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Analysis of the scattering of a plane acoustic wave by a doubly
periodic structure using the finite element method: Application

to Alberich anechoic coatings
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Acoustics Laboratory,® Institut Supérieur d’Electronique du Nord, 41 boulevard Vauban,

59046 Lille Cedex, France

(Received 5 October 1990; accepted for publication 15 August 1991)

The finite element approach has been previously used, with the help of the ATILA code, to
model the scattering of acoustic waves by single periodic structures, such as compliant tube
gratings [A. C. Hennion et al., J. Acoust. Soc. Am, 87, 1861-1870 (1990} ]. In this paper, the
same approach is extended to doubly periodic structures, such as Alberich anechoic coatings.
To do this, only the unit cell of the periodic structure, including a small part of the
surrounding fluid domain, has to be meshed, due to the use of classical Bloch type relations.
Then, the effects of the remaining fluid domain are accounted for by matching the pressure
field in the finite element mesh with simple plane-wave expansions of the ingoing and outgoing
waves. After an outline of the method, the paper describes the results obtained for the
scattering of a plane wave by different periodic structures. Internal losses are taken into
account and the incident plane wave impinges at normal or ablique incidence. Numerical
results obtained for Alberich anechoic coatings are first analyzed to check the convergence and
then compared to previous numerical results or to experimental results, demonstrating that the
finite element approach is accurate and well suited to predict the behavior of these gratings.
Moreover, careful attention is devoted to the analysis of the inclusion vibrations, to identify the

origin of the resonance mechanisms.

PACS numbers: 43.20.Fn, 43.20.Bi, 43.30.Gv, 43.30.Ky

INTRODUCTION

The scattering of a plane acoustic wave by a periodic
array of elastic structures is widely used in underwater
acoustics. In fact, such arrays can be efficient as reflecting
screens or absorbers, within a large frequency band, and are
used, for example, toincrease the directivity and the acoustic
level of low-frequency sources, to insulate receiving hydro-
phones from noise sources which are in proximity or to pro-
vide anechoic properties to the walls of acoustic tanks.

The immersed periodic structures can be split into two
groups. The first one contains single periodic structures,
such as single or double layered compliant tube gratings,
which are directly immersed or embedded in a viscoelastic
medium. In this case, and in the frequency band of interest,
the incident plane wave excites a resonance mode of the
tubes and the grating behaves as a reflecting baffle."® The
second group contains doubly periodic structures such as
Alberich anechoic coatings.'®'* These coatings are multi-
layered structures in which one or several layers made up of
absorbing materials contain doubly periodic inclusions, such
as spherical or cylindrical cavities. Then, in the frequency
band of interest, the incident wave excites a resonance mode
of the inclusions and the coating behaves as a sound ab-
sorber. In order to explain the physical behavior and to help
the design of such structures, several authors have built ac-
curate mathematical models, which provide insertion loss
values in nice agreement with measurements. On the one

*! Associated with the CNRS, U.R.A. 253.

hand, Burke et al,' Dumery,? Brigham et al.,* and Audoly
et al.*® have analyzed the behavior of gratings of circular
cylinders as well as of arbitrarily oriented, elliptically shaped
compliant tubes, using a multiple scattering approach. On
the other hand, Vovk et al.,> Radlinski ezal.,>” and Audoly®
have used a waveguide approach to describe the behavior of
gratings made up of tubes with elongated rectangular sec-
tion. The study of spherical inclusions in an elastic layer has
been performed by Gaunaurd,'>'*'® using homogeneous
properties of the perforated solid. Finally, the diffraction of a
plane wave impinging on a grating has been studied, using a
boundary element method, by Achenbach et al.!” and Vi-
doret,'® while similar problems concerning the diffraction of
elastic waves by a periodic array of cylinders have been
solved using the T-matrix method by Lakhtakia et al.'**
These methods are powerful but require in most of the cases,
a lot of specific algebraic developments as well as simplifying
hypotheses for the displacement field, which restrict their
use to a small number of given geometries. On the contrary,
the efficiency and the versatility of the finite element ap-
proach to describe the acoustical behavior of single periodic
structures”2* has been demonstrated, particularly because
this approach allows the modeling of any tube geometry,
made up with any materials, by simply building the specific
mesh. The aim of this article is to extend this finite element
approach, previously described for single periodic struc-
tures, to doubly periodic structures, and to use it for analyz-
ing the acoustical behavior of Alberich anechoic coatings.
Following this approach, a tridimensional mathemat-
ical model has to be used. The whole domain 1s split into



three successive regions, separated by two planes that are
parallel to the scattering structure plane. The first and third
regions are semi-infinite fluid domains, in which the pres-
sure field is expanded as a series of plane waves, either propa-
gating or evanescent. In the first region, one of the propagat-
ing waves is the incident wave. The second region includes
the scattering structures and a small part of the surrounding
fluid domain. Using classical Bloch-type relations between
displacement or pressure values at points that are separated
by the grating spacing, only one unit cell of this second re-
gion has to be meshed with finite elements.?'"** Within this
cell, a phase relation is applied on nodes separated by one
period, defining boundary conditions between adjacent cells.
Moreover, continuity equations for the pressure field and its
normal derivative are written at the boundary between the
mesh and the first and third regions, to take the effects of the
external fluid domains into account. Following this method,
the elastic structures are described by a finite element mesh,
using the ATILA code which has been presented previous-
ly.2**® Thus there is no restrictive hypothesis related to the
displacement field, and modifying the structure only re-
quires to modify the mesh, without any new development
related to the method.

