci�c.
For example, symbols Rtc and Ftc denote the tradeo	
coe
cients for the perfect rainbow and nonperfect fuzzy
rainbow tradeo	s, respectively, and Xtc refers to any tradeo	
coe
cient. �e symbols F, R, and F will also be used as
in �

F
, �

R
, and �

F
to clarify that the parameter or some

complexity value is to be associated with a certain algorithm.
We will follow the approach of [12] in comparing the per-

formances of di	erent tradeo	 algorithms against each other.
In short, a small number of success rate requirements Xps will
be chosen, and a graph for each algorithm, displaying the
upper level tradeo	 between its precomputation cost and
online cost, will be plotted. �e overall relative positions
of the curves corresponding to di	erent algorithms, subject
to the same Xps, will allow certain conclusions to be made
concerning algorithm performances. �e curves themselves
will also be of value when choosing algorithm parameters for
implementation.

It is clear that the precomputation cost E of a tradeo	
algorithm can be numerically represented in full by the
precomputation coe
cient Xpc = (E/N). In the perfect
fuzzy rainbow tradeo	 case, this can be computed from
Proposition 2, and the corresponding results for our two
comparison target algorithms can be found in [9, 13]. Note
that Xpc presents the computational cost as the number of
iterations, in multiplies of N, required of the common target
one-way function, regardless of the tradeo	 algorithm.

�e online cost or e
ciency of a tradeo	 algorithm is
mostly captured by its tradeo	 coe
cient. However, since

the C appearing in the de�nition Xtc = BC2/N2 represents
the number of table entries, rather than the physical number
of bits required to store the tables, the tradeo	 coe
cient
cannot be used directly in comparing di	erent algorithms.
One must �rst adjust Xtc to account for the di	erences in
number of bits required per table entry by the algorithms
being compared. For example, the comparison of the nonper-
fect DP and rainbow tradeo	s by [12] was carried out with the
relatively adjusted tradeo	 coe
cients (1/4)Dtc and Rtc. �e

adjustment factor (1/2)2 re�ects the fact that the DP tradeo	
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requires roughly half as many bits to store each precom-
putation table entry in comparison to the rainbow tradeo	,
under parameter choices that are typically considered during
theoretical analyses of the tradeo	 algorithms.

4.2. Tradeo
 Coe�cient Adjustment. We wish to be slightly
more careful in treating the tradeo	 coe
cient adjustment
factors than focusing on just the theoretically typical param-
eters. In general, as a trivial extension of the approach given
by [12], one can use the adjusted tradeo
 coe�cient

Xatc = ( 32 logN)
2( number of bits per table

entry for X
)2 Xtc (42)

to represent the online cost of each algorithm, and plot
the Xpc versus Xatc curves to obtain a fair comparison of

di	erent algorithms. Here, the constant (3/(2 logN))2 serves
the purpose of bringing the adjustment factor to Θ(1) order
at typical parameters and is not an essential factor for the
purpose of comparisons. �e tradeo	 coe
cients Ftc, Rtc,
and Ftc may be computed from �eorem 11 and the corre-
sponding results from [9, 13], but more work is required
before we can specify the number of bits part more concretely
for each algorithm.

Recalling the contents of Section 3.4 and Lemma 1, the
adjusted tradeo	 coe
cient for the perfect fuzzy rainbow
tradeo	may bewrittenmore concretely in terms of algorithm
parameters as

Fatc = ( 32 logN)
2(log 2

2 − Fmsc

+ log�
F
+ D)2 Ftc. (43)

Referring to results from [9, 13], it is not di
cult to work
out similar adjustment factors for the perfect rainbow and
nonperfect fuzzy rainbow tradeo	s to claim

Ratc

= ( 32 logN)
2(log 2ℓ

R2ℓ
R
+ ln (1 − Rps) + log�

R
+ D)
2

Rtc,
(44)

Fatc = ( 32 logN)
2(log�

F
+ D)2 Ftc (45)

as the more concrete expressions.
�e small positive integer D corresponds to the number

of ending point bits remaining a�er applications of the trun-
cation and index �le techniques.Workingwith Proposition 12
and corresponding results from [13, 18], one can reasonably
argue that D for the three algorithms can be set to a common
value, which is why we have not subscripted them with
the algorithm symbols. �e terms involving Fmsc and ℓ

R
,

appearing in (43) and (44), have their roots in the merge
removal process for producing perfect tables and re�ect
what fraction of the initially generated chains remains in
the perfect table. Since the Xpc-Xatc curves are to be plot-

ted using Fmsc and ℓ
R
as parameters, the existence of these

terms will not cause any later di
culties. However, the
three log� values require further attention.

