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Loukidis, D. & Salgado, R. (2008). Géotechnique 58, No. 4, 283–296 [doi: 10.1680/geot.2008.58.4.283]

283

Analysis of the shaft resistance of non-displacement piles in sand

D. LOUKIDIS* and R. SALGADO

The paper examines, using numerical modelling, the
problem of the limit shaft resistance of non-displacement
piles installed in sands. The modelling makes use of an
advanced, two-surface-plasticity constitutive model. The
constitutive model predicts the soil response in both the
small- and the large-strain range, while taking into
account the effects of the intermediate principal effective
stress and of the inherent anisotropy of the sand. Finite
element analyses of shearing along the pile shaft are
performed in order to examine the development of limit
unit shaft resistance and the changes in stress state
around the shaft upon axial loading of the pile. Special
focus is placed on the operative value of the lateral earth
pressure coefficient when limit shaft resistance is reached.
The analyses offer useful insights regarding the factors
controlling the value of unit shaft resistance in sands.
The simulations predict a significant build-up of horizon-
tal effective stress for dense sands. Based on these simu-
lations, we propose a relationship between the lateral
earth pressure coefficient for use in the calculation of the
limit shaft resistance of the pile and the initial density
and stress state of the sand.

KEYWORDS: constitutive relations; friction; numerical model-
ling and analysis; piles; plasticity; sands

La présente communication examine, au moyen de la
modélisation numérique, le problème de la résistance
limite de fût de pieu, dans les pieux sans déplacement
installés dans le sable. La modélisation fait usage d’un
modèle constitutif perfectionné de plasticité sur deux
surfaces. Le modèle constitutif permet de prédire la
réponse du sol dans des plages de déformation limitée et
élevée, tout en tenant compte des effets des contraintes
efficaces principales intermédiaires et de l’anisotropie
inhérente du sable. On effectue des analyses aux éléments
finis du cisaillement le long du fût du pieu afin d’exami-
ner le développement de la résistance unitaire limite du
fût, ainsi que les variations de la contrainte autour de
l’arbre sous l’effet de l’application de charges axiales sur
le pieu. On se concentre tout particulièrement sur la
valeur opérative du coefficient de pression latérale de la
terre lorsqu’on atteint la résistance limite du fût. Les
analyses offrent un aperçu utile des facteurs déterminant
la valeur de la résistance unitaire des fûts dans le sable.
Les simulations permettent de prédire une accumulation
significative de contraintes effectives horizontales pour les
sables denses. Sur la base de ces simulations, nous
proposons l’établissement d’un rapport entre le coeffi-
cient de pression latérale de la terre, pour le calcul de la
résistance limite du fût, et la densité initiale et la contra-
inte du sable.

INTRODUCTION
In this paper we examine, using numerical analysis, the shaft
resistance of non-displacement piles installed in sand. An
ideal non-displacement pile is installed in the space left by
soil previously removed without disturbing the surrounding
soil or changing the stress state or density at any point of
the surrounding soil. Drilled shafts (bored piles), which are
non-displacement piles, induce some amount of disturbance
very near the pile shaft when installed in a sandy profile.
Nevertheless, disturbances are fairly small in properly exe-
cuted drilling with the aid of bentonite or polymer slurry.
According to Fleming et al. (1992), the placement of con-
crete with high fluidity would even lead to an initial K
slightly greater than K0. Thus we can assume that both the
density and the stress state around a non-displacement pile
after installation are the same as they are initially.

Given the relatively large permeability of sands and the
generally low rate of application of the superstructure loads
to the foundations, the limit unit shaft resistance qsL can be
calculated using drained analysis. The qsL is the product of
the normal effective stress on the soil/pile interface � 9h and
an appropriate friction coefficient �f (¼ tan �). Because of
the very large shear strains developed near the pile shaft at
ultimate load levels, the value of friction angle � mobilised
in the vertical direction (parallel to the shaft wall) is ex-

pressed in terms of the constant-volume (or critical-state)
friction angle �c. For non-displacement piles, given the high
degree of roughness of the concrete placed in situ and the
bonding between the soil particles at the borehole wall and
the cement, the interlocking of the shaft with the soil is such
that shearing will take place within the soil immediately
adjacent to the pile (i.e. in a shear band running parallel and
adjacent to the shaft wall), and not between the sand
particles and the surface of the concrete shaft. The slurry
has no effect on the shaft resistance since it is fully
displaced by the concrete, provided that concrete is placed
not long after excavation (Fleming et al., 1992). Therefore
the unit shaft resistance is controlled fully by the shear
strength of the sand.

