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Abstract

Background Interstitial fibrosis is involved in the progression of various chronic kidney diseases and renal failure.
Diosmin is a naturally occurring flavonoid glycoside that has antioxidant, anti-inflammatory, and antifibrotic
activities. However, whether diosmin protects kidneys by inhibiting renal fibrosis is unknown.

Methods The molecular formula of diosmin was obtained, targets related to diosmin and renal fibrosis were screened,
and interactions among overlapping genes were analyzed. Overlapping genes wereused for gene function and KEGG
pathway enrichment analysis.TGF-1 was used to induce fibrosis in HK-2 cells, and diosmin treatment was
administered. The expression levels of relevant mRNA were then detected.

Results Network analysis identified 295 potential target genes for diosmin, 6828 for renal fibrosis, and 150 hub
genes. Protein—protein interaction network results showed that CASP3, SRC, ANXA5, MMP9, HSP90AAT, IGF1, RHOA,
ESR1, EGFR, and CDC42 were identified as key therapeutic targets. GO analysis revealed that these key targets may
be involved in the negative regulation of apoptosis and protein phosphorylation. KEGG indicated that pathways in
cancer, MAPK signaling pathway, Ras signaling pathway, PI3K-Akt signaling pathway, andHIF-1 signaling pathway
were key pathways for renal fibrosis treatment. Molecular docking results showed that CASP3, ANXAS5, MMP9, and
HSP90AAT1 stably bind to diosmin. Diosmin treatment inhibited the protein and mRNA levels of CASP3, MMP9,
ANXAS5, and HSP90AA1. Network pharmacology analysis and experimental results suggest that diosmin ameliorates
renal fibrosis by decreasing the expression of CASP3, ANXA5, MMP9, and HSP90AAT1.

Conclusions Diosmin has a potential multi-component, multi-target, and multi-pathway molecular mechanism of
action in the treatment of renal fibrosis. CASP3, MMP9, ANXAS5, and HSP90AA1 might be the most important direct
targets of diosmin.

Introduction

The prevalence of chronic kidney disease (CKD) is estimated to be 8—16% worldwide [1], threatening human health
and imposing a heavy economic burden on patients. Renal fibrosis is a pathological feature common to almost all
CKD cases that progress to end-stage renal disease [2]. Renal fibrosis is a progressive pathophysiological change
from healthy to injured kidney tissues, which are damaged until functional loss. In this process, the kidney is affected
by various pathogenic factors such as infection, inflammation, blood circulation disorders, and immune response,
resulting in damage and sclerosis of intrinsic cells. In later stages of development, an intense collagen deposition and
accumulation occurs, resulting in gradual sclerosis of the renal parenchyma and scarring until the kidney completely
loses its organ function [3]. Therefore, early prevention and treatment of renal fibrosis is of great significance to delay
the progression of CKD. However, owing to the lack of treatments for renal fibrosis, the search for new therapeutic
drugs is an important strategy to prevent renal fibrosis.

Diosmin is a glycosylated polyphenolic flavonoid with antioxidant, anti-inflammatory, and anti-apoptotic
pharmacological activities [4]. In recent years, the anti-fibrotic effect of Diosmin has also received increasing
attention. Diosmin has been shown to reduce paraquat-induced lung inflammation and fibrosis by increasing
glutathione levels and catalase activity and by decreasing hydroxyproline and malondialdehyde levels. In addition,
Gerges et al. [5] demonstrated that diosmin ameliorates inflammation, insulin resistance, and liver fibrosis in a rat
model of nonalcoholic steatohepatitis. Recently, Geshnigani et al. [6] showed that diosmin ameliorates gentamicin-
induced renal injury through antioxidant and anti-inflammatory activities in rats. However, whether diosmin protects
against chronic kidney injury by inhibiting interstitial fibrosis remains unclear. This study combined network
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pharmacology and molecular docking techniques to comprehensively reveal the mechanisms underlying the
therapeutic effects of diosmin on renal fibrosis and to predict the key targets and signaling pathways involved.