Note that one cannot hope to simply make indepen-
dent log� value choices that achieve optimality for each
algorithm, since optimality cannot be de�ned objectively.
�e most favorable balance between precomputation cost E,
storage cost C, and expected online inversion time B is a
subjective matter that would be di	erent for every imple-
menter and situation. For our algorithm comparison to be
fair, the values log�

F
, log�

R
, and log�

F
need to be le�

as choices to be made by the implementer. Nevertheless,
we can still restrict the three choices to be made in a
reasonably correlated manner. �e natural approach is to
correlate the choices through the requirement that the E, C,
and B complexities for the three algorithms bemade roughly
comparable and with the strict restriction that the success
rates of the three algorithms be identical. Since the perfor-

mances of the three algorithms commonly satisfy BC2 ≈
N
2, if an implementer under a speci�c situation is asked

to produce parameters sets for the three algorithms that he
deems favorable, his choices for the three algorithms would
be roughly matching the performance �gures E, C, and B.

Let us now choose to view each positive integer � as
presenting a separate version of the perfect fuzzy rainbow
algorithm.�at is, we treat the perfect fuzzy rainbow tradeo	
as a series of in�nitely many di	erent algorithms. A similar
viewwill be taken of the nonperfect fuzzy rainbow algorithm.
Below, we will describe a rule for correlating the parameter
sets among these two in�nite series of algorithms and the
perfect rainbow tradeo	 algorithm, for each �xed common
probability of success Xps.

We �rst take integers �⋆ and �⋆ such that log�⋆ +2 log �⋆ ≈ logN and set the perfect fuzzy rainbow parameters
to

�
F,� ≈ ��⋆, �

F,� ≈ �⋆� ,
ℓ
F,� = − ln (1 − Xps)

FmscFcr

�
F,�,

(46)

for each � ≥ 1, where the coverage rate Fcr, corresponding to
each �, is to be computed through (9), Lemma 3, and (15).
�e perfect rainbow tradeo	 parameters corresponding to
the above are set to

�
R
≈ �⋆�⋆, �

R
≈ �⋆, ℓ

R
= − ln (1 − Xps)

Rmsc

, (47)

where Rmsc = (�
R
�
R
/N), and in such a way that ℓ

R
is an

integer. Finally, the nonperfect fuzzy rainbow parameters are
set to

�
F,� ≈ ��⋆, �

F,� ≈ �⋆� ,
ℓ
F,� = − ln (1 − Xps)

FmscFcr

�
F,�,

(48)

for each � ≥ 1, where Fmsc = (�
F,��2F,��/N) and Fcr is the

coverage rate for the nonperfect fuzzy rainbow tradeo	.
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Figure 1: �e adjusted tradeo	 coe
cient Fatc,� in relation to precomputation coe
cient Fpc,�, for a small number of � values, at success
rate 90% and with log�⋆ + D �xed to 21 and 33 (bottom: Fpc,�; le�: Fatc,�).

Note that the requirement log�⋆ + 2 log �⋆ ≈ logN does
not a	ect the implementer’s control over the E-B-C tradeo	
in any way. Further note that one has su
cient control
over Fmsc, ℓR, and Fmsc, even when log�⋆ and log �⋆ are
�xed to approximate values. �at is, one can vary the Xpc-

Xtc curve parameters Fmsc, ℓR, and Fmsc quite freely while
keeping all the log�

X
values somewhat stable.

Using (23) and similar claims from [9, 13], it is trivial
to verify that all parameter sets achieve the same success
rate Xps. It is also easy to verify, using the facts E

F
=Θ(�

F
�2
F
�
F
), B

F
= Θ(�2

F
�2
F
), and C

F
= Θ(�

F
�
F
) and

the corresponding facts from [9, 13], that the perfor-
mance �gures E, C, and B are of similar order for all the
above parameter sets. In fact, it is possible to argue that
the above method is the only possible manner in which
comparable E, B, and C complexities can be achieved by
the di	erent algorithms at a common success rate.

�e reasonable association between the parameter sets for
di	erent algorithms given by (46), (47), and (48) allows the
adjusted tradeo	 coe
cients to be written as

Fatc,�

= ( 32 logN)
2(log 2

2 − Fmsc

+ log � + log�⋆ + D)
2
Ftc,�,
(49)

Ratc

= ( 32 logN)
2

× (log 2ℓ
R2ℓ

R
+ ln (1 − Rps) +

12 logN + 12 log�⋆ + D)
2

Rtc,
(50)

Fatc,� = ( 32 logN)
2(log � + log�⋆ + D)2Ftc,�, (51)

where we have relied on logN ≈ log�⋆ + 2 log �⋆ in writing
(50). We have also additionally subscripted the (adjusted)
tradeo	 coe
cients with the parameter � to make their
dependence on � more explicit.