In the first part of this paper, the theoretical formulation
is summed up, with emphasis on the aspects related to the
periodicity. In the second part, one test case is first present-
ed, which allows a validation of the method by comparison
with previously obtained theoretical results. Then, after a
careful discussion of the convergence with respect to the
mesh step, Alberich coatings with periodic spherical or cy-
lindrical inclusions are considered and the accuracy of the
method for a plane wave at any incidence is demonstrated by
comparison with measurements. Problems related to mater-
ial parameters are discussed, and a careful analysis of the
inclusion vibrations is performed, to identify the mechanical
origin of the resonance effect. Finally, extensions of this ap-
proach to triply periodic structures or to active periodic
structures are briefly discussed.

I. THEORETICAL FORMULATION

A. General mathematical model for a doubly periodic
structure

For the presentation of the model, although a lot of
other cases can also be dealt with, the doubly periodic struc-
ture of reference is an Alberich anechoic layer, the cross
section and top views of which are described on Fig. 1. Itisa
multilayered structure, made up of a viscoelastic material,
containing air inclusions. This structure is immersed and its
planeis set normal to the z axis. It is theoretically assumed to
be infinite in the x and y directions, and to be doubly perio-
dic. Thus the problem is tridimensional. The whole domain
is split into three successive regions, by two planes that are
parallel to the grating plane. These regions have the same
characteristics as in the case of previously analyzed single
periodic structures.?” The first and the third regions are
semi-infinite fluid domains. The second region, which in-
cludes the scattering structure and its immediate surround-
ing fluid domain is detailed in Fig. 2. The S, and S sur-
faces, parallel to the xOp plane, limit the finite element mesh
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FIG. 1. Cross-section and top views of the reference Alberich anechoic
layer.

and represent, on the one hand, the boundary between re-
gions I and II and, on the other hand, the boundary between
regions II and III. Moreover, due to the periodicity of the
grating, the S | and S 3 planes, parallel to the y0z plane, and
the §2 and S 4 planes, parallel to the x0z plane, limit the unit
cell, which is 2d, wide in the x direction and 24, wideinthe y
direction. Then, the grating is excited by a plane, monochro-
matic wave, the direction of incidence of which is marked by
two angles 6 and @ (Fig. 2). The time dependence being
written as ¢ ~/*, the incident wave expression is

pi(tx,p,z) = pexp[jk(x sin @ cos ¢

— jeat

+ ysin @sin ¢ + zcos 8) e

=e M (x,,2), (1)

where k and o are, respectively, the wave number and the
angular frequency in the fluid.

Because the grating is assumed to spread from — « to
+ oo in the x and y directions and to be periodic, any space
function F (pressure, displacement...) has to verify the rela-
tion

F(x+2d,,y+ 2d,,2)
= F(x;}’,z}eﬁd‘k sin A cos Pe)mzk sin #sin @. (2)

Using this relation, the solution of the time-independent
wave equation for region I can be written in the following
form:

p~ (xp2) =p,(x,3.2)

¥ f R g, (3)

where
a, = nm/d, + ksin 8 cos @,
B.. = mm/d, + k sin @ sin ¢, (4)
k? =k*—a’—pB2%.
The incident wave is given by the first term. The second term
represents a doubly infinite series of waves reflected by the
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grating, the R%_ terms being reflection coefficients to be
determined. When k %, <0, the corresponding wave propa-
gates parallel to the xOy plane and decays exponentially in
the negative z direction, away from the grating. It is referred
to as an evanescent wave. On the other hand, if k2, >0, the
wave propagates away from the grating in the negative z
direction. In this case, its propagating direction is deter-
mined by the wave vector (a,, 8., —k,.,). So, interfer-
ences have to take place when more than one propagating
wave exists and disturb reflection measurements. In the
same way, the transmitted pressure in region 111 is given by

+ = . .
prxy2)= 3 TE (5)
where the T?_ terms are transmission coefficients to be de-
termined. A particular interest in this problem is to calculate
the transmitted and reflected pressures far from the grating.
If the following condition is verified,

- min( cT , cr ) ’
d,(1+|sinBcos@|) d,(1+ |sinfsing])
(6)
only one propagating wave exists and the transmitted and
reflected pressures in the far field are determined, respective-
ly, by T, and R %,. All other waves are evanescent and do
not contribute to this far field.
In the same way, the pressure normal gradient can be
expanded as a series of propagating and evanescent waves.