Materials And Methods

Query of the targets of diosmin

‘Diosmin’ was used as a search term in PubChem database (https://pubchem.ncbi.nlm.nih.gov/) [7]. The SDF format
file of diosmin was obtained and imported into PharmMapper (https://www.lilab-ecust.cn/pharmmapper/) for
prediction. This method is based on reverse pharmacophore matching of structural features. The molecular
structures of the diosmin components were submitted to the PharmMapper database, and multiple conformations
were generated by optimizing the compound structure. The standardized diosmin components of the protein targets
were matched with all the human drug targets in the PharmMapper database in UniProt (https://www.uniprot.org/),
and protein targets with a parameter matching score (fit) greater than 2 were selected as the component targets.

Screening the therapeutic targets for renal fibrosis

Human genes associated with renal fibrosis were gathered from three databases: OMIM (https://omim.org/) [8],
GeneCards (https://www.genecards.org/) [9], and DisGenet (https://www.disgenet.org/) [10]. The search term ‘renal
fibrosis’ was used to retrieve valuable targets from three databases. Finally, the intersection targets of diosmin and
renal fibrosis were displayed using a Draw Venn Diagram (http://bioinformatics.psb.ugent.be/webtools/Venn/) [11].

Protein—protein interaction (PPI)

PPIs of the therapeutic targets of diosmin in the treatment of renal fibrosis were gathered using STRING
(https://string-db.org/) [18], a database of known and predicted PPIs that uses bioinformatic strategies to collect
information. In this study, we limited the species to ‘Homo sapiens’, collected the PPIs with confidence scores > 0.4
and hid the disconnected nodes in the network.

Gene ontology (GO) and pathway enrichment analysis

To further explore the mechanisms of diosmin for renal fibrosis treatment, the intersection of targets of diosmin and
the common proteins between renal fibrosis were additionally searched using GO (http://geneontology.org/) [12],
enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) (www.kegg.jp/kegg/kegg1.html) [13], and
pathway analysis via the online platform DAVID 6.8 (DAVID, https://david.ncifcrf.gov/) [14]. The results obtained by
mapping the diosmin targets overlapping renal fibrosis targets were imported into the online software DAVID with H.
sapiens set and P < 0.05 selected, and the results were analyzed by selecting GO Biological Processes (BP), GO
Molecular Functions (MF), GO Cellular Components (CC), and KEGG Pathway for GO and KEGG analysis of the
obtained results.

Molecular docking

The 2D structures of diosmin were downloaded from PubChem (https://pubchem.ncbi. nim.nih.gov/)
(https://pubchem.ncbi.nim.nih.gov/) [7] and TCMSP database; they were then imported to Chemofce 2014 software
for the SDF format switching to mol2 format (3D structure). The 3D structures of diosmin were obtained from the
RCSB PDB database (http://www.rcsb.org/pdb/) [15] and were input to the PyMol software to separate the original
ligand and remove the hydrone, phosphate radical, and other inactive ligands from the proteins [16]. The 3D
structures of small molecules (ligands) and target proteins were imported into Auto Dock Vina software to acquire the
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PDBQT format, and finally docking the molecules with the target proteins; the affinity and the hydrogen bond
interaction was shown using PyMol [17].

Reagent

Diosmin (cat. no.: HY-N0178) was purchased from MedChemExpress (Monmouth Junction, NJ, USA). Human
proximal tubular epithelial (HK-2) cells were obtained from American Type Culture Collection (Manassas, VA, USA).
Fetal bovine serum was obtained from Millipore Sigma (Burlington, MA, USA). Transforming growth factor-B1 (TGF-
B1) was purchased from Proteintech (Chicago, IL, USA). Reverse transcription kit and SYBR Green PCR Master Mix
were purchased from Vazyme (Nanjing, China).