It is convenient in pile design to express � 9h as the product
of the initial (geostatic) vertical effective stress � 9v0 and an
appropriate coefficient of lateral earth pressure K (Salgado,
2008). Therefore the unit limit shaft resistance can be
written mathematically as

qsL ¼ K� 9v0 tan � (1)

The product K tan� is sometimes denoted by �, and the use
of �� 9v0 to compute qsL is known as the ‘� method’. Equa-
tion (1) is quite simple, but finding appropriate values for K,
and consequently �, without proper analysis is rather diffi-
cult, a fact reflected in the wide range of values for K (and
�) proposed in the literature. There have been relatively few
studies proposing values for K or � or studying their
dependence on the initial stress state and density of the sand,
and these have been based on experimental results and back-
analyses of pile load test results. The present paper sheds
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light on this issue through numerical simulations using an
advanced constitutive model and the finite element method.

METHODOLOGY OF NUMERICAL SIMULATION
General concepts and deformation mechanism

Let us first examine the mode of deformation and stress
conditions developed in a soil element in contact with the
pile shaft (the very first element in a row of elements
extending all the way from the pile shaft wall to infinity).
This element is not near either the pile tip or the ground
surface. Let us also assume that there is no development of
normal strain in the vertical direction at any moment
( _��z ¼ 0). As the pile is subjected to axial loading, the soil
element under consideration will be subjected to a mode of
shear loading that involves stress rotation, with the major
and minor principal effective stresses tending to an inclina-
tion of �458 with the vertical as shearing proceeds. If the
soil is generally dilative, then elements closer to the pile
push against their neighbouring soil elements lying in the
same horizontal plane but located further away from the
pile, a process that leads to the build-up of lateral effective
stress. In general, the mode of deformation is not strictly
that of simple shear, as the change in soil volume leads to
both radial and hoop strains (Fig. 1). After a certain amount
of vertical pile displacement, the soil close to the pile
reaches critical state (CS), stops dilating, and the shaft
resistance reaches its limiting value. This mechanism is
similar to the normal stress build-up in experimental studies
employing constant-normal-stiffness direct shear tests (e.g.
Boulon & Foray, 1986; Tabucanon et al., 1995).

Constitutive model
There are certain characteristics that a constitutive model

must possess in order for it to be able to simulate the shaft
shearing process described in the previous section. These are:
(a) the ability to predict the critical state; (b) the ability to
produce the correct soil stiffness at small and large strains;
and (c) the ability to simulate sand behaviour under condi-
tions other than triaxial compression/extension. For accurate
simulations of any loading path, the model must take into
account the effect of the intermediate effective stress and the
effect of fabric-related (inherent) cross-anisotropy. Inherent
cross-anisotropy results from the fact that the prevalent direc-
tion of the long axis of sand particles deposited under the
action of gravity through water or air is perpendicular to the
axis of deposition (vertical axis).

The constitutive model we use in this paper was originally
proposed by Manzari & Dafalias (1997) (Fig. 2). It com-
bines a number of features from subsequent work by Li &
Dafalias (2000), Papadimitriou & Bouckovalas (2002),
Dafalias & Manzari (2004) and Dafalias et al. (2004), along
with new additions and improvements. The model has been
calibrated for dry-deposited/air-pluviated Toyoura sand based
mainly on data from triaxial tests (Fukushima & Tatsuoka,
1984; Yoshimine et al., 1998), plane-strain biaxial tests
(Lam & Tatsuoka, 1988), and hollow cylinder tests
(Yoshimine et al., 1998). Model parameters have been also
determined for slurry-deposited/water-pluviated Ottawa sand
based on test data by Carraro et al. (2003), Carraro (2004),
and Murthy et al. (2007). Toyoura sand is an angular to sub-
angular silica sand with D50 ¼ 0.19 mm, emin ¼ 0.60 and
emax ¼ 0.98. Ottawa sand is a round to sub-round silica sand
with D50 ¼ 0.39 mm, emin ¼ 0.48 and emax ¼ 0.78. The
model is compatible with the framework of critical-state soil
mechanics, taking the inherent anisotropy of sands into
account through the use of a fabric tensor (Dafalias et al.,
2004). It reproduces the soil response over the entire range