To compare the performances of di	erent tradeo	 algo-
rithms, it now su
ces to �x Xps, choose reasonable values
for log�⋆ + D and logN, and plot the Xpc-Xatc curves, for all
the algorithms.

4.3. Choosing the Color Count �. Before comparing the
perfect fuzzy rainbow tradeo	 with the other two algorithms,
we wish to make comparisons among the many versions
of the perfect fuzzy rainbow tradeo	 corresponding to
di	erent � choices. A small number of the Fpc-Fatc curves are
given in Figure 1.

�e le�-hand side box contains plots of the (Fpc,�, Ftc,�)
points, for the case when the success rate is set to 90% and
log�⋆+D is set to 21. Each of the three curves is for speci�c �
values. �e right-hand side box contains similar curves for
the Fps = 90% and log�⋆ + D = 33 case. Note that D =8 would be a reasonable value in view of the discussions given
by Section 3.4 and that log�⋆ = 13 and log�⋆ = 25 are
choices that would typically be made during theoretical
discussions of the tradeo	 technique for the very small N =239 and the very large N = 275 search space sizes. Hence,
our log�⋆ + D = 21 and log�⋆ + D = 33 examples are
representative of the behaviors at both ends of the realistic
tradeo	 application environments.

Each curve has been plotted precisely to its lowest
point. �e curve points that would appear to the right of
a lowest point are meaningless, since they correspond to
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parameter sets that call for higher precomputation e	orts
while achieving lower online e
ciencies than the parameter
sets corresponding to the lowest point.

One may roughly associate overall better performance
with a curve that is closer to the lower le� corner of each
�gure box. However, it can be seen that curves corresponding
to di	erent � values may cross over each other. In fact, we
could verify that the lowest curve in each box crosses over the

middle curve appearing in its box at a high Xatc value. Hence,
one cannot claim one � value to be providing de�nitely
superior performance over another � value, at least not strictly
logically.

Nevertheless, if we restrict our attention to the lower parts
of the curves, which are of higher practical interest than
the high Xatc parts, it becomes clear that little harm will be
done by simplifying matters and ranking the performances
for di	erent � choices based only on the lowest point of
each curve. In other words, for practical purposes, it is
su
ciently reasonable to declare an � value to be optimal for
a speci�c (Fps, log�⋆ + D) pair if

min
Fmsc

{Fatc,�} = min
�≥1,Fmsc

{Fatc,�} . (52)

We emphasize that such a simpli�cation is possible only
because of the nice relative positions of the many curves and
that the same simpli�cation may not be applicable to other
comparison situations.

�e optimal number of colors �, as de�ned through
comparisons at the lowest points of the curves, is given by
Table 1, for various success rate requirements Fps and a wide

range of log�⋆ + D values. �e Fmsc value that attains the
minimum possible Fatc,� value is listed under each optimal �.
4.4. Some Observation. It can be seen from Table 1 that the
optimal � value becomes larger as the success rate require-
ment is increased and also as the number of bits per table
entry becomes larger.�e same trend could be observed from
an analogous table presented by [18] for the nonperfect fuzzy
rainbow tradeo	.

An intuitive explanation for the trend concerning the
success rate can be given as follows. Since the online phase
of the fuzzy rainbow tradeo	 processes the precomputations
tables in parallel, a higher � value, corresponding to higher
segmentation of the precomputation matrix, allows for more
immediate exit from the online phase upon an encounter
with the correct answer. Early exits from the online phase
are less common under low success rates, and the importance
of higher � value increases as the success rate requirement is
increased. As for the trend related to the change in log�⋆+D,
one could treat this as a natural scaling e	ect that accompa-
nies the general increase in search space size associated with
the increase in log�⋆.

Let us now return to the de�nition of the adjusted
tradeo	 coe
cient. A careful reading of [13] shows that they
had ignored the term involving ℓ

R
from (50) in comparing

the perfect rainbow tradeo	 with the other major tradeo	
algorithms. �is was justi�ed in their work based on the
observation that the term remains upper bounded by a small

number, when parameters are restricted to those that do not
call for impractically large precomputation e	orts.

Applying the same argument to the perfect fuzzy rainbow
tradeo	, we can see that the log(2/(2 − Fmsc)) term of (49) is
likewise upper bounded for parameters that are reasonable in
view of precomputation cost. Hence, we could consider the
possibility of using the adjusted tradeo	 coe
cient de�ned
as

F
�
atc,� = ( 32 logN)

2(log � + log�⋆ + D)2. (53)

�is de�nition could be favorable to the previous de�nition
(49), in view of simplicity.

