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Abstract: In addition to its role in bone metabolism, vitamin D3 exerts immunomodulatory effects
and has been proposed to contribute to seasonal variation of immune cells. This might be linked
to higher vitamin D3 levels in summer than in winter due to differential sun exposure. γδ T cells
comprise a numerically small subset of T cells in the blood, which contribute to anti-infective and
antitumor immunity. We studied the seasonal fluctuation of γδ T cells, the possible influence of
vitamin D3, and the effect of the active metabolite 1α,25(OH)2D3 on the in vitro activation of human
γδ T cells. In a retrospective analysis with 2625 samples of random blood donors, we observed higher
proportions of γδ T cells in winter when compared with summer. In a prospective study over one
year with a small cohort of healthy adults who did or did not take oral vitamin D3 supplementation,
higher proportions of γδ T cells were present in donors without oral vitamin D3 uptake, particularly
in spring. However, γδ T cell frequency in blood did not directly correlate with serum levels of
25(OH)D3. The active metabolite 1α,25(OH)2D3 inhibited the in vitro activation of γδ T cells at the
level of proliferation, cytotoxicity, and interferon-γ production. Our study reveals novel insights into
the seasonal fluctuation of γδ T cells and the immunomodulatory effects of vitamin D3.

Keywords: calcitriol; cytokine production; cytotoxicity; flow cytometry; gamma/delta T cells; im-
munophenotyping; seasonal fluctuation; vitamin D3

1. Introduction

γδ T cells account for approximately 5% of CD3 T cells in human peripheral blood. In
contrast to the major populations of CD4 and CD8 T cells expressing the conventional αβ T
cell receptor (TCR), the germ line TCR repertoire of γδ T cells is very small. There are only
six expressed Vγ genes and a similarly small number of Vδ genes. Among the γδ T cells in
peripheral blood, most express Vγ9 paired with Vδ2, while other subsets (e.g., Vδ1) are usu-
ally rare in blood but more abundant in mucosal tissues [1]. However, the proportion of γδ
T cells and their subset distribution varies greatly in the peripheral blood of healthy adult
donors and is influenced by age and gender [2–4]. Vγ9Vδ2 T cells (referred to as Vδ2 in the
following) recognize pyrophosphate molecules (“phosphoantigens” (pAg)) independently
of HLA class I or class II molecules. However, recognition of such pAg, which are secreted
by many microbes but can also be produced by tumor cells, is absolutely dependent on
members of the butyrophilin (BTN) family of transmembrane molecules, notably BTN3A1
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and BTN2A1 [5–7]. The production of endogenous pAg, such as isopentenyl pyrophos-
phate (IPP), can be massively stimulated by nitrogen-containing aminobisphosphonates
(e.g., Zoledronate (ZOL)), which block an enzyme in the mevalonate pathway leading to
upstream accumulation of IPP [8,9]. In view of their HLA-independent tumor cell recogni-
tion and their potent cytotoxic activity, γδ T cells have recently attracted great interest as
potential effector cells in cell-based cancer immunotherapy [10–12]. In addition, however,
γδ T cells can also exert regulatory functions [13,14], and the potential involvement of γδ T
cells in autoimmune diseases has been discussed [15,16].

Vitamin D3 is an essential regulator of calcium and phosphate metabolism and thus
of bone homeostasis. In addition, immunoregulatory properties of vitamin D3 have been
identified, and various diseases spanning from autoimmunity and chronic inflammation
to some infections have been associated with vitamin D3 deficiency [17,18]. Vitamin D3
can affect both innate and adaptive immunity and appears to inhibit Th1 and favor Th2 T
cell responses [19–23]. Low vitamin D3 levels favor inflammatory conditions and Th17 T
cell differentiation associated with an increased incidence of autoimmune diseases [19,24].
During exposure to sunlight, 7-dehydrocholesterol in the skin absorbs UV-B radiation and
is converted to previtamin D3, which then isomerizes to vitamin D3. This is sequentially
metabolized in the liver to 25(OH)D3 and in the kidney to the biologically active metabolite
1α,25(OH)2D3 (1,25(OH)2D3 in the following) by 25-hydroxyvitamin D-1-α-hydroxylase
(CYP27B1) [25,26]. Insufficient endogenous production of biologically active 1,25(OH)2D3
resulting from poor sunlight exposure (e.g., during the winter season) can be compensated
by oral supplementation with vitamin D3 (cholecalciferol). The recommendations for
adequate serum levels of 25(OH)D3 vary to some extent, but levels of <20 µg/L are
considered inappropriately low and require oral supplementation [18].

Previous studies have shown that seasonal variations in serum levels of vitamin D3 are
associated with a fluctuation in the subset distribution of peripheral blood T cells [27]. More-
over, it has previously been reported that the active vitamin D3 metabolite 1,25(OH)2D3
modulates the in vitro activation of human γδ T cells [28]. However, a systematic analysis
of the seasonal variation of circulating γδ T cells and the possible correlation with vitamin
D3 has not yet been performed. To address this issue, our study was designed to comprise
three parts: (i) a retrospective analysis of the seasonal proportion of Vδ2 γδ T cells among
CD3 T cells in a large cohort of random blood donors; (ii) a prospective study of γδ T
cells and other immune cell subsets over a one-year period in a small group of healthy
donors who did or did not take oral vitamin D3; and (iii) an in vitro analysis of the effects
of 1,25(OH)2D3 on γδ T cell activation at the level of proliferation, cytotoxic activity, and
cytokine production.

2. Materials and Methods

Blood samples. Leukocyte concentrates obtained from healthy adult blood donors
were provided by the Institute of Transfusion Medicine, University Hospital Schleswig-
Holstein (UKSH) Campus Kiel. From the years 2011 to 2020, all samples obtained on a
weekly basis were regularly screened for the proportion of total γδ T cells and Vδ2 γδ T
cells among CD3+ T lymphocytes. These data were used in the retrospective analysis to
calculate the proportion of γδ T cells in a large cohort of random healthy blood donors
without consideration of age and sex. Such leukocyte concentrates were also used to isolate
peripheral blood mononuclear cells (PBMC) for the analysis of the effects of 1,25(OH)2D3
on the activation and effector function of γδ T cells. In a prospective study, EDTA blood
and serum were collected from 31 healthy adult blood donors every four to eight weeks
for one year. The study participants were grouped according to their oral vitamin D3
uptake pattern into three groups: (i) no vitamin D3 (14 donors), (ii) interrupted vitamin
D3 (no uptake mainly during late spring to early autumn (summer); 8 donors), and (iii)
regular vitamin D3 (uptake throughout the year; 9 donors). Oral vitamin D3 (cholecalciferol)
dosage ranged from a calculated average of 500 to 20,000 (mean 1877 ± 1968) IU per day.
The actual schedule varied among donors. Information on the gender and age distribution
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of the study group is presented in Supplementary Table S1. The studies were performed
in accordance with the declaration of Helsinki. The use of leukocyte concentrates from
random donors for in vitro analysis and the study protocol of the prospective study have
been approved by the Ethics Committee of the Medical Faculty of Christian-Albrechts
University Kiel (code 405/10 and D579/19).