Cell culture and treatment

To assess cell viability, HK-2 cells were cultured at 1x10* cells/well in 96-well plates. After treatment with diosmin for
3 h, they were incubated with 0.5 mg/mL of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide solution
(100 pL/well) for 4 h. After washing with 1x PBS, dimethyl sulfoxide (150 uL/well) was added to dissolve purple
crystals. The absorbance of the samples was measured at 570 nm using a microplate reader (BioTek Instruments, VT,
USA). Furthermore, diosmin was administered to TGF-B1 (5 ng/mL)-stimulated HK-2 cells. The effects of diosmin on
core genes were observed in HK-2 cells.

Real-time PCR

Total RNA was extracted from HK-2 cells or mouse kidney tissues using TRIzol® reagent. Complementary DNA was
synthesized using Hiscript Q RT SuperMix and used with the qPCR (+gDNA wiper) reverse transcriptase kit (Vazyme).
The sequences of the used primes for Real-time PCR are listed in Table 1. Messenger (m)RNA expression in the
corresponding samples was normalized to GAPDH mRNA.

Statistical analyses

Values are presented as the mean + SEM. Quantitative data were tested for normality. Two-tailed unpaired t-test and
one-way ANOVA were used to compare differences between two groups and multiple groups, respectively. Prism 9.0
(GraphPad, San Diego, CA, USA) was used for the statistical analyses. P< 0.05 was designated significant.

Results

The targets of diosmin and therapeutic targets for renal fibrosis

Figure 1 shows the flow of the network pharmacological analysis of Diosmin against renal fibrosis. The chemical
formula of the diosmin molecule C,gH3,045 was obtained from PubChem, and the targets related to diosmin were
screened using the PharmMapper database and corrected using the UniProKB tool in the UniProt database. A total of
295 potential targets, including A1AT, CASP3, MAPK14, and MMP9, were screened after removing targets that were
unrelated to humans and those without correspondence or duplication. A total of 266, 570, and 6546 target genes
closely related to renal fibrosis were screened in the three commonly used databases of GeneCards, OMIM, and Dis
Genet, respectively. A total of 6828 genes were identified after duplicates were eliminated. These results suggest that
numerous factors cause renal fibrosis, and the pathogenesis is complex. Gene datasets obtained from the screening
of renal fibrosis-related targets and diosmin component-related targets were imported into an online Venn diagram,
and a total of 150 intersecting targets were obtained (Figure 2).
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Drug-disease target PPI network

A total of 150 hub genes were screened by mapping the diosmin component targets to each other and to the renal
fibrosis disease targets. The 150 targets were imported into the STRING database and imported into Cytoscape for
visualization and analysis, and a network consisting of 112 nodes and 721 edges was obtained. The network density
was 0.588, and the average node degree was 12.9. When the network density is greater than 0.5, and the average
node degree is greater than 3, the network has a good correlation (Figure 3). In the network, the top ten targets with
high degrees of freedom were caspase 3 (CASP3), SRC proto-oncogene, non-receptor tyrosine kinase (SRC), annexin
A5 (ANXA5), matrix metallopeptidase 9 (MMP9), heat shock protein 90 alpha family class A member 1 (HSP90AAT1),
insulin-like growth factor 1 (IGF1), ras homolog family member A (RHOA), estrogen receptor 1 (ESR1), epidermal
growth factor receptor (EGFR), and cell division cycle 42 (CDC42) (Figure 4). The related gene targets focused on
apoptosis and inflammatory pathways.

GO and KEGG pathway enrichment

GO and KEGG pathway enrichment results were plotted as bar graphs and bubble plots by gene number for visual
analysis. A total of 291 BP, 44 CC, 85 MF, and 98 KEGG signaling pathways were identified. GO analysis showed that
diosmin mainly plays a role in the BPs of apoptosis negative regulation, protein phosphorylation, protein
autophosphorylation, peptidyl-tyrosine phosphorylation, transmembrane receptor protein tyrosine kinase signaling
pathway, response to foreign body stimulation, cellular response to insulin stimulation, and positive regulation of
phosphatidylinositol 3-kinase signaling. Apoptosis was correlated with the development of renal fibrosis,

while protein phosphorylation was associated with the regulation of protein activity. CC was mainly enriched in the
cytoplasm and nucleoplasm. MF analysis showed an association between homologous protein binding and ATP
binding (Figure 5). KEGG enriched 98 signaling pathways (P < 0.05), including cancer, lipids and atherosclerosis,
proteoglycans in cancer, fluid shear stress and atherosclerosis, endocrine resistance, and Rap1, Ras, PI3K-Akt,
chemokine, MAPK, FoxO, T-cell receptor, HIF-1, and estrogen signaling pathways (Figure 6). Among these, the MAPK,
Ras, PI3K-Akt, Fox0, and HIF-1 signaling pathways were closely related to renal fibrosis.