�e e	ect of removing the log(2/(2 − Fmsc)) term can

be seen from Figure 2. �e curves for Fatc,� and F
�
atc,� are

noticeably di	erent from each other, and the use of the
simpler (53) in place of the more accurate (49) cannot be
justi�ed.

An overview of Table 1 reveals that any reasonable choice
of parameters will mostly satisfy the bound Fmsc ≤ 1.8,
and this bound implies that the term log(2/(2 − Fmsc)) ≤3.32193 is always somewhat small. However, referring once
more to Table 1, we see that log � values of interest are not
very large. Furthermore, practical values of log�⋆+D are not
very large either. Hence, unlike the situation with the perfect
rainbow tradeo	, the bound on log(2/(2−Fmsc)) is not small
enough, in comparison to the terms it is added together with,
to be completely ignored.

Our �nal comment is intimately connected to the above
discussion. Combining the bound Fmsc ≤ 1.8 with Proposi-
tion 2 and (23), we can state the bound

Fpc ≤ − ln (1 − Fps)
FmscFcr

2Fmsc2 − Fmsc

≤ − ln (1 − Fps)Θ (1) 10, (54)

concerning the precomputation coe
cient. Hence, unless the
success rate requirement is set unrealistically close to 1, pre-
computation cost will be automatically bounded by Θ(N) for
all meaningful parameters.

4.5. Algorithm Comparison. We are �nally ready to compare
the performance of the perfect fuzzy rainbow tradeo	 with
those of the perfect rainbow tradeo	 and the nonperfect fuzzy
rainbow tradeo	.

�e comparison at the 90% success rate is given by
Figure 3, which presents the Xpc-Xatc curves for the three
tradeo	 algorithms. �e le�-hand side box was drawn with
parameters that would be used with a very small search space
and the right-hand side box represents the situation of a very
large search space.�e � values for the perfect fuzzy rainbow
tradeo	s were chosen to be the optimal ones given by Table 1.
�e corresponding table from [18] was used to decide on
the � values for the nonperfect fuzzy rainbow tradeo	.

�e comparisons at 99% and 99.9% success rates are
given by Figures 4 and 5. As before, parameters typically con-
sidered during theoretical analyses of the tradeo	 algorithms
corresponding to a small search space and a large search space
were used.
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Table 1: Optimal � for the perfect fuzzy rainbow tradeo	, at various Fps and log�⋆ + D values. �e Fmsc value listed below each � attains the
minimum Fatc,� value.