B. Finite element modeling of the unit cell

Due to the use of the classical Bloch type relation (2)
between the displacement or pressure values at points which
are separated by a grating spacing, only one unit cell of re-

FIG. 2. Schematic description of a dou-
bly periodic structure, used to define
S_,5,.51,52,53,and S4planesand
definition of the incidence angles: k is
the incident wave vector,

gion II is meshed using finite elements.**** Writing relation
(2) provides the boundary conditions between adjacent cells
and writing continuity equations for the pressure ficld and
its normal derivative provides the boundary conditions on
surfaces.S', and§ _ . These points are discussed in details in
Refs. 22 and 23.

Then, using the finite element method, with the help of
the ATILA code,?2?>2%2 the unit cell is meshed and divid-
ed into elements connected by nodes. A cross section of this
unit cell in the x0z plane is shown in Fig. 3: The solid struc-
ture ), is in contact with the infinite fluid domain (),

L. i .

FIG. 3. Finite element mesh of the cross section of the unit cell, in the x0z
plane, used to define {1,, {34, {2,_, and {};, subdomains.



ture (), is in contact with the infinite fluid domain €,
through the surface S;. {1 is split into three parts, 5, Q,, ,
and (), _ , by the surfaces S, and S _ . If a steady-state har-
monic analysis is considered, the whole system of equations

is, classically,
([K]—GIIM] —[L] )(U)"(DF )
(H] - [M]\P] \pc®/’
(7

—pcw[L]T

where the unknowns are the vectors of nodal values of the
pressure P and of the displacement U. [K] and [M] are,
respectively, the structure stiffness and coherent mass matri-
ces, while [H] and [ M, ] are the fluid compressibility and
coherent mass matrices. [L] is a connectivity matrix that
corresponds to the coupling between the structure and the
fluid and is related to the kinematical and dynamical inter-
face continuity equations.”**” p and ¢ are, respectively, the
fluid density and sound speed, w is the angular frequency. F
contains the nodal values of the applied forces, and ® con-
tains the nodal values of the pressure normal gradient on the
fluid domain boundaries ', and S_. (K], [M], [H],
[M,], [L], F, and & result, respectively, from the merging
of elementary matrices and vectors [K°], (M*], [H <],
[M5], [L°], F, and ®°, where e stands for the element
number. This system can take into account damping in the
materials via the use of complex elastic constants,?>?? de-
pending or not upon the frequency. In all the following ex-
amples, isoparametric elements are used, with a quadratic
interpolation along element sides.

C. Specific modifications of the finite element
equations

The application of the periodic boundary conditions im-
plies that the phase relation (2) between nodal values be-
longing to the S 1 and .S 3 planes, on the one hand, to the 52
and § 4 planes, on the other hand, has to be incorporated in
the matrix equation (7).***** The corresponding relations
are detailed in Appendix A. The resulting matrix is complex
but Hermitean. In terms of the finite element method, this
operation is a static condensation of the degrees of freedom
belonging to .S 3 and S 4.

To take into account the effects of the remaining fluid
domain, above the § . surface and below the S surface,
the pressure field described by the finite element interpola-
tion is matched with the plane-wave expansions of the ingo-
ing and outgoing waves, given by Eqgs. (3) and (5). These
series are restricted to (2M, + 1) - (2M y + 1) terms, where
M, and M, are parameters which depend upon the mesh
steps on the S, and .S _ surfaces, in the x and p directions,
respectively. The formalism has already been described****
in the case of single periodic structures and the equations are
detailed in Appendix B. Writing these continuity equations
introduces matrix relations between the nodal values of the
reflected pressure normal derivative on the S _ surface (re-
spectively transmitted pressure normal derivativeonthe S ,
surface) and the nodal values of the reflected pressure on the
S _ surface (respectively transmitted pressure on the .S,
surface):

tI:'+=[&+]P4!' (D =2¢j+[A_]P_! (8)

where vector ¢, contains the nodal values of the incident
pressure normal gradient. Full expressions of matrices
[A*] and [A~] are given by the relations (B12) and
(B13). These matrices can then be incorporated in system
(7) and, finally, the whole matrix equation is

([K']—wZ[M*] —[L'] )(U)
—pP?[L')™ [H'] —*[M|] — pc[A)/\P

0
i (oaqr)‘ (%)

In this matrix equation, the vectors P and ¢, as well as the
[A] matrix, are partitioned with respect to three domains
whicharethe S, surface, theS _ surface and the inner fluid
domain . They can be written under the form

P, 0
P: P_ 3 ¢" = 2(1): 1
P, 0

(10)
(a*1 [0l [0]
fal=| (01 [a~] [O]
(0] (0]  [0]

The prime indicates that each term has been submitted to the
static condensation of the solid as well as fluid degrees of
freedom between thenodesofthe (S 1) and (S 3) surfaces, on
the one hand, of the (S2) and (S4) surfaces on the other
hand.