Determination of 25(OH)D3 serum levels. Serum levels of 25(OH)D3 (calcifediol)
were measured using UHPLC as part of the routine diagnostic at the Institute of Clinical
Chemistry, UKSH. Blood samples were centrifuged for 10 min at 3000× g to collect the
serum. Prior to UHPLC analysis, the serum samples were prepared using kit reagents and
sample preparation procedures from RECIPE (Munich, Germany). During the first step,
200 µL of the serum sample was treated with 200 µL of precipitation reagent to reduce the
matrix load of the sample. Afterward, 200 µL of the organic solution containing the internal
standard was added to extract vitamin D from the sample. After mixing and centrifugation,
5 µL of the upper phase, which contains the concentrated vitamin D, was injected into the
UHPLC system. For the UHPLC analysis, a Chromaster HPLC-system (VWR, Radnor, PA,
USA) with an isocratic pump, autosampler, column heater, and a UV detector was used.
Then, 25(OH)D3 was chromatographically separated under isocratic conditions with a flow
rate of 0.7 mL/min using the column and mobile phase provided with the reagent kit. The
column temperature was kept at 35 ◦C, and the backpressure stayed below 300 bar. The
injection interval between samples was 3 min with a retention time of 25(OH)D3 of 1.6 min.
Peak detection is performed at a UV wavelength of 264 nm. Quantification of 25(OH)D3
was achieved by comparing its peak area to the peak area of the internal standard (retention
time 2.1 min), which was added during sample preparation and behaved similarly to the
analyte. The normal range of serum levels of 25(OH)D3 was defined as >20 µg/L [29].

Flow cytometry. Immunophenotyping in the prospective study was performed with
EDTA blood as part of the routine diagnostic protocol in the Institute of Clinical Chem-
istry, UKSH Campus Kiel, and included relative proportions and absolute cell counts of
CD3, CD4, CD8, CD19, and CD14 cells. Further subset analysis of γδ T cells was per-
formed on Ficoll-Hypaque density gradient-separated peripheral blood mononuclear cells
(PBMC). The following mAb were obtained from BioLegend (San Diego, CA, USA): anti-
CD3-BV605 (clone OKT3), anti-CD3-PE (clone SK7), and anti-TCR Vδ2-FITC (clone B6).
Anti-CD3-PE/APC (clone SK7), anti-TCR γδ-PECy7 (clone 11F2), anti-IFN-γ-PE (clone
4S.B3), and IgG1-PE were from BD Biosciences (Heidelberg, Germany). Anti-Vδ2-FITC
(clone IMMU389) was obtained from Beckman Coulter (Krefeld, Germany). Anti-TCR γδ-
FITC (clone 11F2) and anti-TCR Vδ2-VioBlue (clone REA771) were from Miltenyi Biotech
(Bergisch Gladbach, Germany), and Anti-TCR Vγ9-FITC (clone 7A5) was generated in
our laboratory [30]. For cell surface staining, 4 × 105 cells were washed, stained in V-
bottom microtiter plates for 20 min on ice with mAb, washed twice, and resuspended in 1%
paraformaldehyde. FcR blocking reagent (Miltenyi Biotech) was added at 1:20 dilution be-
fore staining. For intracellular staining, cells were washed with staining buffer and stained
with antibodies for cell surface CD3 and Vγ9. Subsequently, cells were permeabilized us-
ing Cytofix/Cytoperm kit (BD Biosciences) before staining with fluorochrome-conjugated
anti-IFN-γ mAb or isotype control. All analyses were measured on a FACS-Canto or LSR-
Fortessa cytometer (BD Biosciences), using DIVA (Data-Interpolating Variational Analysis)
for acquisition and FlowJo™ v10.6.1 (Ashland, OR, USA) for data analysis.

Cell culture and measurement of γδ T cell proliferation. To generate short-term
expanded γδ T cell lines, PBMC were stimulated at 1 × 106 cells/mL in 6-well plates with
2.5 µM zoledronate (ZOL) and 50 IU/mL IL-2 in the absence or presence of 1,25(OH)2D3
(Sigma Aldrich, Taufkirchen, Germany, or Enzo Life Sciences, Lörrach, Germany). Zole-
dronate and recombinant human IL-2 (Proleukin) were kindly provided by Novartis (Basel,
Switzerland. A 50 µM stock solution of 1,25(OH)2D3 was prepared in DMSO and stored
at −20 ◦C. The DMSO solvent control (1:1000) corresponding to the highest concentration
of 1,25(OH)2D3 did not have any effect. IL-2 was added every other day, and cell cultures
were split when required. The purity of γδ T cell lines after 14 d was routinely 74 to 92%.
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Cell cultures were subjected to microscopic inspection, and photographs were taken at
×100 magnification with an Axiovert 10 microscope (Leitz, Wetzlar, Germany) equipped
with an Axiocam 105 camera device and ZEN 2 core v2.5 software (Zeiss, Oberkochen,
Germany). For intracellular analysis of cytokine expression, 4 × 105 freshly isolated PBMC
were cultured for 48 h in 96-well round-bottom microtiter plates in the presence or ab-
sence of 2.5 µM ZOL and 50 nM 1,25(OH)2D3, and 3 µM monensin (Sigma Aldrich) was
added during the last 4 h to prevent cytokine secretion. The culture medium was RPMI
1640 (Thermo Fisher Scientific) supplemented with antibiotics (100 U/mL penicillin, 100
µg/mL streptomycin) and 10% of heat-inactivated fetal bovine serum. All cell cultures
were incubated at 37 ◦C in a humidified atmosphere of 5% CO2. Absolute numbers of
viable γδ T cells per microculture well were measured after 8 d by a flow cytometry-based
method termed standard cell dilution assay (SCDA), as described previously [31]. Briefly,
cultured cells from 96-well round-bottom plates were washed and stained with anti-Vγ9-
FITC mAb. After one washing step, cells were resuspended in a sample buffer containing a
defined number of fixed standard cells and 0.2 µg/mL propidium iodide (PI). Standard
cells were purified CD4 T cells that had been stained with APC-labeled antibodies and
thereafter had been fixed in 1% paraformaldehyde. Based on the known number of stan-
dard cells (FITC−PI+APC+), the absolute number of viable Vγ9 T cells (FITC+PI−) in a
given microculture well was determined as described previously [31,32]. The expansion
rate was calculated in relation to the absolute number of Vγ9 T cells measured in ZOL- or
HMBPP-stimulated cultures in the absence of 1,25(OH)2D3.