log�⋆ + D 50% 75% 90% 95% 99% 99.5% 99.9%

18
� 34 38 43 48 60 66 79

Fmsc 1.6880 1.6882 1.6846 1.6813 1.6697 1.6647 1.6531

19
� 36 40 46 50 63 68 83

Fmsc 1.6999 1.6996 1.6967 1.6921 1.6810 1.6754 1.6644

20
� 37 42 48 53 65 71 86

Fmsc 1.7095 1.7103 1.7071 1.7030 1.6910 1.6858 1.6747

21
� 39 44 50 55 68 74 89

Fmsc 1.7198 1.7202 1.7167 1.7126 1.7008 1.6955 1.6843

22
� 41 46 52 57 71 77 93

Fmsc 1.7294 1.7293 1.7256 1.7215 1.7101 1.7046 1.6936

23
� 43 48 54 59 73 80 96

Fmsc 1.7382 1.7379 1.7339 1.7298 1.7183 1.7133 1.7021

24
� 45 50 56 62 76 83 100

Fmsc 1.7465 1.7459 1.7418 1.7381 1.7264 1.7214 1.7105

25
� 47 51 58 64 79 86 103

Fmsc 1.7542 1.7527 1.7492 1.7454 1.7340 1.7290 1.7180

26
� 49 53 60 66 81 89 106

Fmsc 1.7615 1.7598 1.7562 1.7523 1.7410 1.7362 1.7252

27
� 51 55 63 69 84 91 110

Fmsc 1.7684 1.7665 1.7633 1.7593 1.7478 1.7427 1.7322

28
� 52 57 65 71 87 94 113

Fmsc 1.7740 1.7728 1.7695 1.7655 1.7543 1.7492 1.7387

29
� 54 59 67 73 89 97 116

Fmsc 1.7801 1.7788 1.7754 1.7713 1.7602 1.7554 1.7448

30
� 56 61 69 75 92 100 120

Fmsc 1.7859 1.7845 1.7809 1.7769 1.7661 1.7612 1.7508

31
� 58 63 71 78 95 103 123

Fmsc 1.7914 1.7898 1.7862 1.7825 1.7716 1.7668 1.7564

32
� 60 65 73 80 97 106 126

Fmsc 1.7966 1.7949 1.7913 1.7875 1.7767 1.7720 1.7618

33
� 62 67 75 82 100 109 130

Fmsc 1.8015 1.7998 1.7961 1.7923 1.7817 1.7771 1.7670

34
� 64 69 78 84 103 111 133

Fmsc 1.8062 1.8044 1.8010 1.7969 1.7865 1.7818 1.7718

35
� 66 71 80 87 105 114 136

Fmsc 1.8106 1.8088 1.8053 1.8015 1.7909 1.7864 1.7765

In every comparison box, the curve for the perfect fuzzy
rainbow tradeo	 appears much closer to the lower le� corner
than the points for the perfect rainbow tradeo	. �e perfect
fuzzy rainbow tradeo	 can attain better online e
ciency than
the perfect rainbow tradeo	 for the same online cost and
attain equal online e
ciency at lower precomputation cost.
Furthermore, the perfect fuzzy rainbow tradeo	 can attain
online e
ciency that is not possible with the perfect rainbow
tradeo	.

Similar statements are true concerning the comparison
between the perfect and nonperfect fuzzy rainbow tradeo	s,
except that, at the lower end of the possible precomputation
cost range, the two curves cross over each other, and the

nonperfect fuzzy rainbow tradeo	 can provide better online
e
ciency for the same precomputation e	ort. However, this
is the region where the online e
ciency is extremely bad, so
that these parameters would be of limited practical interest.

In all, we can state that the perfect fuzzy rainbow tradeo	
displays better performance than both the perfect rainbow
tradeo	 and the nonperfect fuzzy rainbow tradeo	, over a
wide range of tradeo	 algorithm application situations.

5. Conclusion

�e execution behavior of the perfect table version of
the fuzzy rainbow tradeo	 algorithm was analyzed in this
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Figure 2: �e adjusted tradeo	 coe
cient Fatc,� and its simpli�ed version F
�
atc,� in relation to Fpc,� (bottom: Fpc,�; le�: Fatc,� and F

�
atc,�;

top: Fmsc).
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Figure 3:�e adjusted tradeo	 coe
cients in relation to the precomputation coe
cients for the perfect fuzzy rainbow, perfect rainbow, and
nonperfect fuzzy rainbow tradeo	s at 90% success rate (bottom: Xpc; le�: Xatc).

paper.�e average case online computational complexity that
fully accounts for the e	ects of false alarms was accurately
obtained. �e expected number of precomputation table
entries and the number of bits required to record each table
entry were also obtained accurately.

�e results of our complexity analysis were used to com-
pare the performance of the perfect fuzzy rainbow tradeo	
with those of other tradeo	 algorithms. �e perfect rainbow
tradeo	 was recently argued by [13] to be advantageous
over all other widely known tradeo	 algorithms, and our

recent work [9] had shown that the less widely known
nonperfect fuzzy rainbow tradeo	 outperforms the perfect
rainbow tradeo	 under certain circumstances. Hence, our
comparison targets were set to the perfect rainbow tradeo	
and the nonperfect fuzzy rainbow tradeo	.

�e comparison took the following aspects of the tradeo	
algorithms into account: success rate of inversion, precom-
putation complexity, computational complexity of the online
phase, and physical storage size of the precomputation table.
�e comparison called for a carefully designed rule that
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Figure 4:�e adjusted tradeo	 coe
cients in relation to the precomputation coe
cients for the perfect fuzzy rainbow, perfect rainbow, and
nonperfect fuzzy rainbow tradeo	s at 99% success rate (bottom: Xpc; le�: Xatc).
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Figure 5:�e adjusted tradeo	 coe
cients in relation to the precomputation coe
cients for the perfect fuzzy rainbow, perfect rainbow, and
nonperfect fuzzy rainbow tradeo	s at 99.9% success rate (bottom: Xpc; le�: Xatc).

correlated the number of bits per table entry to be used by
each algorithm in a fair manner. �e current work is the �rst
to include the e	ects arising from the merge removal process
of the perfect table creation into this rule.

We were able to conclude that the perfect fuzzy rainbow
tradeo	 is highly preferable to the perfect rainbow tradeo	.
�e perfect fuzzy rainbow tradeo	 was also found to be
superior to the nonperfect fuzzy rainbow tradeo	, except
possibly at parameters that would have both of the algorithms
performing very poorly during the online phase in exchange
for a very small advantage in precomputation cost.

Appendix

Experimental Results

�is section presents the results of four separate tests that
support the theoretical �ndings of this paper. �e �rst test
shows the level of accuracy of the approximation claimed by
Lemma 1. �e subsequent two tests verify the correctness of
two of our logical arguments that lie hiddenwithin the proofs
of technical lemmas. �e �nal test veri�es that our claim of
online computational complexity is correct and serves as an
overall checkup of our theory.
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Figure 6: Number of �th color boundary points in a fuzzy rainbow matrix (line: theory; dots: test; circles: test/theory; J-axis: �; K-
axis: ��/� and test/theory ratio).