Molecular docking

Diosmin and the top ten targets ranked by degree were selected for molecular docking (Table 2). The binding capacity
score is an important indicator of the ability of the receptor and ligand to bind to each other; the lower the binding
capacity score, the more stable the complex formed. Following the convention, a binding capacity between the tested
molecules and proteins was assumed to exist when the binding energy score was greater than 4.25. Scores greater
than 5.0 indicate relatively high binding affinity [49]. Hence, the selected diosmin was docked with MMP9, ANXAS5,
CASP3, and HSP90AA1 using AutoDock according to its binding capacity (Figure 7).

Effect of diosmin on the expression of target genes in HK-2

We further investigated the anti-fibrotic effect of diosmin on HK-2 cells. Diosmin treatment (0, 1, 5, 10, 25, 50, or 75
uM) of HK-2 cells did not significantly inhibit the viability (Figure 8). Cell viability was slightly inhibited at a
concentration of 100 uM. Therefore, we treated the cells with 75 pM diosmin. Compared with the TGF-81 group, the
mMRNA expression of ANXAS5, CASP3, MMP9, and HSP90AAT1 was significantly decreased in the diosmin group (Figure
9).

Discussion
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Renal fibrosis is a common pathological feature in the terminal stages of various CKDs and is closely related to their
prognosis [18]. Early prevention and treatment of renal fibrosis are of great significance in delaying the progression of
chronic kidney disease. However, there is a lack of effective drugs for the treatment of renal fibrosis. Network
pharmacology is an emerging discipline built on the disease and pharmacogenetic level. By predicting new drug
targets, identifying modes of action, and exploring new drugs, network pharmacology opens a new research
paradigm of complex web-like relationships between multiple targets and multiple diseases. In this study, we used a
systematic network pharmacological approach to explore the potential molecular mechanisms of action of diazepine
in renal fibrosis. Through PPI network and molecular docking module analyses, CASP3, MMP9, ANXA5, and
HSP90AA1 were identified as major pivotal gene targets in renal fibrosis. Additionally, these four core genes were
validated in HK-2 cells.

We found that core genes are mainly involved in the biological process of apoptosis. The protein encoded by CASP3
is a cysteine-aspartic acid protease that plays a central role in the execution phase of cell apoptosis. Caspase 3 is
also a critical upstream regulator in the development of renal fibrosis [19]. Caspase 3 inhibitors have been shown to
reduce renal interstitial fibrosis in diabetic nephropathy or obstructive nephropathy [20, 21]. Annexin 5is a
phospholipase A2 and protein kinase C inhibitory protein with calcium channel activity that has a potential role in
cellular signal transduction, inflammation, growth, and differentiation [22]. Annexin V binds specifically to
phosphatidylserine (PS) and is often used as a sensitive indicator of early apoptosis of cells. To date, no studies have
proved a direct correlation between this protein and renal fibrosis. Matrix metalloproteinases (MMPs) belong to the
family of zinc-dependent endoproteases. Their functions are based on remodeling and degradation of protein
components of the extracellular matrix (ECM) [23]. Tan et al. suggested that MMP-9 directly contributes to the
pathogenesis of renal fibrosis via induction of tubular cell epithelial-mesenchymal transition and osteopontin
cleavage, which in turn recruits macrophages [24]. HSP90AA1 (heat shock protein 90 alpha family class A member 1)
is a highly conserved molecular chaperone ubiquitously expressed in eukaryotic cells [25]. Research has suggested
that myocardial fibroblasts from HSP90AA1 knock-out mice exhibited low collagen production [26]. Therefore, the
core genes CASP3, ANXA5, MMP9, and HSP90AAT may play key roles in the inhibition of the occurrence and
development of renal fibrosis.