Measurement of interferon-γ in cell culture supernatants. Short-term γδ T cell lines
expanded for 14 d were washed and plated at 2 × 105 cells/well in 96-well round-bottom
plates coated or not with 0.5 µg anti-CD3 mAb OKT3 (BioLegend) per well or stimu-
lated with 10 nM (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP; Echelon
Biosciences, Salt Lake City, UT, USA). Then, 50 nM 1,25(OH)2D3 was added as indicated.
After 24 h, cell-free supernatants were collected and stored at −20 ◦C until use. IFN-γ was
quantified by ELISA with the DuoSet ELISA Kit from R&D Systems (Wiesbaden, Germany),
following the manufacturer’s instructions. In each experimental setting, two replicates
were included.

Cytotoxicity measured by Real-Time Cell Analyzer. Cytotoxic effector activity of
short-term expanded γδ T cell lines against U251MG glioblastoma and BxPC3 pancre-
atic ductal adenocarcinoma target cells was determined by xCELLigence Real-Time Cell
Analyzer (RTCA; Agilent, Santa Clara, CA, USA) which measures the decrease in the
impedance of adherent tumor cells over extended time periods as a correlate of cell lysis.
U251MG (ECACC 89081403) was obtained from the European Collection of Authenticated
Cell Cultures (ECACC, Salisbury, UK). BxPC3 [33] was provided by Dr. Christian Röder,
Institute for Experimental Cancer Research (UKSH Kiel, Germany). Tumor cell lines were
maintained in a complete culture medium, and 0.05% trypsin/0.02% EDTA or accutase
(Thermo Fisher Scientific) was used to detach adherent cell lines from flasks. RTCA was
performed as previously described [34,35]. Briefly, 8000 tumor cells in complete medium
were added to each well of the micro-E plates. After overnight incubation, γδ effector T
cells were added at an effector/target ratio of 10:1 with or without HMBPP as a positive
control to enhance TCR-dependent lysis. The impedance of the cells was recorded via
electronic sensors on the bottom of the 96-well micro-E-plate every 3 min for up to 48 h.
Results were analyzed with RTCA software (version 2.0.0.1301; Agilent, Santa Clara, CA,
USA) and normalized, as described in [34]. Results of several experiments with different γδ
T cell lines are summarized as the percentage of cell death induced by γδ T cells at various
time points in relation to the corresponding tumor cell index in medium and Triton-X100
(maximal lysis). Time point zero was defined as the first measurement after the addition of
γδ T cells.

Statistical analysis. All analyses were performed with the Graphpad Prism 8 (Graph-
Pad Software, San Diego, CA, USA) and SPSS 28.0 software (IBM, Armonk, NY, USA).
Linear regression was performed for the seasonal analysis of γδ T cells in the retrospective
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analysis. Statistical comparisons between groups were made using the Wilcoxon matched
pairs signed-rank test for dependent samples without a normal distribution (RTCA, ELISA,
SCDA). The Mann–Whitney U test was used in the case of the non-normal distribution
of independent data in two groups. Non-normal data sets with more than two groups
were analyzed with Kruskal–Wallis test and Dunn’s multiple comparison test. Levels of
significance were set as * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

3. Results

Our study consisted of three parts: (i) a retrospective analysis over ten years of the
proportion of γδ T cells in a large cohort of random healthy blood donors; (ii) a prospective
immunophenotypic analysis of γδ T cells and other immune cells in a small cohort of
healthy adults who did or did not take oral vitamin D3 supplementation; and (ii) in vitro
studies on the modulation of γδ T cell activation by the active vitamin D metabolite
1,25(OH)2D3.

3.1. Retrospective Analysis

As a first approach to investigate a possible seasonal fluctuation in the proportion
of γδ T cells circulating in peripheral blood, we performed a retrospective analysis of
data from the weekly screening of leukocyte concentrates from random healthy adult
blood donors. Parameters such as age, gender, or potential vitamin D3 uptake were not
taken into consideration. From 2011 to 2020, a total of 2625 blood samples were stained
for CD3/pan-γδ and CD3/Vδ2, and the proportion of total γδ T cells and Vδ2 T cells
among CD3 T lymphocytes was calculated. The gating strategy used in this analysis is
shown in Supplementary Figure S1. The results with the mean values per month of each
year are displayed for total γδ T cells in Supplementary Figure S2a and for Vδ2 T cells in
Supplementary Figure S2b.

Next, we combined results from individual months into four seasons (Spring: March,
April, May; Summer: June, July, August; Autumn: September, October, November; Winter:
December, January, February). The results of the ten years from all donors according to the
season are displayed for total γδ T cells in Figure 1a and for Vδ2 T cells in Figure 1b. In the
left panels, all data points and the means are displayed to illustrate the range of γδ T cell
proportions, while in the right panels, mean values ± SEM with a higher resolution on the
y axis are displayed to better visualize seasonal differences. Significantly higher total γδ
and Vδ2 T cell proportions were observed in winter when compared with summer, and
in the case of total γδ T cells also when compared with spring. The screening of random
blood donors over 10 years was performed because of our continued interest in identifying
donors with reasonable proportions of γδ T cells for a variety of functional experiments
with isolated γδ T cells. For this reason, we did not include other markers such as CD4 and
CD4 in the screening, which would have provided important additional information on
the seasonal variation of immune cells.

While many parameters might influence the seasonal fluctuation of immune cell
frequencies, one such parameter could be vitamin D3 which is subject to seasonal alterations
related to the intensity of sunshine exposure. Furthermore, cholesterol, which is the
precursor molecule of vitamin D synthesis, is a metabolite of the mevalonate pathway,
which generates Vγ9Vδ2 T cell-activating pyrophosphates (IPP, geranyl pyrophosphate) [8].
Therefore, our next step was to perform a prospective immunophenotypic study with up
to eight time points over one year in a small cohort of healthy adult donors who did or did
not take oral vitamin D3 supplementation.
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Figure 1. Seasonal variation of γδ T cells in random blood donors over ten years. A total of
2625 blood samples from random healthy adult blood donors collected from 2011 to 2020 were
analyzed for the proportion of total γδ T cells (a) and Vδ2 T cells (b) among CD3+ T cells. In the
left panels, all individual data points are displayed, while in the right panels, mean values ± SEM
are shown. For statistical analysis, a linear regression was performed. The dependent variable was
total γδ T cells (R2 = 0.003) in (a) and Vδ2 T cells (R2 = 0.002) in (b). For statistical comparison, the
reference season was Winter, * p < 0.05.