of strains, with initial shear modulus equal to Gmax, as
measured in resonant column or bender elements tests, and
with a realistic value of the small-strain Poisson’s ratio � (¼
0.1–0.2). This feature is particularly desirable because ele-
ments far away from the shaft will develop only small shear
strains, but they will still resist the deformation of the
elements closer to the shaft. The equations of the constitu-
tive model and the values of its input parameters can be
found in Tables 1 and 2 respectively. Model equations that
we have modified are shown shaded in Table 1. Detailed
information about the calibration of the model parameters
and the performance of the model in predicting the sand
response observed in laboratory tests can be found in
Loukidis (2006) and Loukidis & Salgado (2008). Compari-
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Fig. 1. (a) Idealised deformation pattern around pile; (b) stress
and deformation conditions for soil elements adjacent to pile
shaft upon application of axial load
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sons between constitutive model predictions and experimen-
tal data from drained triaxial compression tests on Toyoura
sand (Fukushima & Tatsuoka, 1984) and clean Ottawa sand
(Carraro, 2004) are shown in Fig. 3.

Finite element model
Potts & Martins (1982) used finite elements (FE) to

investigate the pile shaft resistance in clays under drained
conditions. They assumed that end conditions do not influ-
ence the development of limit shaft resistance at depths well
away from both the ground surface and the pile base, and
that the vertical normal strain rate will be very small or
zero. This idealisation allows modelling using just a thin
disc of soil that is allowed to experience only vertical
shearing and radial expansion or contraction. Consequently
the problem becomes independent of scale in the vertical
direction, and reduces to a one-dimensional axisymmetric
problem. Use of rectangular elements (instead of triangular
elements), in addition to imposition of these deformation
constraints, renders the solution completely independent of
the height of the elements. The same formulation can be
seen also as simulating the shearing of a cavity of infinite
vertical extent. An analysis of a soil disc can give useful
insights into the fundamental mechanics controlling shaft
resistance in sand (Salgado, 2006), without the complexities
present in the full (two-dimensional axisymmetric) pile
simulation.

In the one-dimensional axisymmetric simulations, the
mesh consists of a single row of 125 to 500 elements.
Referring to Fig. 4, at the leftmost boundary (where the
pile/soil interface is), the vertical displacement is applied in
small increments (of the order of 10�7 to 10�6 of the pile
diameter B for the results to converge to an accurate
solution), while the horizontal displacement is kept to zero.
Given the extremely large stiffness of concrete compared
with that of soil, the pile is assumed to be perfectly rigid,
and is not included in the mesh. The boundary conditions
for the one-dimensional simulations are shown in Fig. 4.
Nodes lying in the same vertical are tied together with

respect to both vertical and horizontal movement, as done
by Gens & Potts (1984). This means that the distortion of
the soil as the pile is pushed down is captured by vertical
shearing of the elements, which can neither rotate nor
contract/stretch in the vertical direction. The elements are
still able to contract or stretch in the radial direction.

We also performed a number of two-dimensional axisym-
metric analyses of a pile of finite length, whose results
we compared with those of the one-dimensional analyses.
In reality, and in contrast with the one-dimensional ap-
proach, the initial overburden stress varies with depth and,
kinematically, the soil elements can elongate or contract in
the vertical direction. Additionally, downdrag of the soil by
the pile as it moves down is constrained to some extent by
the presence of the soil lying at depths lower than the pile
tip. This leads to an oblique (conical) transfer of stresses
(arching) (Touma & Reese, 1974), which is illustrated in
Fig. 5. In the full-pile (two-dimensional axisymmetric) simu-
lations, we apply the same displacement increments along
the entire pile/soil interface, including the pile tip, assuming
a perfectly rigid pile. In contrast to the one-dimensional
simulations, the degrees of freedom in the two-dimensional
simulations are not tied. The mesh and boundary conditions
used for the two-dimensional simulation are shown in Fig. 6.