The core genes SRC, IGF1, RHOA, ESR1, EGFR and CDC42 may play a key role in the inhibition of the development
and progression of renal fibrosis by diosgenin. This SRC gene may play a role in the regulation of embryonic
development and cell growth. The protein encoded by this gene is a tyrosine-protein kinase whose activity can be
inhibited by phosphorylation by c-SRC kinase. SRC kinase plays an important role in cell proliferation, differentiation,
migration, and immune response, and it is a critical mediator of renal fibrosis [27, 28]. Activation of FXR has been
found to attenuate renal fibrosis by inhibiting the phosphorylation of SRC, regulating the hippo pathway, and
modulating the phosphorylation and localization of YAP [29]. Both IGF-1 and IGF-1 receptor levels are increased in
glomeruli of diabetic rats, and this growth factor may be profibrotic [30, 31]. RhoA is one of the most studied Rho
GTPases and is involved in a variety of cellular activities [32]. Research showed that extracellular vesicles produced
by bone marrow mesenchymal stem cells attenuate renal fibrosis, in part by inhibiting the RhoA/ROCK pathway [33].
The ESR1 gene encodes the estrogen receptor. Research showed that Tamoxifen, a selective estrogen receptor
modulator exhibits antifibrotic effects in the L-NAME model of hypertensive nephrosclerosis [34]. The protein encoded
by the EGFR gene is a transmembrane glycoprotein that is a member of the protein kinase superfamily. In fibrotic
disease induced by AKI or CKD, EGFR is frequently in a state of continuous activation in proximal tubule cells, which
contributed to the progression of renal fibrosis in renal injury [35]. The protein encoded by the CDC42 gene is a small
GTPase of the Rho-subfamily. Research indicated that ARAP1-AS2/ARAP1 may participate in cytoskeleton
rearrangement and EMT processes in HK-2 cells through increased CDC42-GTP levels and induced renal Fibrosis [36].
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According to the KEGG terms, the therapeutic targets of diosmin against renal fibrosis were mainly associated with
the MAPK, Ras, PI3K-Akt, FoxO, and HIF-1 signaling pathways. MAPKSs are a group of protein kinases containing three
subfamilies: c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 [37]. MAPKs regulate
many cellular functions, including proteasomal degradation [38]. ERK, p38, and JNK MAPK pathways are involved in
kidney injury and fibrosis [39, 40]. Ras monomeric GTPases play a significant role in controlling proliferation,
differentiation, and cell death. Research has shown that the CF ethanol extract may ameliorate renal fibrosis via the
Wnt/B-catenin/RAS pathway [41]. An increasing number of reports have shown that the PI3K/AKT signaling pathway
may play a crucial role in renal fibrosis and dysfunction by regulating various proteins [42]. Research has suggested
that Chlorogenic Acid exerts protective effects against renal fibrosis by inhibiting PISK/AKT signaling [43]. Forkhead
homeobox type O (Fox0) transcription factors mediate cellular responses to oxidative stress and have been
implicated in many ROS-regulated processes [44]. The PI3K-Akt—FoxO signaling pathway may play a role in ROS-
mediated diseases, as shown by research in which Tempol attenuated renal fibrosis in mice with unilateral ureteral
obstruction [45]. Hypoxia-inducible factors (HIFs), critical nuclear transcription factors, are involved in maintaining O,
homeostasis [46]. Based on the difference in the a-subunits, HIFs are divided into three subtypes: HIF-1, HIF-2, and
HIF-3. Reportedly, oxidative factors induced renal fibrosis by regulating the expression and activity of HIF-1 via PHD,
ERK, and PI-3K/AKT pathways [47, 48]. Therefore, the MAPK, Ras, PI3K-Akt, FoxO, and HIF-1 signaling pathways are
closely related to the occurrence and development of renal fibrosis.