3.2. Prospective Analysis

Characteristics of blood donors are summarized in Supplementary Table S1. There
were 14 men and 17 women; the mean age was 27.3 ± 3.3 years. Among them, 14 donors
did not take any oral vitamin D3 (group 1), 9 donors took vitamin D3 regularly throughout
the year (group 3), while 8 donors took vitamin D3 irregularly (group 2). The gating
strategy for measuring total γδ T cells and Vδ2 T cells among CD3+ T cells is shown in
Supplementary Figure S3.

We first compared Vδ2 T cell proportions according to oral vitamin D3 uptake in all
respective donors per group and across all time points (Figure 2).
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group 3 (orange): continuous vitamin D3 uptake, 9 donors. Bars represent mean values ± SEM. Statis-
tical comparison was made by Kruskal–Wallis test and Dunn’s multiple comparison test. * p = 0.0113.
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In this analysis, the donors who did not take vitamin D3 (group 1) had higher Vδ2 T
cell proportions compared with the donors who regularly took vitamin D3 (group 3) (mean
6.1% vs. 4.5%, p < 0.05). Next, we determined serum levels of 25(OH)D3 and the proportion
of Vδ2 T cells in the three groups according to the seasons (defined as in Section 3.1). Donors
who did not take oral vitamin D3 (group 1) had low serum levels (<20 µg/mL) of 25(OH)D3
in spring and winter and—as expected—significantly higher levels in summer and autumn
due to increased sun exposure (Figure 3a, left panel). Donors who took vitamin D3 with an
interruption during the summer months (group 2; Figure 3a, middle panel) or regularly
throughout the year (group 3; Figure 3a, right panel) had, on average, normal (>20 µg/mL)
serum levels of 25(OH)D3 throughout the year.
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Figure 3. Seasonal fluctuation of serum 25(OH)D3 levels and proportion of Vδ2 T cells according
to oral vitamin D3 supplementation. (a) Serum levels of 25(OH)D3 in donors without vitamin D3

supplementation (left panel, blue symbols), in donors with interrupted vitamin D3 uptake (middle
panel, green symbols), and in donors with regular vitamin D3 uptake (right panel, orange symbols).
Statistical comparison was made by Wilcoxon matched pairs signed-rank test, by testing each season
against winter. (b) The proportion of Vδ2 T cells among CD3 T cells according to the season in
the same individuals. Bars represent mean values ± SEM. Statistical comparison was made by
Kruskal–Wallis test and Dunn’s multiple comparison test. * p = 0.0276; ** p < 0.01, and **** p < 0.0001.

We then determined the proportion of Vδ2 T cells among CD3 T cells in the three
groups and according to the season. Throughout the year, the highest mean values for
Vδ2 T cell proportions were always observed in group 1 donors without oral vitamin D3
supplementation (Figure 3b). This tendency was most prominent in spring when the mean
Vδ2 T cell proportion was 7.0% in group 1, 4.5% in group 2, and 3.5% in group 3 donors
(p = 0.0276). However, there was no direct correlation between the actually measured
25(OH)D3 serum levels with the proportion of Vδ2 T cells across all donors (Supplementary
Figure S4). In addition to Vδ2 T cells which dominate in peripheral blood, we also analyzed
seasonal changes in the proportion of the minor subset of non-Vδ2 γδ T cells (which mainly
comprises Vδ1 γδ T cells), but there was no obvious seasonal fluctuation in non-Vδ2 γδ T
cells (Supplementary Figure S5a). The proportion of non-Vδ2 γδ T cells also did neither
correlate with low (<20 µg/L) or higher serum levels of 25(OH)D3 (Supplementary Figure
S5b) nor with oral vitamin D3 (Supplementation (Supplementary Figure S5c)).

In addition to γδ T cells, we also performed immunophenotyping of conventional
immune cell subsets (CD3, CD4, CD8, CD19, CD14) in the prospective study. To delineate
a possible influence of serum 25(OH)D3 levels, we grouped all study participants into
low (<20 µg/L) and normal (>20 µg/L) serum levels and according to the season. These
results are presented in Figure 4a–e. While there was a slight tendency for lower CD8 T
cell proportions when serum levels of 25(OH)D3 were > 20 µg/L (Figure 4d), no clear-cut
correlation between 25(OH)D3 serum levels and immune cell subset distribution emerged.
Relative proportions of immune cell subsets are shown in Figure 4, but similar patterns



Cells 2022, 11, 1460 8 of 20

were observed if absolute cell counts were considered (results not shown). Because of the
slightly reduced CD8 T cell proportions (Figure 4d), a slightly higher CD4/CD8 ratio was
observed in donors with higher 25(OH)D3 serum levels (Figure 4f; mean 1.83 vs. 1.67,
statistically not significant). For comparison, we also performed a similar analysis for total
γδ T cells and Vδ2 T cells (Supplementary Figure S6a,b).
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Proportions of CD3 (a), CD19 (b), CD4 (c), CD8 (d), and CD14 (e) cells were measured in blood
samples from all donors in the prospective study. Mean values ± SEM and individual data points are
displayed according to the season and according to the serum level of 25(OH)D3: low (left panels:
<20 µg/L), normal (right panels: >20 µg/L). (f) CD4/CD8 ratio according to serum 25(OH)D3 levels
(all donors, all time points). Statistical comparison in (f) was made by Mann–Whitney U test but did
not reach significance.
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3.3. Modulation of γδ T Cell Activation In Vitro

In the third part of this study, we investigated the modulatory role of vitamin D3 on
the in vitro activation of γδ T cells. To this end, we investigated the effects of the active
vitamin D3 metabolite 1α,25-Dihydroxyvitamin D3 [1,25(OH)2D3] on the proliferative
activity, antitumor cytotoxicity, and cytokine production of γδ T cells.