The constitutive model was implemented in the finite
element program SNAC (Abbo & Sloan, 2000). Eight-noded
quadrilateral, axisymmetric elements are used to discretise
the analysis domain. The integration of the stress–strain
equations at the Gauss quadrature points is done using the
semi-implicit backward-Euler (cutting plane) algorithm
adapted with sub-incrementation and error control (Abbo &
Sloan, 2000; Loukidis, 2006). This algorithm has compared
favourably (both in accuracy and in efficiency) with the
Runge–Kutta–Dormand–Prince sub-stepping algorithm
(Sloan & Booker, 1992). The stress error tolerance and the
yield function error tolerance were set to be 10�4 and 10�9

respectively. The global load incrementation scheme used
was the modified Newton–Raphson scheme with the global
stiffness matrix being always the elastic stiffness matrix.
This choice was based on the fact that the high degree of
non-associativity and strain-softening present in the constitu-
tive model give rise to considerable difficulties in the inver-
sion of the elasto-plastic global stiffness matrix used in the
original Newton–Raphson scheme, which becomes ill-condi-
tioned.

Shear strain is highly localised next to the pile shaft,
along which a shear band forms. It is well known that, in
FE analyses involving a strain-softening material, the pro-
blem of solution non-uniqueness may arise, leading to
physically irrelevant solutions. Because the shearing tends to
concentrate within the elements where softening starts, the
predicted shear band thickness becomes unrealistically small
as the element size in the softening region decreases with
successive mesh refinements. Various experimental studies
(e.g. Uesugi et al., 1988; Vardoulakis & Sulem, 1995;
Nemat-Nasser & Okada, 2001) on shear strain localisation in
sand have shown that the shear band thickness ts is in the
range of 5 to 20D50. Most soil constitutive models, including
the one we use in this paper, describe soil behaviour as if
soil were a continuum. They are not intended to and cannot
capture the mechanics of subsets of the shear band: therefore
we must not have elements smaller (thinner) than the shear
band.

Strategies to deal with the problem of non-uniqueness of
solutions include the use of regularisation techniques, such
as the Cosserat continuum, gradient-dependent plasticity, and
non-local plasticity. These techniques introduce explicitly or
implicitly an internal length scale that helps the analysis
converge to a finite and realistic shear band thickness.
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However, these techniques introduce a variety of complex-
ities into the FE formulation, and usually require significant
alterations or additions to the constitutive model (especially
the first two techniques). In the present analysis, the issue of
non-uniqueness is dealt with in a much simpler way, which
is possible and practical because we know a priori the exact
location and orientation of the shear band (which is parallel
and adjacent to the sand/concrete interface). We set the size
(width) of elements right at the contact with the boundary
representing the pile shaft to be equal to the shear band
thickness ts that would be observed in reality, in both the
one-dimensional and two-dimensional simulations. In this
way we implicitly assume that the vertical sides of the
leftmost element correspond to the boundaries of the shear
band. So most of the analyses were done for a minimum
element size (size of leftmost element) of 10D50, corre-
sponding to approximately 2 mm for Toyoura sand and
4 mm for Ottawa sand. It should be noted that neither ts nor
D50 is a parameter of the constitutive model; they both enter
the analysis at the level of the boundary-value problem.

RESULTS AND DISCUSSION
One-dimensional analysis (analysis using a soil disc)

Figure 7 shows the evolution of the shear stress 
s and
normal stress � 9n on the left boundary (the pile/soil interface)
that develops with increasing vertical pile displacement for
the case of � 9v0 ¼ 100 kPa, relative density DR ¼ 60% and K0

¼ 0.4. The pile diameter B is 0.5 m. The shear and normal
stresses 
s and � 9n are derived from the vertical and horizontal
reactions at the nodes of the left boundary respectively. The
shear stress increases non-linearly with displacement until a
peak (failure) point, and then drops to the steady value of qsL

we seek. The value of pile movement wL required for
mobilisation of qsL in this case is of the order of 5 mm (or
about 1% of the pile diameter).