�e one-way function for the tests was taken to be the
key to ciphertext mapping, under a randomly generated �xed
plaintext, of AES-128. Independence between multiple tests
was acquired through distinct randomly generated plaintexts.
Truncations of 128-bit ciphertexts to binary strings of a
certain �xed length and zero-padded extensions of these
to 128-bit keys were used to bring the search space to a
manageable size. �e parameter � was always taken to be an
integer power of 2, and the distinguishing property was set
to check whether log � least signi�cant bits were zero. �e
reduction functions were set to constant XOR-ing operations.

Let us �rst check the accuracy of Lemma 1 through
experiments. Recall that Lemma 1 is equivalent to (4) and that
(4) was taken from our previous work [9], which dealt with
the nonperfect fuzzy rainbow tradeo	. Note that the accuracy
of (4) was already con�rmed through tests in [18], even for
small � values. However, the parameter sets used there were
such that the Fmsc = (�0�2�)/N values were 0.92 and 1.37,
and, according to (4), which is at least approximately correct,
these correspond to Fmsc values of 0.63 and 0.81.�e results
of Section 4.3 imply that our current interest should be with
parameter sets belonging to the rough range 1.5 ≤ Fmsc ≤ 1.8.
Hence, we cannot rely on the previous test results to claim that
the accuracy of Lemma 1 is su
cient for use with the perfect
table case analysis.

One can infer from a careful review of how [9] obtained
the approximate closed-form formula (4) from the iterative
formula (3) that the inaccuracy of (4) is likely to increase
as � is made smaller and also as Fmsc is made to approach 2.
We experimented with multiple parameter sets for which
the (�, Fmsc) pair was close to one of those appearing in
Table 1, that is, those that correspond to optimal online
e
ciencies for some success rate requirement.We discovered
that the inaccuracy was greater with optimal parameter sets
for the lower success rates and that the level of (in)accuracy

was rather stable among parameter sets for the same success
rate. We could also con�rm that the accuracy increased
when Fmsc was made smaller under a �xed � value.

Two of the test results are given by Figure 6. A�er
choosing parameters �, �, �, and N, we computed �0
through Lemma 1 and generated the fuzzy rainbow matrix
from �0 starting points. A total of ten fuzzy rainbow matri-
ces were generated for each parameter set, and the number
of �th color boundary points was recorded and averaged
separately for each �. A small number of chains did not
reach a DP within our chain length bound of 15�, at various
colors, and we discarded these without replacing them with
newly generated chains. �e lines of Figure 6 represent the
theory given by Lemma 1 and the dots correspond to the
experimental data. Each dot gives the count of the �th color
boundary points, averaged over ten tests.

�e test results for the worst parameter set we had
experimented with are given in the two le�-hand side boxes
of Figure 6. �is is the situation where our theory is least
accurate, but even in this case, the bottom box shows that
the largest inaccuracy of (4) is approximately 5%. �e right-
hand side boxes present test results for a parameter set whose(�, Fmsc) pair does not necessarily correspond to optimal
online e
ciency for any success rate. Since precomputation
cost considerations will make parameter sets of suboptimal
online e
ciency more practical, the right-hand side boxes
present the situation one would be experiencing in practice.
�e test results match our theory reasonably well, although
not perfectly. We may conclude that Lemma 1 predicts the
number of �th color boundary points su
ciently accurately
for use in practice.

We wish to remark that our test results are in almost
perfect agreement with what can be computed through the
iterative formula (3), which (4) is supposed to approximate.
Since � values of interest are of manageable sizes, one could
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always revert to using the iterative formula (3) should there
be the need for higher accuracy.

Let us now explain our second experiment. One argu-
ment that was crucial during our analysis was that the
selection process of DP subchains DM� from among the DP
subchains D̃M� is not correlated with the lengths of the DP
subchains in D̃M�. �is claim is equivalent to the equation

����DM�������� = ����D̃M�������� (A.1)

that appeared during the proof of Lemma 3. �is argument
also allowed us to claim during the proof to Lemma 8
that (Fcr,1 + ⋅ ⋅ ⋅ + Fcr,�)� iterations of the one-way function are
necessary to regenerate a precomputation chain up to the �th
color.�is is a new argument that had not been used in any of
the previous works, and it would be reasonable to verify this
claim experimentally.