3.3.1. Inhibition of γδ T Cell Expansion

PBMC were activated with predetermined optimal concentrations of ZOL (2.5 µM)
or HMBPP (10 nM) in the presence of 50 IU/mL IL-2 and titrated concentrations of
1,25(OH)2D3, or solvent control DMSO corresponding to the highest possible concen-
tration in which 1,25(OH)2D3 was dissolved (1:1000). Dose-dependent inhibition of T cell
proliferation was observed macroscopically after 6 d (Supplementary Figure S7a) and could
be verified upon microscopic inspection (Supplementary Figure S7b). Next, we quantified
the inhibitory effect of 1,25(OH)2D3 on γδ T cell proliferative expansion stimulated by ZOL
or HMBPP. To this end, PBMC were cultured in 96-well round-bottom plates and were
activated by 2.5 µM ZOL or 10 nM HMBPP in the presence of IL-2 and titrated concentra-
tions of 1,25(OH)2D3. After 8 d, the absolute number of viable Vγ9 T cells per microculture
well was determined, and the measured cell number in untreated control cultures was set
as 100%. As shown for ZOL in Figure 5a and HMBPP in Figure 5b, 1,25(OH)2D3 dose-
dependently inhibited the Vγ9 T cell expansion to both selective γδ T cell stimuli, with
>50% inhibition observed at 50 nM 1,25(OH)2D3. The solvent control DMSO at 1:1000
dilution did not affect γδ T cell expansion (not shown). In the SCDA analysis, cell cultures
are stained with propidium iodide (PI) to exclude dead cells (see Materials and Methods).
While there was more cell death of Vγ9 T cells (i.e., PI+Vγ9+) in ZOL-stimulated cultures in
comparison with HMBPP-activated cell cultures, this was not modulated in the presence of
1,25(OH)2D3, suggesting induction of apoptosis was not the main reason for the observed
growth inhibition (Supplementary Figure S8).
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Figure 5. 1,25(OH)2D3 inhibits γδ T cell expansion. PBMC from healthy donors were activated with
2.5 µM Zoledronate (a) or 10 nM HMBPP (b) in the presence of IL-2 and the indicated concentrations
of 1,25(OH)2D3. After 8 d, the absolute number of viable Vγ9 T cells was determined. The number
of viable γδ T cells in control cultures without 1,25(OH)2D3 was set as 100%, and the relative
growth of γδ T cells in the presence of 1,25(OH)2D3 was calculated. Mean ± SEM of 8–9 (a) and
6–7 (b) independent experiments are shown. Statistical significance was analyzed by the Wilcoxon
matched pairs signed-rank test. * p < 0.05, ** p < 0.01.

3.3.2. Modulation of Cytotoxic Effector Activity

Short-term γδ T cell lines to be used as effector cells in cytotoxicity assay were gen-
erated by activating PBMC with ZOL and IL-2 in the absence or presence of 50 nM
1,25(OH)2D3. Cell cultures were supplemented with IL-2 every two days and were split
when appropriate. 1,25(OH)2D3 was added once again after 7 d. Such cell lines contained
74–92% CD3+ Vδ2+ γδ T cells after 14 d, the time point when cells were washed and used
as effector cells in RTCA cytotoxicity assays with pancreatic adenocarcinoma BxPC3 or
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glioblastoma U251MG target cells. In some experiments, γδ T cells were used earlier than
d 14. The RTCA plot over a total time period of 48 h of one experiment with BxPC3 target
cells is shown in Figure 6a. Tumor cells were seeded at time point 0 h, and effector cells
+/− HMBPP, as well as Triton-X 100, were added at time point 26 h. From this time point,
the RTCA continued for another 22 h. Cytotoxicity after 6 h of coculture thus corresponds
to time point 32 h in Figure 6a, whereas cytotoxicity after 22 h corresponds to time point
48 h in this graph. As expected, the addition of the TCR stimulus HMBPP to the assay
greatly increased the cytotoxic activity of expanded Vδ2 T cells. Interestingly, the Vδ2
effector T cells expanded in the presence of 1,25(OH)2D3 were less active in killing BxPC3
target cells, as evidenced by the yellow line (1,25(OH)2D3) in comparison with the blue line
(medium) in Figure 6a. The lower activity of 1,25(OH)2D3-expanded Vδ2 effector T cells
was also not fully restored in the presence of HMBPP (compare purple and green lines).

A summary of experiments with 10 different Vδ2 T cell lines generated from different
donors and BxPC3 target cells at an E/T ratio of 10:1 is shown in Figure 6b (time point
6 h) and Figure 6c (time point 22 h). Lysis of BxPC3 cells in the absence of HMBPP was
moderate after 6 and 22 h and tended to be lower at 22 h with Vδ2 effector cells generated
in the presence of 1,25(OH)2D3, which, however, did not reach statistical significance.
As expected, lysis at both 6 and 22 h was strongly increased in the presence of HMBPP.
Interestingly, at both time points, killing by 1,25(OH)2D3-expanded Vδ2 effector cells in the
presence of HMBPP was slightly but significantly reduced (p < 0.05).

U251MG glioblastoma target cells are known to be more sensitive to γδ T cell lysis
compared with BxPC3 [35]. In line, the strong killing of U251MG target cells by ZOL-
expanded γδ T cells was already observed after 6 h (Figure 6d) and was further increased
after 22 h (Figure 6e). When measured after 22 h, Vδ2 T cells expanded in presence of
1,25(OH)2D3 were slightly but significantly less efficient in killing U251MG tumor cells
(Figure 6e). The addition of HMBPP further enhanced the killing activity, both at 6 h and
22 h. In the presence of HMBPP, there was almost complete lysis already after 6 h, and this
was slightly reduced with Vδ2 effector T cells expanded in the presence of 1,25(OH)2D3.

