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Abstract—Our work is motivated by the desire to design packet
switches with large aggregate capacity and fast line rates. In this
paper, we consider building a packet switch from multiple lower
speed packet switches operating independently and in parallel.
In particular, we consider a (perhaps obvious) parallel packet
switch (PPS) architecture in which arriving traffic is demulti-
plexed over identical lower speed packet switches, switched to
the correct output port, then recombined (multiplexed) before
departing from the system. Essentially, the packet switch performs
packet-by-packet load balancing, or inverse multiplexing, over
multiple independent packet switches. Each lower speed packet
switch operates at a fraction of the line rate . For example, each
packet switch can operate at rate . It is a goal of our work that
all memory buffers in the PPS run slower than the line rate. Ide-
ally, a PPS would share the benefits of an output-queued switch,
i.e., the delay of individual packets could be precisely controlled,
allowing the provision of guaranteed qualities of service.

In this paper, we ask the question: Is it possible for a PPS to
precisely emulate the behavior of an output-queued packet switch
with the same capacity and with the same number of ports?
We show that it is theoretically possible for a PPS to emulate
a first-come first-served (FCFS) output-queued (OQ) packet
switch if each lower speed packet switch operates at a rate of
approximately 2 . We further show that it is theoretically
possible for a PPS to emulate a wide variety of quality-of-service
queueing disciplines if each lower speed packet switch operates
at a rate of approximately 3 . It turns out that these results
are impractical because of high communication complexity, but
a practical high-performance PPS can be designed if we slightly
relax our original goal and allow a small fixed-sizecoordination
buffer running at the line rate in both the demultiplexer and the
multiplexer. We determine the size of this buffer and show that
it can eliminate the need for a centralized scheduling algorithm,
allowing a full distributed implementation with low computational
and communication complexity. Furthermore, we show that if the
lower speed packet switch operates at a rate of (i.e., without
speedup), the resulting PPS can emulate an FCFS-OQ switch
within a delay bound.

Index Terms—Clos network, inverse multiplexing, load bal-
ancing, output queueing, packet switch.

I. INTRODUCTION

WAVELENGTH division multiplexing (WDM) is making
available long-haul fiber-optic links with very high

capacity by allowing a single fiber to contain multiple separate
channels. Currently, channels operate at OC48c (2.5 Gb/s),
OC192c (10 Gb/s), and in some systems OC768c (40 Gb/s). The
packets or cells carried on each WDM channel are switched,
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or routed, by packet switches (e.g., ATM switches, frame
relay switches, and IP routers) that process and then switch
packets between different channels. It would be desirable to
process packets in the optical domain without conversion to
electronic form. However, all packet switches need buffering
(by definition), and it is not economically feasible today to store
packets optically. Thus, packet switches will continue to use
electronic buffer memories for some time to come. However,
at the data rates anticipated for individual WDM channels,
we may not be able to buffer packets as fast as they arrive
and depart. As line rates increase beyond OC192 (10 Gb/s) to
OC768 (40 Gb/s) and even to OC3072 (160 Gb/s), it becomes
difficult, perhaps impossible, to buffer packets as fast as they
arrive using conventional memory devices. For example, a
packet buffer built using currently available DRAM would
require a 16 000-bit-wide data bus.1

The purpose of this paper is not to argue that line rates will
continue to increase; on the contrary, it could be argued that
DWDM will lead to a larger number of logical channels each
operating no faster than, say, 10 Gb/s. We simply make the ob-
servation that if line rates do increase, then memory bandwidth
limitations may make packet buffers and, hence, packet switches
difficult or impossible to implement.

It is the overall goal of our work to design a high-capacity
packet switch (e.g., multiple terabits/second) that: 1) supports
individual line rates in excess of the speeds of available elec-
tronic memory and 2) is capable of supporting the same qualities
of service as an output-queued (OQ) switch. These two goals
cannot be realized alone by a conventional OQ switch; this is
because OQ switches require buffer memory that operates at
times the line rate, where is the number of ports of the switch.
This certainly does not meet our goal of memory runningslower
than any individual line rate.

Likewise, we cannot use the other widely used techniques for
reducing memory bandwidth, namely, input-queued (IQ) and
combined input-and-output queued (CIOQ) switches. In an IQ
switch, each memory operates at the same speed as the external
line rate. While an improvement over OQ switches, neither of
our goals are met: 1) an IQ switch does not meet our requirement
to use memories slower than the line rate and 2) IQ switches are
unable to provide the same QoS guarantees as an OQ switch. It
is known that a variety of qualities of service are possible in a
CIOQ switch in which the memory operates attwicethe line rate
[7]. Obviously, this does not meet our goal for memory speed.

1At the time of writing, the random access time (the time to retrieve data at
random from any memory location) of a DRAM is approximately 50 ns. Al-
though the access time will be reduced over time, the rate of improvement is
much slower than Moore’s Law [1]. The random access time should not be con-
fused with the memory I/O time (the time to send retrieved data off chip to the
requester). While new memory technologies, such as RAMBUS [6], SDRAMs,
and DDRAMs have fast I/O times, the memory core and, hence, the random
access time are essentially unchanged.
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Fig. 1. Architecture of a PPS based on output-queued switches. The architecture resembles a Clos network. The demultiplexers, slower speed packet switches,
and multiplexers can be compared to be the three stages of a Clos network.

We would like an architecture that overcomes these limita-
tions, yet is practical.

II. BACKGROUND

The parallel packet switch (PPS) aims to overcome the
memory bandwidth limitation. The PPS is comprised of
multiple identical lower speed packet switches operating
independently and in parallel. An incoming stream of packets is
spread, packet by packet, by a demultiplexer across the slower
packet switches, then recombined by a multiplexer at the
output. The PPS architecture resembles that of a Clos Network
[4], as shown in Fig. 1. The demultiplexer, the center-stage
packet switches, and the multiplexer can be compared to the
three stages of an unbuffered Clos network.