Il. RESULTS

Using the finite element method described above, fre-
quency variations of the transmission coefficient have been
investigated for different types of gratings. The transmission
coefficient, as used here, is given by

T = 20 log|P""/P',

where P is the transmitted pressure amplitude, computed
with the help of the T'%, term of the expression (5) and P ‘is
the incident pressure amplitude. For the configurations that
are modeled hereafter, only one propagating wave is general-
ly considered, with the same direction as the incident wave,
the other waves being assumed to be evanescent. In all the
cases, even if other waves propagate in the two semi-infinite
fluid spaces, the transmission coefficient is calculated by us-
ing the T°5, term of expression (5). In each example, for the
Younpg’s modulus as well as for the Poisson’s ratio, the loss
angle is defined as the absolute value of the ratio of the imagi-
nary part to the real part and given as a percentage.

In the case of plates containing spherical or cylindrical
inclusions, for which transmission coefficient measurements
have been performed, the material can be either polyure-
thane or silicone. In these cases, the physical properties de-
pend upon the experimental temperature and the frequency.
They have been read from master curves, provided by the
manufacturer, and updated parameter values have been used
for the computation at each frequency.
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FIG. 4. Frequency variations of the transmission coefficient for a plastic
circular cylinder grating: dashed dotted line: FEM 0% loss; full line: FEM
6% loss; dashed line: analytical method 6% loss; dotted line: measure-
ments.

A. Transmission coefficient for plastic circular cylinder
gratings

In this section, a single periodic structure has been mo-
deled using a tridimensional mesh, to validate the method.
The test example is a plastic tube grating, the tubes being
made of PVC the physical constants of which are p = 1400
kg/m’, E = 4.1 X 10’ Pa, v = 0.4. The tube external radius is
2.5 cm. The thickness of the wall is 3 mm. The grating spac-
ing is 6 cm. The loss angle for the PVC Young’s modulus is
chosen equal to 6%. This structure has first been modeled
using a bidimensional mesh?? and the finite element results,
taking account or not of losses in the PVC, have been com-
pared with measurements and with results from a previous
analytical model.>® A good agreement has been obtained
between the different approaches, as shown by Fig. 4. Below
8 kHz, the diffraction effects on the experimental curve are
due to the finite size of the panel. Then, a tridimensional
elementary cell has been built (Fig. §), by cutting a segment
of the tube, but to save the validity of the plane strain hy-
pothesis assumed in the bidimensional case, the length of the
segment has been retained small compared to the wave-
length. Results obtained in this three-dimensional case, for
the same incident wave, are strictly identical to those ob-
tained in the previous bidimensional case, and thus are not
reproduced. Excluding losses in the PVC, the real and the
imaginary parts of the displacement field at 13.5 kHz are
displayed on Fig. 6, demonstrating that the plane strain hy-
pothesis is verified, generating lines of the cylinder remain-
ing strictly parallel.

B. Convergence and mesh step selection

The Alberich anechoic coatings, which are studied in
Secs. II Cand II D, are made of polyurethane or silicone. In
the frequency range of interest, the transverse wave velocity
¢, in these materials is very low (between 200 and 300 m/s
for the polyurethane, about 20 m/s for the silicone), while
the longitudinal wave velocity ¢, is close to 1700 m/s.

FIG. 5. Three-dimensional finite element mesh for the elementary cell of
the plastic circular cylinder grating.

Moreover, the finite element formulation used here relying
upon quadratic interpolation functions, the classical A /4 cri-
terion,*! which states that the largest length of each element
in a given mesh has to be smaller than a quarter of the trans-
verse wavelength in the material for the working frequency
has to be verified. Thus, due to the small ¢, values, meshes
haveto be very tight. To test the validity of the A /4 rulein the
present cases and to determine the sensitivity of the result
accuracy on the checking of this rule, two specific examples
have been studied that atlow one to work with several differ-
ent meshes at reasonable computer costs.

First, a single periodic structure has been analyzed. A
polyurethane panel is considered, the properties of which are
assumed to be constant in all the frequency range, corre-
sponding to 5 °C and 16 kHz in Table I. This panel is 4 cm
thick and contains infinite air tubes arranged as a grating
whose spacing is 5 cm. The tube cross sections are rectangles
that are 2 cm high and 1.5 cm large. The model is a bidimen-
sional mesh, assuming plane strain conditions. Five meshes
have been considered. At 15 kHz, which is close to the reson-
ance frequency, the first mesh verifies a A /2 criterion for c,,
the second a A /4 criterion, the third a A /6 criterion, the
fourth a A /8 criterion, and, finally, the fiftha A /12 criterion.
Figure 7 displays the variations of the panel transmission
coefficient versus frequency, when the excitation is a normal
incident plane wave. Curves demonstrate that usinga 4 /12,
A /B, A /6, 0r A /4 criterion with respect to ¢, gives results in
very close agreement. The resonance frequencies remain
quite identical, the relative differences being less than 1.3%,
while the minimum level variations are smaller than 1 dB.
Moreover, a A /2 mesh step is clearly insufficient to describe



FIG. 6. Real part and imaginary part of the displacement field for the segment of cylinder, without losses, at 13.5 kHz, (2) in the x0z plane and (b) in 3-D
view, Dashed lines correspond to the rest position and the displacement amplitude is arbitrary.

perfectly the resonance, but still provide a reasonable sketch.
These results are obtained while the displacement field asso-
ciated to the resonance frequency and displayed in Fig. 7 is
very similar to the displacement fields obtained for actual
Alberich structures.