Note that Lemma 3 allows us to expect these values to be
of 1 − Θ(1/4�) order, implying that there are more discarded
chains within eachDP submatrix for smaller � values. Hence,
in testing (A.1), to increase the chances of discovering
possible errors, one would not only choose parameters for
which ��/�� is large but also choose to use small � values.
Since the formula of Lemma 3, given in terms of notation
(9), is guaranteed to be accurate only for � values of interest,
which are not very small, it would be more appropriate to test
our argument directly through (A.1), rather than through the
formula of Lemma 3.

Test results for the two small � = 8 and � = 15 values
are given in Table 2. �e other parameters �0 and � were
chosen so that the corresponding experimentally obtained

Fmsc = (���2�)/N values would be large, corresponding
to a large �0/�� ratio, while still falling within our range
of interest. Tests for each of the two parameter sets were
repeated ten times. All �gures displayed by Table 2, other

than the parameters, including the �� and ���2�/N values,
are averages taken over the ten repetitions. In particular,
the stated (|D̃M�|/���)/(|DM�|/���) values are averages and
not the simple ratios of the two averages appearing above
these values. �e experimental data strongly supports the
correctness of (A.1).

Our third experiment aimed to test how accurate (35) was
in presenting the cost of resolving a possible alarm associated
with an online chain that is generated from the �th color.�is
was of particular interest because the formula depended on
Lemma 9, which was stated as an approximation.�e experi-
mental veri�cation of (35)would also increase our con�dence
in the extremely delicate random function arguments we gave
during the proof of Lemma 8.

�e results of our tests that were carried out with two
separate sets of parameters are given in Table 3. Each set
of data involves 50 precomputation tables created from the
speci�ed �0-many starting points. For each precomputation
table and each �xed starting color �, we generated su
ciently
many online chains so as to observe approximately 2000
merges. Our test results are in good agreement with our
theoretical predictions given by (35).

We have added another row of theoretical predictions in
Table 3. Tracing back through the proofs of Lemmas 7, 8, and
9 and referring to Lemmas 1 and 3, one can see that (35) is a
simpli�ed expression for

� { �∑
�=1

2(���2/N) ln(1 +
���2/N2 )

× (1 − �∏
�=�

11 + ���2/N)

+(1 − 11 + ���2/N)
����} .

(A.2)

Since Lemma 1 is a closed-form formula that approximates
the iterative formula (3), our theoretical predictions of the
alarm cost can be made more accurate through (A.2) and (3),
although the required calculations can be slightly uncomfort-
able due to the iterative nature of (3). Indeed, we can see in
Table 3 that the theoretical predictions made through (A.2)
and (3) are even closer to the test results than the predictions
of the closed-form formula (35).

Finally, we present an experimental veri�cation of �e-
orem 11, which is essentially equivalent to the claim that
(38) gives the online computational complexity of the perfect
fuzzy rainbow tradeo	. Since this test was meant to be an
overall sanity check of our theory, we used realistic � values.

For each choice of parameters �, �, �, and ℓ, we
computed �0 through Lemma 1 and generated a full set
of ℓ precomputation tables, each from �0 starting points.
A�er the completion of each precomputation phase, we
generated 104 random inversion targets and performed the
online phase. Test results corresponding to three separate
parameter sets are displayed in Table 4. During both the
precomputation and the online phases, we discarded any
chain that reached the length of 15� without a DP within
any of its subchains. �e computational e	ort associated
with these discarded chains is included in the test online
complexities.

Let us take a closer look at the �rst parameter set. Noting
that log� = 21.0, we truncated each ending point to the
length of log |ep| = 26 bits, allowing for 5.0 extra bits of
information. A small fraction of the ending points weremade
identical to each other, and we were careful to process all
matching truncated ending points during the online phase.
An 18-bit index is reasonable for the log� = 21.0 situation,
and its application to our truncated 26-bit ending points
would allow each ending point to be stored in D = 3.0 +5.0 = 26–18 bits. However, we did not do so in favor of easier
implementation and simply allocated 3 bytes and 4 bytes to
the starting and ending points, respectively. Since log(�/�) =15.2, we are dealing with the log�⋆ + D ≈ 23 situation, and
we can check through Table 1 that Test-1 used a parameter set
for the 90% success rate that is close to optimal in view of the
online phase.

Our Test-2 implementation recorded 24 bits of each
ending point and this would correspond to log�⋆ + D =13.1 + 24 − 16 ≈ 21.1, when a 16-bit index is used.
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Table 2: Experimental con�rmation that selection of DM� from D̃M� does not disturb average chain length.