As seen by an arriving packet, a PPS is a single-stage packet
switch; all of the buffering is contained in the slower packet
switches, and so our first goal is met because no buffers in a PPS
need to run as fast as the external line rate.2 The demultiplexer
selects an internal lower speed packet switch (or “layer”) and
sends the arriving packet to that layer, where it is queued until
its departure time. When the packet’s departure time arrives, it
is sent to the multiplexer that places the packet on the outgoing
line. However, they must make intelligent decisions, and as we
shall see, the precise nature of the demultiplexing (“spreading”)
and multiplexing functions are key to the operation of the PPS.

Although the specific PPS architecture seems novel,load-
balancingandinverse-multiplexingsystems [8]–[10] have been
around for some time, and the PPS architecture is a simple ex-
tension of these ideas. Related work studied inverse ATM multi-
plexing and how to use sequence numbers to resynchronize cells
sent through parallel switches or links [11]–[16]. However, we
are not aware of any analytical studies of the PPS architecture

2There will, of course, be small staging buffers in the demultiplexers and mul-
tiplexers for rate conversion between an external link operating at rateR and
internal links operating at rateR=k. Because these buffers are small (approxi-
matelyk packets), we will ignore them in the rest of the paper.

prior to this work. As we shall see, there is an interesting and
simple analogy between the (buffered) PPS architecture and the
(unbuffered) Clos network [4].

We are interested in the question: Can we select the demulti-
plexing and multiplexing functions so that a PPS can emulate3

the behavior of an OQ switch? If it is possible for a PPS to em-
ulate an OQ switch, it will be possible to control delay of in-
dividual packets and, therefore, provide QoS. In this paper, we
will describe and analyze the PPS for unicast traffic only. An ex-
isting paper [5] describes how a PPS can emulate an OQ switch
for multicast traffic.

The rest of the paper is organized as follows. In Sections III
and IV, we introduce some terminology and definitions. In Sec-
tion V, we find the conditions under which the PPS can emu-
late a first-come-first-served (FCFS)-OQ switch. In Section VI,
we show how a PPS can emulate an OQ switch with different
qualities of service. However, our initial algorithms require a
large communication complexity that makes them impractical,
and so in Section VII we modify the PPS and allow for a small
buffer (that must run at the line rate) in the multiplexer and
the demultiplexer. We describe a different distributed algorithm
which eliminates the communication complexity and appears
to be more practical. In Section VIII, we show how the modi-
fied PPS can emulate an FCFS-OQ switch within a delay bound
without speedup. We briefly describe some implementation is-
sues in Section IX.

III. D EFINITIONS

Before proceeding it will be useful to define some terms used
throughout this paper:

Cell: A fixed-length packet, though not necessarily equal in
length to a 53-byte ATM cell. Although packets arriving to the
switch may have variable length, for the purposes of this paper
we will assume that they are segmented and processed internally

3We will describe in Section III the exact meaning of the termemulate.
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as fixed length cells. This is common practice in high-perfor-
mance routers; variable-length packets are segmented into cells
as they arrive, carried across the switch as cells, and reassem-
bled back into packets before they depart.

Time slot: Refers to the time taken to transmit or receive a
fixed length cell at a link rate of .

Internal time slot : This is the time taken to transmit or re-
ceive a fixed length cell at a link rate of , where is the
number of center-stage switches in the PPS.

OQ Switch: A switch in which arriving packets are placed
immediately in queues at the output, where they contend with
other packets destined to the same output. The departure order
might be FCFS, in which case we call it an FCFS-OQ switch.
Other service disciplines, such as WFQ [19], GPS [20], virtual
clock [21], and DRR [22] are widely used to provide QoS guar-
antees. One characteristic of an OQ switch is that the buffer
memory must be able to accept (write) new cells per time
slot where is the number of ports, and read one cell per cell
time. Hence, the memory must operate at times the line
rate.

Work conserving: A packet switch is said to be work con-
serving if an output is busy whenever there is a cell in the system
for it. If a packet switch is work conserving, its throughput is
maximized, and the average latency of cells is minimized.

In this paper, we will compare the performance of a PPS and
an OQ switch. The following definitions help us formally com-
pare the two switches.

Shadow OQ switch: We will assume that there exists an OQ
switch, called the shadow OQ switch, with the same number of
input and output ports as the PPS. The ports on the shadow OQ
switch receive identical input traffic patterns and operate at the
same line rate as the PPS.

Mimic : Two different switches are said to mimic [7], [17],
[18] each other, if under identical inputs, identical packets de-
part from each switch at the same time.

An FCFS-OQ switch is work conserving, and so a necessary
(but not sufficient) condition for a switch to mimic output
queueing is that it be work conserving. A work-conserving
switch may reorder packets, while a switch which mimics an
FCFS OQ switch cannot. On the other hand, an IQ switch is
not in general work conserving because a cell can be held at an
input queue even though its output is idle.

Relative queueing delay: A cell’s relative queueing delay is
the increased queueing delay (if any) that it receives in a switch
relative to the delay it receives in the shadow OQ switch. Our
definition of relative queueing delay only includes differences
attributed to queueing. Differences in fixed delay (e.g., because
of differences in propagation delay) are not included in this mea-
sure.

Emulate: Two different switches are said to emulate each
other if, under identical inputs, they have identical relative
queueing delays. Thus, the termemulateis identical tomimic
if we ignore the fixed propagation delays in the switches. We
shall use the termemulatein the rest of the paper to compare
the PPS with an OQ switch.