Second, an Alberich anechoic coating has been mo-
deled, which grating spacing is sufficiently small to allow
low computation times. The panel is 2 cm thick. The cylin-

TABLEI Young’s modulus E (in 10* Pa), Poisson’s ratio vand loss factors
(in 96) for the Young's modulus (g 8;) and the Poisson’s ratio (g &, ),
versus the frequency (in kHz) and the temperature (in °C) for the polyur-
ethane.

T=5°C r=2°C
f E  1gde v g é, E  gé; v gd,
2 1.53 450 0489 087 071 378 0494 038
4 1.88 450 0486 108 084 402 0493 050
6 211 450 0485 124 094 41,7 0492 058
8 230 450 0483 136 101 429 0492 064

0.482 146 106 438 0491 070
0481 155 111 445 0491 074

10 245 450
12 2.59 450

14 2,70 450 0480 l.64 lL16 451 049 079
16 281 450 0479 L78 120 457 0490 083
18 291 450 0478 LBl 123 461 0490 0386
20 300 450 0478 1.8 127 466 0489 09

drical inclusions are 1.5 cm high and their diameter is equal
to 2 cm. These inclusions are arranged as a doubly periodic
structure, whose grating spacing is 3 cm. The properties of
the panel material are E = 1.4 x 10° Pa, p = 1100 kg/m’,
v =0.49, the loss factor for the Young’s modulus being
equal to 23%. Figure 8 presents the top views of three differ-
ent meshes of the unit cell. At 3 kHz, mesh 8(a) verifies a
A /2 criterion with respect to ¢,, mesh 8(b) a A /4 criterion,
and mesh 8(c) a4 /12 criterion. Figure 9 presents the varia-
tions of the panel transmission coefficient versus frequency,
when it is excited by a plane wave at normal incidence. It
shows that, in the frequency range of interest, the three
curves have identical shapes. But, at the resonance fre-
quency, the convergence is not reached and a shift of several
hundred Hertz is observed between successive meshes. In
fact, at 3 kHz, and as demonstrated by Fig. 9, the resonance
is mainly due to a flexural motion of the cover layer. Thus,
the A /4 criterion must be written using the flexural wave
velocity which is, in this case, about 70 m/s.’* Thus, the
actual 4 /4 criterion corresponds roughly toa 4 /12 criterion
for c,, which explains the frequency shift.

These results demonstrate that, if the transverse and
longitudinal wave velocities are the relevant parameters, the
checking of a 4 /4 criterion with respect to ¢, is highly suffi-
cient. Nevertheless, in some cases, if for example cavity
cover layers are too thin, the relevant velocity can be the
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FIG. 7. Frequency variations of the transmission coefficient of the panel
containing air rectangular tubes (Sec. II B). Dashed dotted line: the mesh
verifies the A /2 criterion for ¢, at 15 kHz; full line: the mesh verifies the 4 /4
criterion; dashed line: the mesh verifies the A /6 criterion; dotted line: the
mesh verifies the A /8 or A /12 criterion (same curve). The inserted graphic
displays are the real and imaginary parts of the displacement field for an
elementary cell of the panel cross section, at 14.4 kHz, for the tightest mesh.

flexural wave velocity ¢,, which is frequency dependent, and
in this case tighter meshes can be useful. Thus, if this situa-
tion seems to be possible, ¢, and ¢, must be compared before
selecting the appropriate mesh step.

C. Transmission coefficient from coatings
with periodic spherical inclusions

In this section, a plate containing periodic spherical air
inclusions is modeled, with a view to analyzing the inclusion
vibrations with the help of the computed displacement
fields. The panel, made of polyurethane, is 5 cm thick and

FIG. 8. Top views of the finite element meshes of the elementary cell for the
Alberich anechoic coating studied in Sec. 1I B. The dotted domain is the air
cavity. At 3 kHz, mesh (a) verifies a A /2 criterion for c,, mesh (b) ad /4
criterion, mesh (c) a 4 /12 criterion.
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FIG. 9. Frequency variations of the transmission coefficient of the Alberich
anechoic coating studied in Sec. 11 B: dashed line: FEM mesh 8(a); dotted
line: FEM mesh 8(b); full line: FEM mesh &(c). The inserted graphic dis-
plays are the real and imaginary parts of the displacement field of the panel,
at 2.85 kHz, in the x0z plane, for the tightest mesh.