3.3.3. Modulation of Cytokine Production

Finally, we analyzed the effect of 1,25(OH)2D3 on the IFN-γ production by activated
γδ T cells in two different setups, namely by flow cytometry in γδ T cells within freshly
isolated PBMC and by ELISA in supernatants of expanded γδ T cell lines. To this end,
PBMC were activated with ZOL, and short-term expanded γδ T cell lines were restimulated
with HMBPP or immobilized anti-CD3 antibody. As shown in Figure 7a (left dot plot), 32.1%
of γδ T cells stained positive for intracellular IFN-γ when PBMC were activated for 48 h
with ZOL. In the presence of 1,25(OH)2D3, this proportion was reduced to 15.1% (Figure 7a,
right dot plot). γδ T cell lines expanded for 14 d secreted IFN-γ when restimulated
overnight with HMBPP or with immobilized anti-CD3 antibody (Figure 7b). The presence
of 1,25(OH)2D3 significantly reduced the IFN-γ secretion in response to HMBPP (mean
0.95 ng/mL vs. 1.33 ng/mL). Stimulation with immobilized anti-CD3 antibody is a much
stronger activation signal and induced a threefold higher concentration of secreted IFN-γ
(mean 3.95 ng/mL). Again, this was reduced by 1,25(OH)2D3 (mean 3.67 ng/mL), but the
inhibition did not reach statistical significance (Figure 7b).
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Figure 6. Cytotoxic activity of γδ T cells expanded in the absence or presence of 1,25(OH)2D3.
Vδ2 T cell lines expanded for 14 d from ZOL-stimulated PBMC in the absence or presence of 50 nM
1,25(OH)2D3 were used as effector cells (E/T ratio 10:1) in the RTCA with BxPC3 (a–c) or U251MG
target cells (d,e). Where indicated, HMBPP was added at a final concentration of 10 nM. The
impedance was continuously recorded over 48 h beginning with the addition of tumor cells. Effector
cells were added at time point 26 h, and the % specific lysis was calculated in relation to spontaneous
tumor cell growth and Triton X-100 induced maximal lysis at 6 h and 22 h after addition of effector
cells, based on the normalized cell index, which was set to 1 at the time when effector cells were added.
(a) RTCA plot with one Vδ2 effector cell population and BxPC3 tumor target cells. (b,c) Specific lysis
of BxPC3 target cells at 6 h (b) and 22 h (c) by control or 1,25(OH)2D3-expanded Vδ2 effector T cells
in the absence or presence of HMBPP. (d,e) Specific lysis of U251MG target cells at 6 h (d) and 22 h
(e) by control or 1,25(OH)2D3-expanded Vδ2 effector T cells in the absence or presence of HMBPP.
Mean ± SEM of experiments with 10 different Vδ2 T cell lines is shown. Statistical significance was
analyzed by the Wilcoxon matched pairs signed-rank test. * p < 0.05.
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Figure 7. 1,25(OH)2D3 inhibits IFN-γ induction in γδ T cells. (a) PBMC were activated with 2.5 µM
ZOL in the absence (left dot plot) or presence (right dot plot) of 50 nM 1,25(OH)2D3. After 48 h, cells
were stained for intracellular detection of IFN-γ in CD3+Vγ9+ T cells. One of two experiments is
shown. (b) γδ T cell lines generated from ZOL-activated PBMC and expanded for 14 d were cultured
overnight in a medium (n = 6), with HMBPP (n = 6) or immobilized anti-CD3 antibody (n = 4) in
the absence or presence of 50 nM 1,25(OH)2D3, as indicated. IFN-γ in culture supernatants was
measured by ELISA. Statistical analysis was performed with Wilcoxon matched pairs signed-rank
test. * p = 0.0313.

4. Discussion

Under physiologic conditions, the homeostasis of the immune system is well con-
trolled. While the global immune cell composition is influenced by genetic background,
sex, age, and environmental factors such as a persistent CMV infection [36–38], there are
also variations over time at the individual level. These include seasonal variability in gene
expression and some immune parameters, but also nonseasonal longitudinal variation in
functional immune responses [39–41]. Previous studies have investigated the fluctuation of
defined immune cell subsets in healthy individuals at several time points during one year,
thus providing a snapshot of variation during the seasons. Using multicolor flow cytome-
try, Khoo et al. [27] observed enhanced CD4, and to a lesser extent CD8, T cell counts in
spring and summer compared with winter, as well as seasonal variation in homing marker
expression on CD4 T cells. Only moderate variability over time in relation to the season was
reported in more recent studies employing multicolor flow cytometry or high throughput
mass cytometry for phenotyping [40,41]. Interestingly, CD4+CD25high regulatory T cells
(Treg) were found to be most strongly affected by seasonality, with their frequency peaking
in autumn [40]. However, the minor population of γδ T cells was not included in previous
analyses [27,40,41].

Many factors might impact the variation of immune parameters, including the con-
trasting weather conditions in summer vs. winter, but also physical activity and diet.
Exposure to solar or artificial ultraviolet radiation has an impact on immune cells in human
blood [42]. In this context, vitamin D is an important factor that is not only a regula-
tor of calcium and phosphate metabolism but also a potent modulator of immune cell
function [18,21]. The essential step is the generation of vitamin D3, which results from
the absorption of UV-B radiation (and thus sun exposure) by 7-dehydrocholesterol in the
skin. The subsequent metabolism in the liver and kidney produces the biologically active
1,25(OH)2D3, which exerts its functional activity via the nuclear vitamin D receptor (VDR).
Vitamin D sensing by the transcription factor VDR initiates epigenetic and transcriptional
regulation of a plethora of target genes [43]. Serum levels of 25(OH)D3 (the immediate
precursor of 1,25(OH)2D3) vary considerably, with higher levels measured in summer when
sun exposure is more intensive compared with winter [44]. In view of its immunoregula-
tory role, vitamin D3 deficiency has been associated with various diseases, notably with
the onset of various autoimmune diseases and the incidence and severity of infections,
including upper respiratory tract infections caused by influenza and SARS-CoV-2 [17,18,45].
To maintain sufficient serum levels of vitamin D3 throughout the year, the oral supplemen-
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tation with vitamin D3 (cholecalciferol) or (less frequently) vitamin D2 (ergocalciferol) is
widely recommended, even though there is no uniform opinion about the optimal dosage
and serum concentration [18,45–47].

The immunomodulatory effects of vitamin D3 might be beneficial on the basis of
several mechanisms of action which have been described. It must be emphasized, however,
that there is also controversy as to how some of the in vitro observations translate into
measurable effects in vivo upon oral vitamin D3 uptake [48]. This notwithstanding, it is
obvious that vitamin D3 affects both innate and adaptive immunity. The vitamin D receptor
(VDR) has been shown to act as a negative regulator of the NLRP3 oligomerization and
activation. In consequence, vitamin D3 inhibits NLRP3 inflammasome activation and IL-1β
secretion and thus might be useful in the treatment of inflammatory conditions [49]. At
the crossroads between innate and adaptive immunity, vitamin D3 induces a tolerogenic
phenotype in dendritic cells (DCs) [50], which has recently been linked to JAK2-mediated
STAT3 phosphorylation [51]. The induction of tolerogenic DCs might help control autore-
active T cells in autoimmune diseases. This could also be supported by the promotion of
Treg activation and suppressive activity by vitamin D3. In several studies, vitamin D3 was
found to increase the expression of the Treg-specific transcription factor FoxP3 in naturally
occurring Treg [20,52–54], and this may be associated with enhanced suppressive activity,
cell cycle progression, and proliferation of Treg [54–57]. However, additional mechanisms
could contribute to the potentially beneficial effect of vitamin D3 on autoreactive T cells,
including the upregulation of immunosuppressive CD73, the induction of IL-10, and the
inhibition of proinflammatory Th17 cells [20,58–61].