For example, in a PPS, cells are sent over slower speed in-
ternal links of rate , and so incur a larger (but constant)
propagation delay relative to an OQ switch.

Push-In First-Out (PIFO) Queues: A PIFO [7] can be used
to represent a class of QoS scheduling disciplines such as WFQ,
GPS, and strict priorities.4 A PIFO queue is defined as follows:

1) arriving cells are placed at (or push-in to) an arbitrary
location in the queue;

2) the relative ordering of cells in the queue does not change
once cells are in the queue, i.e., cells in the queue cannot
switch places;

3) cells may be selected to depart from the queue only from
the head of line.

IV. PPS ARCHITECTURE

In this paper, we focus on the specific type of PPS illus-
trated in Fig. 1 in which the center-stage switches are OQ. The
figure shows a 4 4 PPS, with each port operating at rate.
Each port is connected to all three OQ switches (we refer to the
center-stage switches aslayers). When a cell arrives at an input
port, the demultiplexer selects a layer to send the cell to; the de-
multiplexer makes its choice of layer using a policy that we will
describe later. Since the cells from each external input, of line
rate , are spread (demultiplexed) overlinks, each input link
must run at a speed of at least .

Each layer of the PPS may consist of a single OQ or CIOQ
switch with memories operating slower than the rate of the ex-
ternal line. Each of the layers receive cells from theinput
ports, then switches each cell to its output port. During times of
congestion, cells are stored in the output queues of the center
stage, waiting for the line to the multiplexer to become avail-
able. When the line is available, the multiplexer selects a cell
among the correspondingoutput queues in each layer. Since
each multiplexer receives cells fromoutput queues, the queues
must operate at a speed of at least to keep the external line
busy.

Externally, the switch appears as an switch with each
port operating at rate . Note that neither the multiplexer nor the
demultiplexer contain any memory, and that they are the only
components running at rate.

We can compare the memory-bandwidth requirements of an
PPS with those for an OQ switch with the same aggregate

bandwidth. In an OQ switch, the memory bandwidth on each
port must be at least , and in a PPS at least

, but we can reduce the memory bandwidth further using
a CIOQ switch. From [7], we know that an OQ switch can be
mimicked precisely by a CIOQ switch operating at a speedup of
two. So, we can replace each of the OQ switches in the PPS with
a CIOQ switch, without any change in operation. The memory
bandwidth in the PPS is reduced to (one read operation
and two write operations per cell time), which is independent of

and may be reduced arbitrarily by increasing the number of
layers .

Choosing the value of : Our goal in this paper is to design
switches in which all the memories run at slower than the line
rate. If the center stage switches are CIOQ switches, this means
that . Similarly, for center-stage OQ
switches, we require that . This

4Note that some QoS scheduling algorithms do not use PIFO queueing, such
as weighted round robin and WFQ [24].
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(a)

(b)

Fig. 2. A 3� 3 PPS with an arrival pattern that makes it non-work-conserving. The notationCi: A, m denotes a cell numberedi, destined to output portA,
and sent to layerm. (a) Cells arriving at time slot 1 and being sent to the center stage switches. (b) Cells arriving at time slot 2 and being sent to the center stage
switches.

gives a lower bound on. Further, one can increase the value of
beyond the lower bound, allowing us to use an arbitrarily slow

memory device.
As an example, suppose ports, Gb/s, and

cells are 64 bytes long. Then a PPS with center-stage
CIOQ switches can be built such that the fastest memories run
at a speed no greater than Gb/s. For a 64-byte cell,
this corresponds to an access time of 42.6 ns, which is within
the random access time of commercial DRAMs.

A. The Need for Speedup

It is tempting to assume that because each layer is output
queued, it is possible for a PPS to emulate an OQ switch. This
is actually not the case unless we use speedup. As can be seen
from the following counterexample, without speedup a PPS is
not work conserving and, hence, cannot emulate an OQ switch.

Theorem 1: A PPS without speedup is not work conserving.
Proof: (By Counterexample):Consider the PPS in Fig. 2

with three ports and two layers ( and ). The external
lines operate at rate and the internal lines at rate .

Assume that the switch is empty at time , and that three
cells arrive, one to each input port, and all destined to output
port . If all the input ports choose the same layer, then the PPS
is non-work-conserving. If not, then at least two of these inputs
will choose the same layer and the other input will choose a dif-
ferent layer. Without loss of generality, let inputs 1 and 3 both
choose layer 1 and send cells and to layer 1 in the first
time slot. This is shown in Fig. 2(a). Also, let input port 2 send
cell to layer 2. These cells are shown in the output queues
of the internal switches and await departure. Now, we create an
adversarial traffic pattern. In the second time slot, the adversary
picks the input ports which sent cells to the same layer in the first
time slot. These two ports are made to receive cells destined to
output port . As shown in the figure, cells and arrive
at input ports 1 and 3 and they both must be sent to layer 2; this
is because the internal line rate between the demultiplexer and
each layer is only , limiting a cell to be sent over this link
only once every other time slot. Now the problem becomes ap-
parent: cells and are in the same layer, and they are the
only cells in the system destined for output portat time slot 2.

These two cells cannot be sent back to back in consecutive time
slots, because the link between the layer and the multiplexer op-
erates only at rate . So, cell will be sent, followed by an
idle time slot at output port , and the system is no longer work
conserving. And so, trivially, a PPS without speedup cannot em-
ulate an FCFS-OQ switch.

Definition 1: Concentration:Concentration is a term we will
use to describe the situation when a disproportionately large
number of cells destined to the same output are concentrated
on a small number of the internal layers.