contains air bubbles, the radius of whichis 1 cm. They forma
doubly periodic structure, the grating spacing of which is 5
cm. The density of the polyurethane is 1100 kg/m" and the
other properties, which depend upon frequency and temper-
ature, are given in Table L. Then, the panel is immersed in
water, where the density and sound speed are assumed to be
1000 kg/m® and 1489 m/s. The polyurethane temperature is
equal to 20 °C. The A /4 criterion with respect to ¢, is suffi-
cient and has been used to define the mesh, ensuring the
convergence as discussed in Sec. II B. Figure 10 compares
finite element results to measurements, when the grating is
excited by a plane wave at normal incidence. The agreement
is good between the two curves. The displacement field of the
elementary cell is presented at 12 kHz, in the x0z plane on
Fig. 11, at eight different times, separated by one-eighth of
the period, to describe the amplitude and phase field varia-
tions simultaneously inside the plate thickness. The ampli-
tudes are normalized to the maximum displacement ampli-
tude. The minimum of the transmission coefficient is due to
the excitation of a resonance mode of the cavity but the cycle
does not correspond to a pure radial mode. In fact, the inter-
nal losses in the polyurethane introduce an important phase
shift in the displacement field. Nevertheless, the combina-
tion of the radial mode of the inclusion and of a translational
vibration is predominant.

Then, to assess the effects of the experimental tempera-
ture on the curves, computations have been performed
where the coating temperature is equal to 5 °C, 10°C, 15°C,
and 20 °C. In these cases, the properties of the polyurethane
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FIG. 10. Frequency variations of the transmission coefficient of the panel
made of polyurethane, containing air spherical inclusions: full line: mea-
surements; dashed line: FEM.

FIG. 11. Displacement field of one spherical inclusion inside the elementary
cell of the panel made of polyurethane, at 12 kHz, in the x0z plane, at eight
different moments, separated by one-cighth of the period (for sake of sim-
plicity, only elements beside the cavity are displayed ).
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FIG. 12. Frequency variations of the transmission coefficient of the panel
made of polyurethane, containing air spherical inclusions: full line: FEM
20 °C; dashed dotted line: FEM 15 °C; dashed line: FEM 10 °C; dotted line:
FEM 5°C.

are changed at each frequency, following the master curves
provided by the manufacturer. Figure 12 presents the finite
element results and shows that temperature variations can
strongly modify the position of the maximum of transmis-
sion losses as well as the bandwidth performance.

D. Transmission coefficient from coatings
with periodic cylindrical inclusions

The Alberich anechoic coating described in Fig. 1 has
been modeled and its acoustical behavior is analyzed in this
section. The panel is 4 cm thick. The cylindrical inclusions,
which are 2 cm high and whose diameter is 1.5 cm, are ar-
ranged as a doubly periodic structure, whose grating spacing
is Sem.

1. Alberich anechoic coating made of polyurethane

The first panel considered is made of polyurethane,
whose properties are given in Table I and assumed to be at
5 °C. In the frequency range of interest, the transverse wave
velocity is the relevant parameter, the cavity cover layers
being thick. The mesh used in this analysis is described on
Fig. 13. It verifies the A /4 criterion with respect to ¢, for a
frequency lower than 17 kHz. Figure 14 compares the finite
element results with the measurements, when the grating is
excited by a plane wave at normal incidence. The overall
agreement is good and the shape of the curve is correct.
However, a 2-kHz upward shift of the minimum transmis-
sion frequency is observed which has to be explained. In fact,
conclusions that have been clearly demonstrated in Sec. I B
preclude a convergence problem, a statement which is still
reinforced by the discrepancy between the two curves even at
frequencies lower than 10 kHz where the mesh step is much
smaller than A /4. Moreover, the kind of discrepancy on the
lower side of the resonance is not observable in Fig. 7, even
foraA /2 mesh. Thus the discrepancy is probably induced by
the use of inaccurate values of polyurethane parameters. In
fact, in the frequency and temperature ranges of interest, this
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FIG. 13. Finite element mesh of the elementary cell for the Alberich ane-
choic coating. The dotted domain is the air cavity (air is not modeled).

material exhibits a transition and elastic coefficients can un-
dergo large variations. Thus new computations have been
performed with a 25% reduced Young’s modulus for the
polyurethane at each frequency. Figure 14 displays the cor-
responding finite element results. This time, the calculated
curve is in much better agreement with the measurements,
demonstrating that the previous discrepancy can be definite-
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FIG. 14. Frequency variations of the transmission coefficient of the Alber-
ich anechoic coating, made of polyurethane: full line: measurements;
dashed line: FEM: dotted line: FEM with adjusted properties.
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FIG. 15. Displacement field of the elementary cell of the Alberich anechoic
coating, made of polyurethane, at 16 kHz, in the x0z plane, at eight different
moments, separated by one-eighth of the period.

ly attributed to the inaccuracies in the knowledge of the po-
lyurethane properties.

The displacement field of the elementary cell is present-
ed at 16 kHz, in the x0z plane on Fig. 15, as a cycle made up
of eight displays. The amplitudes are again normalized to the
maximum displacement amplitude. The resonance mode of
the cavity at the minimurmn of the transmission coefficient is a
combination of a radial motion of the hole wall and a small
deformation of the cover layer.'*'* Nevertheless, the ab-
sorption mechanism is complex because the losses in the po-
lyurethane introduce an important phase shift for the dis-
placement across the thickness. Thus it seems that simple
models can only provide a first insight in these cases and that
a numerical modeling is required. Moreover, Fig. 15 shows
that shear effects are large.