The softening response, shown in Fig. 7(a), is rather
abrupt. This is a consequence of the intense shear strain
localisation. The initiation of the softening corresponds to
the formation of the shear band along the pile/soil interface,
and deformation is localised in the leftmost element (Fig.
7(c)). Unloading occurs in other elements that are in the
vicinity of the element representing the shear band after
reaching peak resistance. Fig. 8 shows the stress path for the
Gauss quadrature point closest to the pile in the normalised
deviatoric plane (where principal deviatoric stresses s1, s2,
and s3 are normalised with respect to mean effective stress
p9, and the deviatoric plane is scaled by a factor equal toffiffiffiffiffiffiffiffi

3=2
p

so that the radial distance in triaxial compression and
extension is equal to the stress ratio used in geomechanics).
According to the definition used in this paper, Lode’s angle
Ł takes the value of 08 for triaxial compression and 608 for
triaxial extension. It can be seen that the stress path starts
from the geostatic stress state, for which Ł ¼ 08 (corre-
sponding to b ¼ (� 92 � � 93)=(� 91 � � 93) ¼ 0), proceeds to
higher Ł values until the peak state, and then softens towards
critical state (CS). At CS, Lode’s angle Ł becomes equal to
14.48, which corresponds to a b value of 0.26. This value of
b is virtually identical to the value of b at CS under plane-
strain conditions for Toyoura sand (Pradhan et al., 1988;
Yoshimine et al., 1998). The b value at CS under plane-
strain conditions is controlled by the shape of the plastic
potential (equation for g2(Ł) in Table 1) in the deviatoric
plane (Potts & Zdravković, 1999; Dafalias et al., 2004)
through the value of the model parameter c2 (Table 2). The
mode of deformation of the soil in the thin zone surrounding
the pile is almost identical to simple shear, which is a
special case of plane strain. The near identity to simple shear
(SS) conditions can be understood by the fact that the ratioD
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of the hoop strain rate _��Ł to the radial strain rate _��r for the
leftmost element with thickness ts is of the same order as
the ratio ts/R (0.008 in the present case), where R is the pile
radius, yielding an _��Ł two orders of magnitude less than _��r.

At the initial state, the major principal effective stress is
vertical (since K0 , 1) and equal to � 9v0. As vertical shear
progresses, � 91 and � 93 rotate, and, at CS, they form an angle
of �458 with the vertical (the vertical and radial normal
stresses become equal). This is consistent with observations
of SS tests on Toyoura sand by Pradhan et al. (1988) and
Yoshimine et al. (1998). The true (maximum obliquity)
friction angle at CS, �c (¼ sin�1 [(� 91 � � 93)=(� 91 þ � 93)] ),
inside the soil under these conditions is 36.68 (Fig. 8), which
is consistent with the value of the CS friction angle for
plane strain conditions �PS

c for Toyoura sand (Lam &
Tatsuoka, 1988; Pradhan et al., 1988; Yoshimine et al.,
1998). The friction angle � (¼ tan�1 (
s=� 9n)) mobilised on
the left boundary along the vertical direction (parallel to the
pile shaft/soil interface) at the state of limit shaft resistance
turns out to be equal to 30.88 (corresponding to �f ¼ 0.6) in
all analyses involving a ts in the range of 5D50 to 20D50.
This value is in very good agreement with the residual
(constant-volume) friction coefficient from interface simple
shear tests on Toyoura sand by Uesugi et al. (1990). The �c

angle does not mobilise along the vertical plane; it in fact
mobilises in a plane that is inclined by an angle approxi-
mately equal to �c/2 with respect to the vertical. The
friction angles � and �c under SS conditions are related
through the equation (Potts & Martins, 1982):

� ¼ tan�1 sin�cð Þ (20)