Concentration is undesirable as it leads to unnecessary idling
because of the limited line rate between each layer and the mul-
tiplexer. One way to alleviate the effect of concentration is to
use faster internal links. In general, we will use internal links
that operate at a rate , where is the speedup of the in-
ternal link.

For example, in our counterexample in Theorem 1, the
problem could be eliminated by running the internal links at a
rate of instead of (i.e., a speedup of two). This solves
the problem because the external output port can now read the
cells back to back from layer two. However, this appears to
defeat the purpose of operating the internal layers slower than
the external line rate. Fortunately, we will see in Section IV that
the speedup required to eliminate the problem of concentration
is independent of the arriving traffic, , , and is almost
independent of . In particular, we find that with a speedup of
two, the PPS is work conserving and can emulate an FCFS-OQ
switch.

B. Link Constraints

The operation of a PPS is limited by two constraints. We call
these theinput link constraintand theoutput link constraint, as
defined below.

Definition 2: Input Link Constraint :An external input port
is constrained to send a cell to a specific layer at most once
every time slots. This is because the internal input links
operate times slower than the external input links. We call
this constraint the input link constraint (ILC).

Definition 3: Allowable Input Link Set:The ILC gives rise to
the allowable input link set AIL , which is the set of layers
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to which external input portcan start sending a cell in time slot
. This is the set of layers that external inputhas not started

sending any cells within the last time slots. Note that
AIL , .

AIL evolves over time, with at most one new layer being
added to, and at most one layer being deleted from, the set in
each time slot. If external inputstarts sending a cell to layer
at time slot , then layer is removed from AIL . The layer
is added back to the set when it becomes free at time .

Definition 4: Output Link Constraint:In a similar manner to
the ILC, a layer is constrained to send a cell to an external output
port at most once every time slots. This is because the
internal output links operate times slower than the external
output links. Hence, in every time slot an external output port
may not be able to receive cells from certain layers. This con-
straint is called the output link constraint (OLC).

Definition 5: Departure Time:When a cell arrives, the de-
multiplexer selects a departure time for the cell. A cell arriving
to input at time slot and destined to outputis assigned the
departure time DT . The departure time could, for ex-
ample, be the first time that outputis free (in the shadow OQ
switch) and able to send the cell. As we shall see later in Sec-
tion VI, other definitions are possible.

Definition 6: Available Output Link Set:The OLC gives rise
to the available output link set AOL DT , which is the
set of layers that can send a cell to external outputat time slot
DT in the future. AOL DT is the set of layers
that have not started sending any cells to external outputin the
last time slots before time slot DT . Note that,
since there are a total of layers, AOL DT ,

DT .
Like AIL , AOL DT can increase or decrease

by at most one layer per departure time slot, i.e., if a layer
starts to send a cell to output at time slot DT ,

the layer is deleted from AOL DT and then will
be added to the set again when the layer becomes free at
time DT . However, whenever a layer is
deleted from the set, the index DT is incremented.
Because, in a single time slot, up to cells may arrive at
the PPS for the same external output, the value of DT
may change up to times per time slot. This is because
AOL DT represents the layers available for use at
some time DT in the future. As each arriving cell is sent
to a layer, a link to its external output is reserved for some time
in the future. So, effectively, AOL DT indicates the
schedule of future departures for output, and at any instant,

DT , indicates the first time in the
future that output will be free.

C. Lower Bounds on the Size of the Link Constraint Sets

The following two lemmas will be used later to demonstrate
the conditions under which a PPS can emulate an FCFS-OQ
switch.

Lemma 1: The size of the available input link set,
AIL , for all , , where is the
speedup on the internal input links.

Consider external input port. The only layers to which
cannot send a cell are those which were used in the last

time slots. (The layer which was used time slots ago is
now free to be used again).AIL is minimized when a
cell arrives to the external input port in each of the previous

time slots, hence,AIL
.

Lemma 2: The size of the available output link set
AOL DT , for all , , .

Proof: The proof is similar to Lemma 1. We consider an
external output port which reads cells from the internal switches
instead of an external input port which writes cells to the internal
switches.

V. EMULATING AN FCFS-OQ SWITCH

In this section, we shall explore how a PPS can emulate an
FCFS-OQ switch. Note that in this section, in lieu of the FCFS
policy, the departure time of a cell arriving at inputand des-
tined to output at time , DT , is simply the first time
that output is free (in the shadow FCFS-OQ switch) and able
to send a cell.

A. Conditions for a PPS to Emulate an FCFS-OQ Switch

Theorem 2: (Sufficiency):If a PPS guarantees that each ar-
riving cell is allocated to a layer, such that AIL and

AOL DT , (i.e., if it meets both the ILC and the
OLC) then the switch is work conserving.

Proof: Consider a cell that arrives to external input
port at time slot destined for output port . The demul-
tiplexer chooses a layer that meets both the ILC and the
OLC; i.e., AIL AOL DT , where
DT is the index of AOL and represents the first time
that external output is free in the shadow FCFS-OQ switch in
the future, at time slot . Since AIL , the ILC is met,
and cell can be immediately written to layerin the PPS.
Since the center-stage switches are OQ switches, the cellis
immediately queued in the output queues of the center-stage
switch , where it awaits its turn to depart. Since the departure
time of the cell DT has already been picked when
it arrived at time , is removed from its queue at time
DT and sent to external output port. The reason that

can depart at DT immediately is because the link
from multiplexer to layer is available at time DT , as
layer was chosen such that AOL DT . Thus, if
for cell the chosen layermeets both the ILC and OLC, then
the cell leaves the PPS at time DT . By definition, each
cell can be made to leave the PPS at the first time that output
would be idle in the shadow FCFS-OQ switch, before cell
arrived. Thus, output is continuously kept busy if there are
cells destined for it, similar to that of the shadow OQ switch.
Obviously, since the shadow OQ switch is work conserving,
the PPS is work conserving.