The focus of our study was twofold, i.e., (i) to investigate the seasonal variation of
γδ T cells in healthy adult individuals and (ii) to analyze the possible impact of vitamin
D3 on the seasonal frequency and on in vitro activation of γδ T cells. Even though a
numerically small subset of peripheral blood T cells, γδ T cells fulfill important functions
in the immune response to infection and stressed/transformed cells [10–12]. Because of
their HLA-nonrestricted mode of action and potent cytotoxic activity, multiple approaches
are currently under investigation to apply γδ T cells in immunotherapy of cancer and viral
(re)infection [10–12,62,63]. The recent demonstration that it is safe to transfer γδ T cells
expanded in vitro from healthy donors across HLA barriers into cancer patients has opened
the way to apply off-the-shelf γδ T cell therapy to treat cancer patients [64].

Our retrospective analysis of 2625 samples of random blood donors over ten years
revealed small but statistically significant differences in the proportion of γδ T cells (both
total γδ T cells and the Vδ2 subset) across the seasons, with higher γδ T cell proportions
recorded in winter compared with spring and summer. We are fully aware of the limitations
of this analysis as we did not consider confounders such as age, sex, potential oral vitamin
D3 supplementation, etc. We performed the screening over 10 years to identify random
blood donors with sufficient numbers of γδ T cells for various γδ T cell-focused projects. It
is certainly an additional limitation of the retrospective analysis that we did not include
other markers such as CD4 and CD8. Nevertheless, in view of the very large sample
number, we took this as an indication that there might be a seasonal variation of γδ T
cells circulating in the blood. Furthermore, we considered that this could be influenced by
vitamin D3 levels, which are higher in summer compared with winter. Given the paucity of
the information in the literature, this is the first hint for seasonal variation of γδ T cells in a
large cohort of random healthy adult blood donors. To investigate the seasonal fluctuation
in individual donors, we initiated a small prospective study with 31 healthy adults who
did or did not take oral vitamin D3 supplementation. We performed immunophenotyping,
including γδ T cells and conventional immune cell subsets at up to eight time points over
one year; serum levels of 25(OH)D3 were measured at the same time points. Several
observations emerged from this analysis which point to a possible influence of vitamin
D3 on circulating γδ T cell frequency. First, the analysis of all data points from all donors
indicated a higher proportion of Vδ2 T cells in donors who did not take oral vitamin D3 in
comparison with individuals who took vitamin D3 supplementation throughout the year
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(Figure 2). Secondly, the measured serum levels of 25(OH)D3 correlated as expected with
the practice of taking oral vitamin D3 or not. Thus, low levels were measured in spring
and winter, and higher levels in summer and autumn in individuals who did not take any
oral vitamin D3. By contrast, higher levels with little seasonal variation were measured
both in individuals who regularly took vitamin D3 and in those who took vitamin D3 with
interruptions during the summer (Figure 3a). In line with the assumption that low levels of
vitamin D3 are associated with higher proportions of circulating γδ T cells, we measured,
on average, the highest γδ T cell frequencies across the four seasons in donors without oral
vitamin D3 supplementation, whereas lower γδ T cell proportions were detected during the
year in individuals taking oral vitamin D3. This difference reached statistical significance in
spring but not in the other seasons (Figure 3b). These results suggest that vitamin D3 might
have a negative impact on the proportion of circulating γδ T cells, an assumption which
would be in line with the observed suppressive effects of the active vitamin D3 metabolite
1,25(OH)2D3 in vitro (see below). Obviously, a verification of this hypothesis will require
a larger prospective study with more individuals and under strictly controlled vitamin
D3 uptake conditions. In a previous study on osteoporosis patients who were on ZOL
treatment, De Santis et al. did not observe a correlation between 25(OH)D3 serum levels
and γδ T cell numbers [65]. However, this study cannot be directly compared with our
results in untreated healthy individuals since the therapeutic application of ZOL induces
in vivo activation of γδ T cells but also leads to a depletion of circulating γδ T cells upon
prolonged treatment with aminobisphosphonates [66,67]. In parallel to γδ T cells, we also
analyzed the frequency of other immune cells in the prospective cohort and categorized
the results according to the measured 25(OH)D3 serum levels. The proportion of CD8 T
cells tended to be lower in individuals with higher serum levels of 25(OH)D3, resulting in a
slightly elevated CD4/CD8 ratio as compared with individuals with <20 µg/L 25(OH)D3.
Overall, these results of immunophenotyping are in line with previous studies with more
extensive marker panels [40,41]. However, it is well possible that serum 25(OH)D3 levels
and vitamin D3 uptake have more pronounced effects on particular subsets of conventional
CD4 and CD8 T cells. In this respect, Khoo et al. observed seasonal variation of CD4 T cell
subsets defined by memory marker and homing receptor expression [27].

Seasonal variation in the intensity of UV radiation may also affect other factors relevant
to the immune system, such as nitric oxide (NO). NO is an important modulator of T cell
activation [68,69] and is generated in the skin by UV-A and near-infrared wavelength [70,71].
It is currently unknown how skin-derived NO might affect γδ T cell plasticity in vivo.