The values of �c (36.68 for plane strain) and � (30.88)

resulting from the analysis satisfy equation (20). The criti-
cal-state friction angle of Toyoura sand for triaxial compres-
sion conditions �TXC

c is 31.68. Comparing the values of �
and �TXC

c , we can conclude that an operative value for � can
be considered to be 0:97�TXC

c (from analyses with Ottawa
sand, � ¼ 0:98�TXC

c ).
From the ratio of the normal stress acting on the shaft at

the limit state to � 9v0, we can obtain the value of K. The K/
K0 for different values of initial DR and � 9v0 are plotted in
Fig. 9(a). In this set of runs, the coefficient of earth pressure
at rest, K0, was set equal to 0.4 and the pile diameter, B,
was 0.5 m. In general, for sand that has not experienced
larger overburden stress than its current value, we expect K0

to be in the range of 0.4 to 0.5 (Mesri & Hayat, 1993). K
increases with DR and decreases with increasing � 9v0. These
trends reflect the effect of sand dilatancy on the build-up of
lateral effective stress upon shearing. The analyses yield K
less than K0 for 30% relative density and large effective
stress. On the other hand, K can be as high as 2.5K0 for DR

¼ 90% and � 9v0 ¼ 50 kPa. The value of � 9v0 impacts
strongly on the value of pile settlement required for reaching
limit shaft resistance conditions wL. From the Toyoura sand
analyses shown in Fig. 9(a), the average wL value is 4.4 mm,
6.3 mm, 7.8 mm, and 10.2 mm for � 9v0 equal to 50 kPa,
100 kPa, 200 kPa and 500 kPa respectively. The limiting
settlement wL is an increasing function of the sand shear
strength (
f ) and a decreasing function of Gmax. Because the
sand strength is almost proportional to � 9v0, whereas Gmax is
a power function of � 9v0 with an exponent that is much less
than 1 (0.4 for Toyoura sand), the net outcome is an increase
in wL with increasing � 9v0. This is consistent with observa-
tions from model plate pull-out tests by Garnier & König
(1998) and constant normal stress interface shear tests by

Table 2. Constitutive model input parameters.

Parameter
symbol

Parameter value Test data required

Toyoura sand
(dry-deposited/
air-pluviated)

Ottawa sand
(slurry-

deposited/
water-pluviated)

Small-strain (‘elastic’)
parameters

� 0.15 0.15� Tests using local strain transducers or isotropic compression
or 1-D compression tests with unloading path

Cg 900 611 Bender element or resonant column tests
ng 0.400 0.437 Bender element or resonant column tests
ª1 0.0010 0.00065 Resonant column tests or TX tests with local strain

measurements
Æ1 0.40 0.47 Undrained TX compression tests

Critical state ĉ 0.934 0.780 TX compression tests
º 0.019 0.081 TX compression tests
� 0.70 0.20 TX compression tests

Mcc 1.27 1.21 TX compression tests
Bounding surface kb 1.5 1.9 TX compression tests
Dilatancy Do 0.90 1.31 TX compression tests

kd 2.8 2.2 TX compression tests
Plastic modulus h1

y 1.62 2.20 TX compression tests
h2

y 0.254 0.240 TX compression tests
elim

y 1.00 0.81 TX compression tests
�y 2.0 1.2 Undrained TX compression tests

Stress-induced anisotropy c1 0.72 0.71 TX extension tests
c2 0.78 0.78� SS or other plane-strain tests
ns 0.35 0.35� SS or other plane-strain tests

Inherent (fabric) anisotropy Æ 0.29 0.31 TX extension tests
kh

y 0.11 0.39 TX extension tests
Yield surface radius m 0.05 0.05

� Assumed.
y Parameters determined based on trial and error simulations; all other parameters are determined directly from experimental data.
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Ghionna & Mortara (2002). Fig. 9(a) shows that the K/K0

for sand is smaller for Ottawa than for Toyoura. This sug-
gests that, for a given value of relative density, Ottawa sand
has a smaller potential for dilation and normal stress build-
up than Toyoura sand; this can be attributed to the fact that
Ottawa sand has rounded to sub-rounded particles, whereas
Toyoura sand is a sub-angular to angular sand.

A set of simulations was performed with K0 ¼ 0.4, 0.5
(for the case of normally consolidated sands), 1.0 and 2.0
(representing heavily overconsolidated sands) and � 9v0 ¼
100 kPa (Fig. 9(b)). The potential for lateral stress build-up
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Fig. 4. (a) Finite element mesh and (b) boundary conditions and
constraints used in one-dimensional simulations
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Fig. 5. Schematic of stress transfer (arching) in the case of a
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during pile loading is observed to decrease with increasing
K0; however, for a normally consolidated sand (with K0 in
the 0.4 to 0.5 range) the change of K/K0 due to oscillations
of K0 within this range can, for practical purposes, be
neglected.