Theorem 3: (Sufficiency):A speedup of two is sufficient for a
PPS to meet both the input and output link constraints for every
cell.

For the ILC and OLC to be met, it suffices to show
that there will always exist a layer such that
AIL AOL DT , i.e., that AIL
AOL DT , which must be satisfied if
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AIL AOL DT . From Lemma 1 and
Lemma 2, we know thatAIL AOL DT
if .

Corollary 1: A PPS can be work conserving if .
Having shown that a PPS can be work conserving, we now

show that with the same speedup, the PPS can emulate an
FCFS-OQ switch.

Theorem 4: (Sufficiency):A PPS can emulate an FCFS-OQ
switch with a speedup of .5

Proof: Consider a PPS with a speedup of which,
for each arriving cell, selects a layer that meets both the ILC and
the OLC. A cell destined to outputand arriving at time slot
is scheduled to depart at time slot DT , which is the index
of AOL DT . By definition, DT is the first
time in the future that output is idle in the shadow FCFS-OQ
switch. Since the center-stage switches are OQ switches, the cell
is queued in the output queues of the center-stage switches and
encounters zero relative delay. After subtracting for the propa-
gation delays of sending the cell over lower speed links of rate

, DT is equal to the time that the cell would depart
in an FCFS-OQ switch. Hence, a PPS can emulate an FCFS-OQ
switch.

It is interesting to compare the above proof with the require-
ments for a three-stage symmetrical Clos network to bestrictly
nonblocking[23], [25]. On the face of it, these two properties
are quite different. A PPS is a buffered packet switch, whereas
a Clos network is an unbuffered fabric, but because each the-
orem relies on links to and from the central stage being free
at specific times, the method of proof is identical and relies on
the pigeonhole principle. A detailed description of the PPS al-
gorithm suggested by Theorem 4, called the centralized packet
scheduling algorithm (CPA), appears in [2, Appendix A].

VI. PROVIDING QOS GUARANTEES

We now extend our results to find the speedup requirement
for a PPS to provide QoS guarantees. To do this, we find the
speedup required for a PPS to implement any PIFO scheduling
discipline.

Theorem 5: (Sufficiency):A PPS can emulate any OQ switch
with a PIFO queueing discipline with a speedup of .6

Proof: As defined in Section III, a PIFO queueing policy
can insert a cell anywhere in the queue but it cannot change the
relative ordering of cells once they are in the queue. Consider
a cell that arrives to external input portat time slot des-
tined to output port . The demultiplexer determines the time
that each arriving cell must depart, DT , to meet its delay
guarantee. The decision made by the demultiplexer at input
amounts to selecting a layer so that the cell may depart on time.
Notice that this is very similar to Section V in which cells de-
parted in FCFS order, requiring only that a cell depart the first
time that its output is free after the cell arrives. The difference
here is that DT may be selected to be ahead of cells al-
ready scheduled to depart from output. So, the demultiplexer’s

5A tighter boundS � k=dk=2e can easily be derived, which is of theoretical
interest for smallk.

6Again, a tighter boundS � k=dk=3e can easily be derived, which is of
theoretical interest for smallk.

choice of sending to layeran arriving cell must now meet
the following three constraints.

1) The link connecting the demultiplexer at inputto layer
must be free at time slot. Hence, AIL .

2) The link connecting layer to output must be free at
DT , i.e., AOL DT .

3) All the other cells destined to outputafter must also
find a link available. In other words, if the demultiplexer
picks layer for cell , it needs to ensure that no other
cell requires the link from to output within the next

time slots. The cells that are queued in the
PPS for output port (and have a departure time between
DT DT ), may have already

been sent to specific layers (since they could have arrived
earlier than time ). It is, therefore, necessary that the
layer be distinct from the layers that the next
cells use to reach the same output. We can write this con-
straint as AOL DT .

The following natural questions arise.
1) What if some of the cells which depart after cellhave

not yet arrived?This is possible, since cell may have been
pushed in toward the tail of the PIFO queue. In such a case, the
cell has more choice in choosing layers and the constraint
set AOL DT will allow more layers.7

Note that cell need not bother about the cells which have not
as yet arrived at the PPS, because the future arrivals, which can
potentially conflict with cell , will take into account the layer
to which cell was sent to. The CPA algorithm will send these
future arrivals to a layer distinct from.

2) Are these constraints sufficient?The definitions of the
OLC and AOL mandate that when a multiplexer reads the cells
in a given order from the layers, the layers should always be
available. When a cell is inserted in a PIFO queue, the only
affect it has is that it can conflict with the cells which
are scheduled to leave before and after it in the PIFO queue.
For these cells, the arriving cell can only
increase the time between when these cells depart. Hence, these

cells will not conflict with each other, even after
insertion of cell . Also, if conditions 1 and 2 are satisfied,
then these cells will also not conflict with cell .
Note that cell does not affect the order of departures of
any other cells in the PIFO queue. Hence, if the PIFO queue
satisfied the OLC constraint before the insertion of cell, then
it will continue to satisfy the OLC constraint after it is inserted.