�0 = 14000, � = 213, � = 8, N = 240;�� = 3604, ���2�
N

= 1.7598
� 1 2 3 4 5 6 7 8

���� 2.9270 2.3391 1.9370 1.6338 1.4159 1.2461 1.1105 1.0000

����D̃M�������� 0.8649 0.8895 0.9090 0.9157 0.9293 0.9370 0.9446 0.9550

����DM�������� 0.8698 0.8923 0.9130 0.9144 0.9289 0.9369 0.9455 0.9550

����D̃M�������� /
����DM�������� 0.9947 0.9970 0.9956 1.0014 1.0005 1.0002 0.9991 1.0000

�0 = 40000, � = 212, � = 15, N = 240;�� = 7821, ���2�
N

= 1.7901
� 1 3 5 7 9 11 13 15

���� 4.1159 2.8944 2.2258 1.8053 1.5029 1.2921 1.1257 1.0000

����D̃M�������� 0.8942 0.9218 0.9376 0.9472 0.9567 0.9615 0.9634 0.9702

����DM�������� 0.8916 0.9223 0.9373 0.9445 0.9575 0.9604 0.9630 0.9702

����D̃M�������� /
����DM�������� 1.0029 0.9995 1.0004 1.0029 0.9992 1.0011 1.0004 1.0000

Table 3: Experimental veri�cation of theoretically obtained expected cost of resolving a possible alarm associated with an online chain that
starts from the �th color.

�0 = 32000, � = 210, � = 70, N = 238; Avg(��) = 6179.5, Avg(��)�2�
N

= 1.6501
� 1 10 20 30 40 50 60 70

Test 981.91 9144.6 16700. 21868. 23781. 21544. 14513. 1653.9

(35) 975.69 9094.8 16575. 21636. 23470. 21279. 14263. 1626.6

(A.2) and (3) 978.26 9136.9 16696. 21850. 23759. 21588. 14499. 1656.6

Test/(35) 1.0064 1.0055 1.0076 1.0107 1.0132 1.0125 1.0176 1.0168

Test/(A.2) and (3) 1.0037 1.0008 1.0002 1.0008 1.0009 0.9980 1.0010 0.9984

�0 = 27000, � = 211, � = 100, N = 240; Avg(��) = 4461.4, Avg (��) �2�
N

= 1.7019
� 1 10 20 30 50 70 90 100

test 1963.2 18961. 36171. 50616. 67819. 64260. 32306. 3462.6

(35) 1970.9 18878. 35910. 50239. 67358. 63441. 31745. 3377.4

(A.2) and (3) 1974.3 18932. 36069. 50539. 67955. 64167. 32181. 3427.2

Test/(35) 0.9961 1.0044 1.0073 1.0075 1.0069 1.0129 1.0177 1.0252

Test/(A.2) and (3) 0.9944 1.0016 1.0028 1.0015 0.9980 1.0014 1.0039 1.0103

Intending to reach a 95% success rate, we used � = 56,
which is close to the optimal value for this situation.However,
the � and � parameters were chosen so that the Fmsc value
is smaller than what is optimal for the online phase. �is
parameter set should be more practical in view of lower
precomputation cost.

Parameters for Test-3 were likewise chosen to be realistic
rather than to be optimal for the online phase. One di	erence

with the parameter set for Test-2 is that we truncated the
ending points to a slightly longer length. We could verify
that our prediction of the cost of resolving alarms was more
accurate for this case than Test-1 and Test-2.

�e theory and experimental �gures for the three tests
are in good agreement. In reality, as can be expected from
Figure 6, the average �� values from the tests are slightly
larger than our predictions and this brings about a success
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Table 4: Experimental veri�cation of the online time complexity as given by (38).

(a)

N = 240 � � � ℓ Fmsc �0 log�0 log� log�⋆
Test-1 2078517 27 56 173 1.73445 15654415 23.9 21.0 15.2
Test-2 489178 28 56 477 1.63281 2664424 21.3 18.9 13.1
Test-3 1258291 27 80 396 1.50000 5033162 22.3 20.3 13.9

(b)

�eory Test
Reasonable D

Fps B/�ℓ� log
����sp���� log

����ep���� Fps B/�ℓ�
Test-1 0.9002 12.3627 24 26 0.9048 12.6569 8 = 3.0 + 5.0
Test-2 0.9501 9.0359 22 24 0.9571 9.1363 8 = 2.9 + 5.1
Test-3 0.9900 6.8393 23 28 0.9907 6.8207 11 = 3.3 + 7.7

rate that is higher than expected. �e higher success rate
lowers the cost of generating online chains, while application
of the ending point truncation technique raises the cost of
resolving false alarms. �e combination of the two opposite
e	ects is what we are seeing in Table 4. We have veri�ed
through separate computations that replacing Lemma 1 with
its iterative counterpart (3) produces even better predictions
of at least the costs of generating the online chains. Hence, the
small discrepancies between theory and test found in Table 4
are due to the accuracy limitations of Lemma 1 rather than to
any oversights in our theoretical arguments.
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