To check the sensitivity of the present analysis to the
assumed value of the shear band thickness, some analyses
were done with the size of the leftmost element ts being
5D50 and 20D50: The value of K decreases with decreasing
ts, with the differences becoming larger for denser sand.
Nevertheless, the differences never exceeded 6%, even for
the densest sand (Fig. 10(a)). Loose sand (DR , 45%)
appears to be particularly insensitive to the size of the
leftmost element. This can be attributed to the fact that
localisation at low densities is either limited or non-existent
because of the significantly smaller tendency for dilation and
softening. Fig. 10(b) shows results from simulations with
� 9v0 ¼ 100 kPa, K0 ¼ 0.4, ts ¼ 10D50 and pile diameter B
ranging from 0.3 m to 1.5 m. We observe there is the
tendency for K to decrease with increasing B, but the
differences never exceeded 5%. Therefore, for the examined
B range (which spans the range of most drilled shafts
encountered in practice), the pile diameter has negligible
effect.

It is interesting to note that analyses with different ts and
B values but with the same ts/B ratio yield nearly identical
results. Thus the effect of scale is totally controlled by the
ratio ts/B rather than by the absolute magnitude of either B
or ts. The dependence of the results on the ratio ts/B is
useful in assessing the difference between the values of K/K0

for a prototype pile and a model pile installed in the same
soil (any such difference can be referred to as ‘scale effect’),
a topic investigated experimentally by Foray et al. (1998),
Garnier & König (1998) and Lehane et al. (2005), among
others. The ts/B values for the analysis presented in Fig. 10
are very small and comparable. K/K0 is plotted against ts/B
for DR ¼ 90% and � 9v0 ¼ 100 kPa in Fig. 11 with the
addition of extra data points for large ts/B values. Fig. 11
shows that scale effects are small when ts/B , 0.01 (B/D50

. 1000) but become important in model pile testing, for
which ts/B may be very large. According to Garnier &
König (1998), grain size effects become negligible for Bm/
D50 larger than 100, while Foray et al. (1998) suggest that
they become insignificant for Bm/D50 larger than 200 (Bm is
the diameter of the model pile). However, closer inspection
of data on shear resistance plotted against Bm/D50 in Foray
et al. (1998) and Garnier & König (1998) confirms that
there is a notable tendency for the decrease in unit shaft
resistance (soil shear strength along the soil/pile interface) to
continue with further increase of Bm/D50 beyond the 100–
200 (ts/B , 0.05–0.1) range. By extrapolating to Bm/D50

values in the 1000–8000 range (ts/B , 0.0012–0.010),
which is applicable to full-scale piles, we see that there is
significant potential for additional shear strength decrease.

Based on the one-dimensional simulation results (Fig. 9),
we can propose the following equation for the value of K/K0

in terms of DR, � 9v0 and K0:

K

K0

¼ 1

F K0ð Þ C1 exp
DR

100%
1:3 � 0:2ln

� 9v0

pA

� �� �� �
(21)

for 50 kPa < � 9v0 < 500 kPa and 30% < DR < 90% with
pA ¼ 100 kPa or equivalent values in other units. DR in
equation (21) must be entered as a percentage (a number
from 0% to 100%). F(K0) is a function that introduces the
effect of K0, and it is taken as exp [0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0 � 0:4

p
]. The

constant C1 takes the values of 0.71 and 0.63 for Toyoura
sand and Ottawa sand respectively. An approximate value of
0.7 may be used for C1 in calculations for clean sands.
Equation (21) is based on results from simulations for only
two clean sands: therefore its use in practical problems
involving other sands, including sands with fines, requires
further verification.