Thus, layer must satisfy

AIL AOL DT

AOL DT

For a layer to exist, we require

AIL AOL DT

AOL DT

7FCFS is a special limiting case of PIFO. Newly arriving cells are pushed in
at the tail of an output queue and there are no cells scheduled to depart after a
newly arriving cell. Hence, AOL(j;DT(n; i; j)+dk=Se�1), defined at time
t, will include all thek layers and so the constraint disappears, leaving us with
only two of the three conditions above, as for FCFS-OQ in Section V.
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(a) (b) (c) (d)

Fig. 3. Insertion of cells in a PIFO order in a PPS with ten layers.Q refers to output queue number one in the internal switchk. The shaded layers describe the
sets specified for each figure. (a) AIL and the existing PIFO order. The AIL constrains the use of layersf1; 2; 4; 5; 7; 8; 10g. (b) Intersection of the two AOL sets.
The cell is to be inserted before cell number 7. The two AOLs constrain the use of layersf1;6; 7; 10g (c) Candidate layers for insertion of cell. The intersection
constrains the use of layersf1;7; 10g. (d) New PIFO order after insertion. Layer 10 is chosen. The cell number 7 is inserted.

which is satisfied when

AIL AOL DT

AOL DT

From Lemmas (1) and (2), we know that

AIL AOL DT

AOL DT

if .
Fig. 3 shows an example of a PPS with layers and

. A new cell arrives at time , destined to output 1,
and has to be inserted in the priority queue for output 1 which
is maintained in a PIFO manner. Assume that the AIL at time

constrains the use of layers . These layers
are shown shaded in Fig. 3(a). It is decided that cellmust be
inserted between and . That means that cell cannot use
any layers to which the previous cells before
(i.e., , , and ) were sent to. Similarly, cell cannot
use any layers to which the three cells after including ,
(i.e., , , and ) were sent to. The above two constraints
are derived from the AOL sets for output 1. They require that
only layers in be used, and only layers in

be used, respectively. Fig. 3(b) shows the
intersection of the two AOL sets for this insertion. Cell is
constrained by the AOL to use layers , which sat-

isfies both the above AOL sets. Finally, a layer is chosen such
that the AIL constraint is also satisfied. Fig. 3(c) shows the can-
didate layers for insertion i.e., layers 1, 7, and 10. Cellis then
inserted in layer 10.

VII. D ISTRIBUTED APPROACH

A. Limitations of Centralized Approach

Unfortunately, the centralized approach described up until
now is useful only in theory. It suffers from two main problems.

1) Communication complexity: The centralized approach
requires each input to contact a centralized scheduler
every arbitration cycle. With ports, requests must be
communicated to and processed by the arbiter each cycle.
This requires a high-speed control path running at the
line rate between every input and the central scheduler.
Furthermore, the centralized approach requires that the
departure order (i.e., the order in which packets are sent
from each layer to a multiplexer) be conveyed to each
multiplexer and stored.

2) Speedup: The centralized approach requires a speedup of
two (for an FCFS PPS) in the center-stage switches. The
PPS, therefore, overprovisions the required capacity by a
factor of two and the links are on average only 50% uti-
lized. This gets worse for a PPS which supports qualities
of service, where a speedup of three implies that the links
on average are only 33% utilized.

In addition to the difficulty of implementation, the centralized
approach does not distribute traffic equally among the center-
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stage switches, making it possible for buffers in a center-stage
switch to overflow even though buffers in other switches are not
full. This leads to inefficient memory usage.8

Another problem with the centralized approach is that it re-
quires each multiplexer to explicitly read, or fetch, each packet
from the correct layer in the correct sequence. This feedback
mechanism makes it impossible to construct each layer from a
preexisting unaltered switch or router.

Thus, a centralized approach leads to large communication
complexity, high speedup requirement, inefficient utilization of
buffer memory, and special-purpose hardware for each layer. In
this section, we overcome these problems via the introduction
of small memories (presumably on-chip) in the multiplexers and
demultiplexers and a distributed algorithm which:

1) enables the demultiplexers and multiplexers to operate in-
dependently, eliminating the communication complexity;

2) removes the speedup requirement for the internal layers;
3) allows the buffers in the center-stage switches to be uti-

lized equally;
4) allows a feedforward data path in which each layer may

be constructed from preexisting standard OQ switches.

B. Use of a Distributed Algorithm

The goals outlined in Section VII-A naturally lead to the fol-
lowing modifications.

1) Distributed decisions: A demultiplexer decides which
center-stage switch to send a cell to, based only on the
knowledge of cells that have arrived at its input. The de-
multiplexers do not know the AOL sets, and so have
no knowledge of the distribution of cells in the center-
stage switches for a given output. Hence, a demultiplexer
cannot choose a center-stage switch such that the load is
globally distributed over the given output. However, it is
possible to distribute the cells which arrive at the demul-
tiplexer for every output equally among all center-stage
switches. Given that we also wish to spread traffic uni-
formly across the center-stage switches, each demulti-
plexer will maintain a separate round-robin pointer for
each output, and dispatch cells destined for each output
to center-stage switches in a round-robin manner.

2) Small coordination buffers operating at the line rate:
If the demultiplexers operate independently and imple-
ment a round robin to select a center stage, they may vi-
olate the input link constraint. The input link constraint
can be met by the addition of a coordination buffer in the
demultiplexer which can buffer the cells temporarily be-
fore sending them to the center-stage switches. Similarly,
it is possible for multiple independent demultiplexers to
choose the same center-stage switch for cells destined to
the same output. This causes concentration and cells can
become missequenced. The order of packets can be re-
stored by the addition of a coordination buffer in each
multiplexer to resequence the cells before transmitting
them on the external line.

8It is possible to create a traffic pattern that does not utilize up to 50% of the
buffer memory for a given output port.

Fig. 4. Demultiplexer, showingk FIFOs, one for each layer, with each FIFO
of lengthd cells. The example PPS hask = 3 layers.

We will see that the coordination buffers are small and are
the same size for both the multiplexer and demultiplexer. More
importantly, they help to eliminate the need for speedup.