We explored the potential molecular mechanism of action of diosmin in the treatment of renal fibrosis from a
comprehensive and systematic perspective, and our results provide a theoretical basis for further experimental
studies. Network pharmacology analysis and molecular docking technology were used to explore the potential
mechanism of action of diosmin against renal fibrosis, and the key therapeutic targets of diosmin were identified as
CASP3, MMP9, ANXAS5, and HSP90AA1. The mechanism of action of diosmin in the treatment of renal fibrosis may
be related to the regulation of biological pathways such as cell apoptosis and inflammation. This study provides a
theoretical basis for the treatment of diosmin-induced renal fibrosis. A limitation of this study is the lack of additional
experimental areas to validate our findings. However, the specific mechanisms involved in this process require further
exploration.

Conclusion

Diosmin has a potential multi-component, multi-target, and multi-pathway molecular mechanism of action in the
treatment of renal fibrosis. CASP3, MMP9, ANXAS5, and HSP90AAT might be the most important direct targets of
diosmin. The mechanism of action may be related to the MAPK, Ras, PI3K-Akt, Fox0, and HIF-1 signaling pathways.
This study provides a basis for further studies on diosmin in the treatment of renal fibrosis.
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Tables
Table 1 Primer sequences used for RT-qPCR
Gene Forward (5’ to 3') Reverse (5'to 3')
HSP90AA1 CCAGTTCGGTGTTGGTTTTTAT CAGTTTGGTCTTCTTTCAGGTG

Annexin 5 GTTCCATGGGCGCACAGGTTCTCAGAGGCA TCCGCTCGAGTTAGCAGTCATCTTCTCCACAGAGCA

CASP3 CCAAAGATCATACATGGAAGCG CTGAATGTTTCCCTGAGGTTTG
MMP9 CAGTACCGAGAGAAAGCCTATT CAGGATGTCATAGGTCACGTAG
GAPDH TGATGACATCAAGAAGGTGGTGAAG TCCTTGGAGGCCATGTGGGCCAT

Table 2 Information on the molecular docking of diosmin with the top 10 targets

No. Protein Ligand Binding capacity Protein  Ligand Binding capacity
(Kcal / mol) (Kcal / mol)

1 ANXAS diosmin  -5.17 CASP3  diosmin -6.28

2 IGF1 diosmin -4.14 RHOA diosmin -4.78

3 EGFR diosmin  -2.67 MMP9  diosmin  -5.73

4 SRC diosmin  -3.74 ESR1 diosmin  -2.45

5 HSP90AA1 diosmin -5.76 CDC42 diosmin -3.28

Figures
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Figure 1

Flowchart of network pharmacology analysis of Diosmin against renal fibrosis.
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Diosmin Renal fibrosis

Figure 2

The 150 overlapping genes between diosmin and renal fibrosis targets.

(@) Venn diagram of Diosmin-related targets and renal fibrosis-related targets. (b) The ingredient-target network of
Diosmin against renal fibrosis.
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Figure 3

PPI network of intersection targets of 150 overlapping genes.
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Figure 4

Ten high-freedom overlapping genes.
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Figure 5

GO (BP, MF, CC) analyses of therapeutic target genes of diosmin for treatment of renal fibrosis. Each bar represents a

GO term on the horizontal axis. The number of genes enriched in each term is shown on the vertical axis.
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Figure 6

KEGG analyses of the therapeutic target genes of diosmin for treatment of renal fibrosis. Each bubble represents a
KEGG pathway on the vertical axis. The gene ratio is shown on the horizontal axis. The size of each bubble indicates
the number of genes enriched in each KEGG pathway. Larger bubbles indicate more genes involved in the pathway.
The color of each bubble represents the adjusted P-value of each KEGG pathway, with redder color indicating smaller
adjusted P-value.
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Figure 7

Molecular docking pattern and mapping surface showing molecules occupying the active pocket of proteins.
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Figure 8

MTT assay detects the toxicity of diosmin on HK-2 cells.
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Figure 9

The mRNA expression levels of CASP3, MMP9, ANXAS5, and HSP90AATin different groups of HK-2 cells.
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