2. Alberich anechoic coating made of silicone

The second panel is made of silicone. Because the varia-
tions of the properties versus the frequency and the tempera-
ture are negligible, the properties are supposed to be con-
stant in the frequency band of interest: p = 1000 kg/m’,
E = 1.8x%10° Pa, v=0.49976 and the loss angle for the
Young’s modulus is equal to 15%. When the panel is excited
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FI1G. 16. Frequency variations of the transmission coefficient of the Alber-
ich anechoic coating, made of silicone: full line: measurements; dashed line:
FEM.

by a normal incident plane wave, the transmission coeffi-
cients obtained by the finite element method and by measur-
ements are compared in Fig. 16. There is a good agreement
between the two curves. The peak, at 1.75 kHz, is due to the
excitation of a resonance mode of the cavity'>'* as well as in
the case of the polyurethane Alberich anechoic coatings.
But, the identification of the mode is difficult, because the
losses in silicone, which are about 15%, introduce again an
important phase factor variation in the displacement field.
Finally, it should be noted that mesh of Fig. 13 is also valid
for the silicone panel because if the transverse velocity in
silicone is 10 times smaller than transverse velocity in po-
lyurethane, the frequency band of interest is also 10 times
lower.

lIl. CONCLUSION

This paper has presented a finite element approach for
modeling the acoustical behavior of doubly periodic struc-
tures. The results computed with the ATILA code have de-
monstrated that this approach is accurate and well suited to
predict these behaviors. Good agreement has been found
between the results obtained by the finite element model and
by the measurements, or from other previously obtained
theoretical models. Moreover, the efficiency and versatility
of this finite element approach have been demonstrated. In-
deed, the finite element method does not prescribe restrictive
hypotheses to the displacement field, and it allows the mo-
deling of any structure geometry by simply building the cor-
responding mesh, without any new development related to
the method. Nevertheless, to obtain a nice agreement
between finite element results and measurements, it has been
pointed out that the properties of the material have to be
known accurately. This knowledge is often difficult, because
property values are varying rapidly versus temperature and
frequency, in the range of interest. Moreover, it has also been
pointed out that the mesh step selection must be done care-
fully. The A /4 criterion is sufficient for finite elements rely-
ing upon a quadratic interpolation but with respect to the

smallest wave velocity. This velacity is classically the trans-
verse wave velocity, but can be the flexural wave velocity in
the cavity cover layers if these layers are sufficiently thin.
Finally, computed displacement fields obtained for frequen-
cies that are associated with large transmission losses allow a
simple physical interpretation of the resonance effects.
Now, one of our intents is to extend this technigue to the
analysis of doubly periodic structures containing active
composite materials, with a view to building optimized ac-
tive gratings. Then, the modeling of triply periodic struc-
tures is projected. The modeling of the propagation of har-
monic elastic waves through triply periodic structure can
provide dispersion curves, giving results of physical interest:
identification of propagation modes, cutoff frequencies,
passband, stop band,**¢ as well as effective homogeneous
properties of these structures and their validity limits.
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APPENDIX A: APPLICATION OF THE PERIODIC
BOUNDARY CONDITIONS

To take account of the phase relation (2) between nodes
belonging tothe S 1 and 5 3 planes on the one hand, to the §2
and S 4 planes on the other hand, the matrix equation (7) has
to be modified.?*?**® The corresponding relations are pre-
sented hereafter only in the case of an elastic cell (for the
sake of simplicity ), but they can be generalized to any cell,
containing solid and fluid. The cell, the cross section of
which, in the x0y plane, is presented on Fig. A1, is divided
intonine parts: surfaces S 1, 52,5 3,and §4, cornerlines C 1,
€2,C3,and € 4and inner domain In. The displacement vec-
tor U and the force vector F are then split into the corre-
sponding nine parts. Due to relation (2), their components
have to verify:

2d,

FIG. Al. Schematic representation of repetitive cells, in the x0y plane.



'[Us] } = ewl'[us[ }1 '[Us4} = eN'{Usz },
{Ucz} = ewx{Uc: }: {UCJ} = e’w’{Uc1 }|

{UC4} - el{ v+ tﬁ,}{UCI },

where ¢, =2d,ksinfcosp and ¢, = 2d,k sin @ sin @.
Then, owing to the equilibrium of inter-connecting forces
between two adjacent cells, relation (2) leads to analogous
relations for the force vector. These equations are then sub-
stituted into the first line of Eq. (7). To do this, keeping in
mind that only an elastic cell is considered here, the first line
of Eq. (7) is rewritten under the form:

[[K] -’ [M]1{U} = [Q1{U} = {F}.