C. Consequences of Using a Distributed Algorithm

The coordination buffer operates at the line rateand so
compromises our original goal of having no memories running
at the line rate. However, we will show that the buffer size is
proportional to the product of the number of portsand the
number of layers . Depending on these values, it may be small
enough to be placed on chip, and so may be acceptable.

Since there is concentration in the PPS and the order of cells
has to be restored, we will have to give up the initial goal of em-
ulating an OQ switch. However, we will show that the PPS can
emulate an FCFS-OQ switch within a small relative queueing
delay bound.

D. Modifications Made to the PPS

Addition of coordination buffers : Fig. 4 shows how the co-
ordination buffers are arranged in each demultiplexer as mul-
tiple equal-size FIFOs, one per layer. FIFO holds cells at
demultiplexer destined for layer. When a cell arrives, the de-
multiplexer makes a local decision (described below) to choose
which layer the cell will be sent to. If the cell is to be sent to
layer , the cell is queued first in until the link becomes
free. When the link from input to layer is free, the head of
line cell (if any) is removed from and sent to layer.

The buffers in each multiplexer are arranged the same way,
and so FIFO holds cells at multiplexerfrom layer . We
will refer to the maximum length of a FIFO ( or )
as the FIFO length.9 Note that if each FIFO is of length, then
the coordination buffer can hold a total of cells.

Modified PPS dispatch algorithm: The modified PPS algo-
rithm proceeds in three distinct parts.

Step 1) Split every flow in a round-robin manner in the
demultiplexer: Demultiplexer maintains sepa-
rate round-robin pointers ; one for each
output. The pointers contain a value in the range

. If pointer , it indicates that the
next arriving cell destined to outputwill be sent
to layer . Before being sent, the cell is written tem-
porarily into the coordination FIFO where it

9It will be convenient for the FIFO length to include any cells in transmission.
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waits until its turn to be delivered to layer. When
the link from demultiplexer to layer is free, the
head-of-line cell (if any) of is sent.

Step 2) Schedule cells for departure in the center-stage
switches: When scheduling cells in the center stage,
our goal is to deliver cells to the output link at their
corresponding departure time in the shadow OQ
switch (except for a small relative delay). Step 1)
introduced a complication that we must deal with:
cells reaching the center stage have already encoun-
tered a variable queueing delay in the demultiplexer
while they waited for the link to be free. This
variable delay complicates our ability to ensure that
cells depart at the correct time and in the correct
order. Shortly, we will see that although variable,
this queueing delay is bounded, and so we can
eliminate the variability by deliberately delaying all
cells as if they had waited for the maximum time in
the demultiplexer and, hence, equalize the delays.
Though strictly not required, we do this at the input
of the center-stage switch. Each cell records how
long it was queued in the demultiplexer, and then
the central stage delays it further until it equals the
maximum. We refer to this step asdelay equal-
ization. We will see later that delay equalization
helps us simplify the proofs for the delay bounds in
Section VIII.

After the delay equalization, cells are sent to the
output queues of the center-stage switches and are
scheduled to depart in the usual way, based on the
arrival time of the cell to the demultiplexer. When
the cell reaches the head of the output queues of the
center-stage switch, it is sent to the output multi-
plexer when the link is next free.

Step 3) Reordering the cells in the multiplexer: The coor-
dination buffer in the multiplexer stores cells where
they are resequenced and then transmitted in the cor-
rect order.

It is interesting to compare this technique with
the load-balanced switch proposed by Changet al.
in [28]. In their scheme, load balancing is performed
by maintaining a single round-robin list at the inputs
(i.e., demultiplexers) for a two-stage switch. The au-
thors show that this leads to guaranteed throughput
and low average delays, although packets can be
missequenced. In [29], the authors extend their
earlier work by using the same technique proposed
here: send packets from each input to each output
in a round-robin manner. As we shall see, this tech-
nique helps us bound the missequencing in the PPS
and also gives a delay guarantee for each packet.

VIII. E MULATING AN FCFS-OQ SWITCH WITH

A DISTRIBUTED ALGORITHM

In what follows, we shall use to denote time in units of time
slots. We shall also useto denote time, and use it only when
necessary. Recall that if the external line rate isand cells are

of fixed size , then each cell takes units of time to arrive,
and .

Lemma 3: The number of cells that demulti-
plexer queues to FIFO in time slots is bounded by

if

if

Proof: Since the demultiplexer dispatches cells in a round-
robin manner for every output, for everycells received by a
demultiplexer for a specific output, exactly one cell is sent to
each layer. We can write , where

is the sum of the number of cells sent by the demul-
tiplexer to output in any time interval of time slots, and

is the sum of the number of cells sent by the demulti-
plexer to all outputs in that time interval. Let . Then
we have

since is bounded by . The proof for is obvious.

We are now ready to determine the size of the coordination
buffer in the demultiplexer.

Theorem 6: (Sufficiency):A PPS with independent demulti-
plexers and no speedup can send cells from each input to each
output in a round-robin order with a coordination buffer at the
demultiplexer of size cells.

Proof: A cell of size corresponds to units of time,
allowing us to rewrite Lemma 3 as
(where is in units of time). Thus the number of cells written
into each demultiplexer FIFO is bounded by cells
over all time intervals of length. This can be represented as a
leaky bucket source with an average rate cells per
unit time and a bucket size cells for each FIFO. Each
FIFO is serviced deterministically at rate cells per
unit time. Hence, by the definition of a leaky bucket source [26],
a FIFO buffer of length will not overflow.

It now remains for us to determine the size of the coordination
buffers in the multiplexer. This proceeds in an identical fashion.