We also investigated the modulation of in vitro activation and effector functions of γδ
T cells by the active metabolite 1,25(OH)2D3. Numerous previous studies have reported
the modulation of CD4 T cell differentiation by 1,25(OH)2D3, but only one previous study
has focused on γδ T cells [28]. The accumulated evidence supports the notion that vitamin
D3 inhibits CD4 T cell proliferation and inhibits their inflammatory gene program by
suppressing IL-17 and IL-9 and favoring IL-10 induction [19,72–75]. A recent molecular
analysis demonstrated that Th1 cells could turn off their proinflammatory cytokine program
in an autocrine manner and switch to IL-10 production in response to vitamin D3, a process
that depends on several transcription factors, including c-JUN, STAT3, and BACH2 [23].
We observed that 1,25(OH)2D3 drastically inhibited the in vitro expansion of γδ T cells
when PBMC were stimulated with γδ T cell-specific ligands such as ZOL and HMBPP. The
experiments were carried out in the presence of exogenous IL-2, so growth inhibition did
not occur at the level of endogenous IL-2 production. Using a different read-out system,
Chen and colleagues also reported γδ T cell growth inhibition by 1,25(OH)2D3 [28]. The
activation of γδ T cells within PBMC using ZOL as a stimulus completely depends on the
presence of monocytes [8]. One possible reason for the inhibition seen in the presence of
1,25(OH)2D3 could be that 1,25(OH)2D3 interferes with the production of the γδ T cell-
activating pAg IPP in monocytes which would have to be analyzed in future studies. On
the other hand, proliferative expansion was also inhibited in response to the synthetic
pAg HMBPP, which is less dependent on monocytes but also requires accessory cells [76].
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Our data extracted from the SCDA experiments do not suggest that there was significant
additional cell death of γδ T cells in the presence of up to 50 nM 1,25(OH)2D3. This indicates
that growth inhibition might result from cell cycle arrest rather than induction of apoptosis.
On the other hand, Chen et al. observed increased cell death when γδ T cells were activated
with IPP and higher (100 nM) concentrations of 1,25(OH)2D3 than used in our study [28].
Taken together, the analysis of the precise molecular mechanisms of growth inhibition of
γδ T cells by 1,25(OH)2D3 will require further investigation.

We also observed that 1,25(OH)2D3 inhibits the IFN-γ production in human γδ T
cells. Inhibition of IFN-γ induction in γδ T cells within PBMC was previously reported
by Chen et al. [28], and we confirmed this observation in a slightly different system.
Again, we stimulated PBMC with ZOL in the absence or presence of 1,25(OH)2D3. When
analyzed after 48 h, the proportion of γδ T cells expressing IFN-γ was markedly reduced
in the presence of 1,25(OH)2D3. Under these conditions, it is likely that monocytes play
an essential role. We extended these experiments to demonstrate that 1,25(OH)2D3 also
reduced IFN-γ secretion when expanded γδ T cell lines are stimulated with pAg or anti-
CD3 antibody. While the effect in the anti-CD3 antibody stimulation was minimal, it
was significant when γδ T cell lines were activated with HMBPP. Therefore, 1,25(OH)2D3
can directly act on activated γδ T cells, in line with the demonstration that activated T
cells express a functional VDR [28,77]. While our and the previous results [28] clearly
demonstrate that 1,25(OH)2D3 suppresses IFN-γ induction in human γδ T cells, it remains
to be investigated if 1,25(OH)2D3 might also act to drive γδ T cell differentiation towards
IL-10 production.

γδ T cell lines expanded in the presence of 1,25(OH)2D3 displayed reduced cytotoxic
activity towards two different tumor target cells. The RTCA system applied here has been
extensively used to follow the cytotoxic effect of γδ T cells on tumors over extended time
periods [34,35]. The two tumor cell lines applied here are differentially susceptible to γδ T
cell-mediated lysis. The glioblastoma U251MG is highly susceptible, while the pancreatic
adenocarcinoma BxPC3 is much less susceptible [35]. In all settings, 1,25(OH)2D3-expanded
γδ T cells were not more active than the control γδ T cell lines. In fact, the enhanced lysis
of BxPC3 target cells noticed in the presence of the TCR-activating pAg HMBPP was
also reduced at both early (6 h) and later (22 h) time points by 1,25(OH)2D3 treatment.
There were fewer differences between control and 1,25(OH)2D3-expanded γδ T cells when
U251MG were used as target cells, but again, there was some reduction in the absence of
HMBPP after 22 h and a minor reduction in the presence of HMBPP after 6 h. Again, the
underlying mechanisms have not been investigated in more detail in this study. γδ T cells
can utilize both death receptor/ligand pathways (e.g., Fas/CD95, TRAIL) as well as the
secretory pathway (perforin, granzyme B, granulysin) to kill target cells [78–80]. Previous
investigations have demonstrated that 1,25(OH)2D3 downregulates the cytotoxic effector
response in pulmonary tuberculosis by reducing the expression of perforin, granulysin,
and granzyme B [81]. It remains to be investigated if a similar mechanism contributes to
the regulation of cytotoxic function in human γδ T cells by vitamin D3.

While binding of 1,25(OH)2D3 to the nuclear VDR is an established mode of action, it
is also known that several other vitamin D3 hydroxyderivatives can act on other nuclear
receptors such as the liver X receptors (LXRs) and retinoic acid-related orphan receptors
(RORs) [82,83]. How the activation of such receptors by vitamin D3 hydroxyderivatives
might impact the in vivo fluctuation of immune cells and the in vitro activation of γδ T
cells is presently unknown.

Overall, the results of our in vitro studies imply that 1,25(OH)2D3 exerts mainly
inhibitory effects on human γδ T cells (at least in the read-out systems analyzed here). If
relevant in vivo, such an inhibitory effect could be in line with the higher proportion of γδ
T cells in the blood of individuals with low 25(OH)D3 serum levels in spring and winter—a
hypothesis that certainly needs further validation.

The results of our study are of interest in the context of the potential application of
exogenous vitamin D3 in diseases, notably when harnessing γδ T cells for immunotherapy
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of cancer. Enhancing Treg activity and modulating T cell differentiation by suppressing
Th1 and Th17 responses towards IL-10 induction by vitamin D3 supplementation might be
advisable for autoimmune and inflammatory diseases [84]. However, the inhibition of ef-
fector functions might also have a negative impact on T cell-mediated antitumor immunity,
as recently shown in a 3D tumor spheroid model [85]. This notwithstanding, vitamin D3
has been proposed to exert anticancer effects by acting on the tumor microenvironment as
well as directly on some tumor cell types [86,87]. Given the current enthusiasm to trans-
late the unique features of γδ T cells into novel cancer immunotherapies, further studies
are warranted to investigate in more detail the impact of vitamin D3 and its therapeutic
application on the γδ T cell compartment.

5. Conclusions

Our study points to a possible role of vitamin D3 in the homeostasis of peripheral blood
γδ T cells, which needs to be verified in a larger cohort and under well-controlled conditions
of vitamin D3 supplementation. In vitro, the active vitamin D3 metabolite 1,25(OH)2D3
inhibited γδ T cell activation and effector functions. Oral vitamin D3 supplementation is
frequently recommended to cancer patients, and γδ T cells are in development as novel
cellular cancer immunotherapy. Our study raises a caveat as to whether (high) dose vitamin
D3 therapy is advisable during γδ T cell immunotherapy by adoptive γδ T cell transfer of
in vivo activation of γδ T cells [12].
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