Using the same approach as in Refs. 22 and 23, the matrix
[Q] is partitioned following the nine parts. The resulting
equation is

(A1)

(A2)

Rsisi Rsisa Rsici Rsun |[Usy
R%s: Rsz..sz Rssc1 Rsaw || Us2 — {0}
R¥ei R%cr Rener Reyn |[Ue ’
R$wm R&EL REL Ry |LUn
(A3)
where
[Rsis1] = [Dsist + OPs3sa)s
[Rsis2] = [Os152 + Os1,54€™ + Oy 506"
g st,s‘teiw'_ m]s
[Rsici] = [@sic1 + Qsaca + Os1caé™
+ Qs:.caew’]a
[Rsiin] = [Qsmn i Qsz.rne_ﬁx]:
[Rs2s2] = [Osa.52 + Dsas4]s (A4)

[Rsrcr] = [Qsacr + Qs2.c2¢" + Qsacs
+ Qssca™],
[Rszan] = [@s2in + Osasne™™],
[Rever] = [Qerer + Cezer + Qeses + Ceaca ]
[Rersn] = [Cermm + Qeame ™ + Qespne ™
4 Qeome W],

[Rln.ln] = [Qlﬂ.ll‘l ]'

where [ @, 5 ] is the notation for a submatrix which connects
nodes belonging to subdomains 4 and B only. In terms of
finite elements, this operation is the static condensation of
degrees of freedom belonging to §3, 54, C2, C3,and C4.

APPENDIX B: APPLICATION OF THE PRESSURE AND
PRESSURE NORMAL GRADIENT CONTINUITY
EQUATIONS

To take into account the effects of the external fluid
domains, the pressure field in the finite element domain has
to be matched with the fields given by the plane-wave expan-
sions of Eqgs. (3) and (5). Todothis, the vector dis split into
three parts, corresponding to surface S, , inner domain (7)
and surface S_ . The formalism is the same for the two

boundary surfaces, and the relations are only detailed in the
case of surface S | . Here, @ results from the merging of
the elementary vectors

o, =| {N¢Yotdse,, (B1)
5°,
where ¢ * is the pressure normal gradient on surface S,
and {NV°, }"is the vector of the shape functions associated
with the bidimensional rectangular finite element S*,_, on
surface §', . Keeping only (2M,, + 1)-(2M,, + 1) terms in
the series expansion (5), the parameters M, and M, depend-
ing on the mesh in directions x and y (Ref. 23), ®* andp*
are written in contracted notation:
o+ = (ef““" +B,.,n) T( Tf,,,efk‘“"),
—~——

(B2)

p = (€T (T, e,

nm
Then, the relation between the pressure p* and its normal
derivative & * provides the equation

aT*,, )
n—m —mM=

T, o = = jk s (T2, 8", (B3)
ax;
which becomes, in matrix form:
(e, = (D] CTL ™, (B4)
N

Here, the matrix [D *] is a diagonal matrix of order
(2M, + 1)-(2M,, + 1) and of generating term jk,,,,, . Taking
into account Eq. (B4) in the expression of ®°, provides

v, = [ W et )
5, "

X (T2, &")ds", . (B5)

Using a Fourier series expansion of the pressure, p* can be
again expressed as a product of two vectors of order
M, + 1)-(2M, + 1):

+ M, + M, " At
pt= W
nﬂz—M‘ mae — M,
(B6)
p*' zs (ej(anx+ﬂmv1):r'c
— ?
where vector C contains terms c,,,,,:
l 1 +d + dy
Com = *(x
Zdl Zdz —d; J‘—- dy p ,}’)
xe_f(a,,X'f'g.J)dx dy- (B?)

The pressure p* (x,y) can be related to the pressure nodal
values on surface S, , with the help of shape functions. Then

¢ =(Z 1 1 J‘ g—j‘(ﬂ,,xlﬂ,,.jf)
" € 1 2dy s,

x{ne, }dedy)P+ ={4r}P,, (B8)

where {4 %, }” is a line matrix. Finally, the vector C can be
written under the following form:

C=[4*]P,. (B9)
The matrix [4 *] contains the (2M, +1):(2M, + 1)

w



lines of Eq. (B8) and its number of columns is the number of
nodes on the surface S, . Then, the coefficients 7', are
easily known with the help of Eq. (B2), (B6), and (B9):

(T2, &)=C=[4*]P,. (B10)
The vector ®°, from Eq. (BS5) is written as
O° = J. {Nr }T(eﬂﬂg‘ ‘f-ﬂ"‘uﬂ)]"
N s, i —~—~—
X[D*][A*]dS‘+)P+. (B11)

Merging elementary vectors ®¢, , the nodal values of the
pressure normal gradient ® | on the fluid surface §', is

¢+ =[z . {Ne+ }r(e:(a.=+8k..yl)r

X[D*+][4 *1ds*, ]P+.

(B12)
¢+ =2d1 Mz[A +]-T[D4 ][A +]P+

—[A*]P,.

The same processing on the surface.S _ gives the [A ]
matrix. But for this surface, the nodal vector of the pressure
and its normal derivative are written as a sum of the incident
and the reflected vectors

d_ =20 +[A]P_,

(B13)

where the vector ®, contains the nodal values of the incident
pressure normal gradient. Finally, the matrices [A * ] and
[A~ ] are incorporated in system (7).
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