Lemma 4: The number of cells that multiplexer
delivers to the external line from FIFO 10in time interval

time slots, is bounded by

if

if

Proof: Cells destined to multiplexer from a demulti-
plexer are arranged in a round-robin manner, which means
that for every cells received by a multiplexer from a specific

10FIFOQ (j; l) holds cells at multiplexerj arriving from layerl.
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input, exactly one cell is read from each layer. We write ,
, where is the sum

of the number of cells from demultiplexer which were
delivered to the external line by multiplexerin time interval

, and is the sum of the number of cells from all the
demultiplexers that were delivered to the external line by the
multiplexer in time interval . Let . Then we have

because is bounded by . The proof for is
obvious.

Finally, we can determine the size of the coordination buffers
at the multiplexer.

Theorem 7: (Sufficiency):A PPS with independent multi-
plexers and no speedup can receive cells for each output in a
round-robin order with a coordination buffer of size cells.

Proof: The proof is almost identical to Theorem 6. From
Lemma 4, we can bound the rate at which cells in a multiplexer
FIFO need to be delivered to the external line by
cells over all time intervals of length. Cells are sent from each
layer to the multiplexer FIFO at fixed rate cells per
unit time. We can see as a result of thedelay equalizationstep
in Section VII-D that the demultiplexer and multiplexer systems
are exactly symmetrical. Hence, if each FIFO is of length
cells, the FIFO will not overflow.

Now that we know the size of the buffers at the input demul-
tiplexer and the output multiplexer, both of which are serviced
at a deterministic rate, we can bound the relative queueing delay
with respect to an FCFS-OQ switch.

Theorem 8: (Sufficiency):A PPS with independent demulti-
plexers and multiplexers and no speedup, with each multiplexer
and demultiplexer containing a coordination buffer of size
cells, can emulate an FCFS-OQ switch with a relative queueing
delay bound of internal time slots.

Proof: We consider the path of a cell in the PPS where the
cell may potentially face a queueing delay. These are as follows.

1) The cell may be queued at the FIFO of the demulti-
plexer before it is sent to its center-stage switch. From
Theorem 6, we know that this delay is bounded by
internal time slots.

2) The cell first undergoes delay equalization in the center-
stage switches and is sent to the output queues of the
center-stage switches. It then awaits service in the output
queue of a center-stage switch.

3) The cell may then face a variable delay when it is read
from the center-stage switches. From Theorem 7, this is
bounded by internal time slots.

Thus, the additional queueing delay, i.e., the relative queueing
delay faced by a cell in the PPS, is no more than
internal time slots.

IX. I MPLEMENTATION ISSUES

Given that our main goal is to find ways to make an FCFS
PPS (more) practical, we now reexamine its complexity in light
of the techniques described.

1) Demultiplexer
a) Each demultiplexer maintains a buffer of size

cells running at the line rate, arranged asFIFOs.
Given our original goal of having no buffers run at
the line rate, it is worth determining how large the
buffers need to be and whether they can be placed on
chip. For example, if ports, cells are 64
bytes long, , and the center-stage switches
are CIOQ switches, then the coordination buffer is
about 5 Mb per multiplexer and demultiplexer. This
can be (just) placed on chip using today’s SRAM
technology, and so can be made both fast and wide.
However, for much larger , , or , this approach
may not be practicable.

b) The demultiplexer must add a tag to each cell in-
dicating the arrival time of the cell to the demulti-
plexer. Apart from that, no sequence numbers need
to be maintained at the inputs or added to cells.

2) Center-stage OQ switches
The input delay (the number of internal time slots
for which a cell had to wait in the demultiplexer’s
buffer) can be calculated by the center-stage switch
using the arrival timestamp. If a cell arrives to a layer
at internal time slot , it is first delayed until internal
time slot , where , to
compensate for its variable delay in the demultiplexer.
After the cell has been delayed, it can be placed directly
into the center-stage switch’s output queue.

3) Multiplexers
a) Each multiplexer maintains a coordination buffer of

size running at the line rate .
b) The multiplexer reorders cells based upon the ar-

rival timestamp. Note that if FCFS order only needs
to be maintained between an input and an output,
then the timestamps can be eliminated. A layer
simply tags a cell with the input port number on
which it arrived. This would then be a generaliza-
tion of the methods described in [27].

c) We note that if a cell is dropped by a center-stage
switch, then the multiplexers cannot detect the
lost cell in the absence of sequence numbers. This
would cause the multiplexers to resequence cells
incorrectly. A solution to this is to mandate the
center-stage switches to make the multiplexers
aware of dropped cells by transmitting the headers
of all dropped cells.

X. CONCLUSION

While it is difficult to predict the growth of the Internet over
the coming years, it seems certain that packet switches will be
required with: 1) increased switching capacity; 2) support for
higher line rates; and 3) support for differentiated qualities of
service. All three of these requirements present challenges of
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their own. For example, higher capacity switches may require
new architectures, higher line rates may grow to exceed the ca-
pabilities of commercially available memories, making it im-
practical to buffer packets as they arrive, and the need for dif-
ferentiated qualities of service may require performance com-
parable to OQ switches.

We consider here a mechanism that attempts to satisfy these
goals: a PPS which achieves high capacity by placing multiple
packet switches in parallel, rather than in series as is common
in multistage switch designs. Hence, each packet that passes
through the system encounters only a single stage of buffering;
furthermore, and of greatest interest, the packet buffer memories
in the center-stage switches operate slower than the line rate.

The main result of this paper is that it is possible to build
in a practical way a PPS that can emulate an FCFS-OQ packet
switch regardless of the nature of the arriving traffic. In theory,
a PPS could emulate an OQ switch which supports guaranteed
qualities of service, although the implementation of such a PPS
does not yet seem practical.

In summary, we think of this work as a step toward building
high-capacity switches in which memory bandwidth is not the
bottleneck.
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