Two-dimensional analysis (analysis of a full pile)
For the two-dimensional axisymmetric analysis, we con-

sider a 10 m long pile with B ¼ 0.5 m. The thickness of the

B/2 0·25 m�

CL
Fixed in both
directions

Fixed in horizontal
direction

Applied vertical
displacements/fixed
in horizontal direction

Fixed in
horizontal
direction

L
�

10
 m

5 
m

10 m

Fig. 6. Finite element mesh and boundary conditions in full pile simulations
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elements adjacent to the boundary representing the pile shaft
wall is set to 10D50. The mesh, shown in Fig. 6, contains
2004 elements and 6285 nodes. Fig. 12(a) shows the develop-
ment of total shaft resistance Qs against pile displacement.
The evolution of the total normal reaction to the pile shaft
against pile displacement is plotted in Fig. 12(b). Fig. 12(b)
implies that the average increase in K/K0 across the entire
pile length at the state of limit shaft resistance mobilisation is
1.46 and 1.72 for simulations with DR ¼ 45% and DR ¼ 60%
respectively. As in the one-dimensional simulations, the mo-
bilised friction angle � along the pile/soil contact is 30.88. If
we had considered a soil disc midway between the pile tip
and the pile head, the K/K0 values would have been 1.39 and
1.64 for DR ¼ 45% and DR ¼ 60%, which are about 5%
smaller than the two-dimensional predictions. The higher
values of K/K0 for the two-dimensional analysis result from
the fact that, in the two-dimensional analyses, the pile has a
finite length and, as a consequence, stresses are transmitted to
soil located far from the shaft and lying below the elevation
of the pile base (Fig. 5). Therefore, in two-dimensional
analyses, the soil can better react to the pile settlement, thus
increasing the total shaft resistance.

The shaft resistance is mobilised progressively (Fig.
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13(a)), starting from the top of the shaft (where the stress
levels are smaller and the soil response exhibits a higher
degree of softening) and propagating downwards. The pro-
gressive failure can also explain why the degree of brittle-
ness exhibited in the global load–settlement response (Fig.
12) is smaller than that observed in one-dimensional simula-
tions. The enhanced normal reaction in the two-dimensional
analyses is counterbalanced to some extent by a loss of
normal effective stress that occurs in the region approxi-
mately 2B above the pile tip (Fig. 13(a)). This is due to the
interaction of the pile base movement and of the soil just
above the pile base elevation. From Fig. 13(b), we see that,
as in the one-dimensional analyses, the normal stress build-
up for Ottawa sand is smaller than for Toyoura sand.

Let us now consider two analyses, one with soil unit
weight ª9 ¼ 10 kN/m3 (case I) and one with ª9¼ 20 kN/m3

(case II). The choice of the two unit weights allows us to
obtain estimates of K/K0 at the same depth but with values
of � 9v0 that differ by a factor of 2. The profiles of K/K0

yielded by the two-dimensional axisymmetric analyses are
compared with values originating from the one-dimensional
simulations (Fig. 14). The difference between the results
from the one-dimensional and two-dimensional analyses
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becomes larger closer to the ground surface. However, the
effect of such differences on the predicted total shaft resis-
tance is small because the stresses close to the ground
surface are generally small. For example, if we use equation
(21) to obtain qsL along the entire pile length, and then
integrate to get Qs for the two example cases I and II shown
in Fig. 14, the resulting Qs is only 5–6% lower than the one
resulting from the two-dimensional simulations. These num-
bers apply to the present simulations of a 10 m long drilled
shaft; for longer piles, the conditions resemble those of the
one-dimensional analysis over a larger fraction of the pile
length, rendering the differences between the one-dimen-
sional and two-dimensional predictions negligible. Therefore
results based on one-dimensional analysis may be used to
estimate K for pile design.

A final factor to consider is pile deformability (often
referred to in the literature as ‘Poisson’s effect’). So far, we
have considered a pile that is perfectly rigid. In reality, an
increase in the axial load leads to axial contraction of the
drilled shaft, which in turn leads to an increase in B that is
controlled by the Poisson’s ratio of the concrete. This lateral
expansion of the drilled shaft is very small and leads only to
a marginal increase of the normal effective stress on the shaft.
Analyses with the pile included in the mesh (Epile ¼ 21 GPa
and �pile ¼ 0.2), with prescribed displacements applied at the
pile head, yield QsL that is only 1.5% greater than that
obtained from the original rigid pile analyses. The contraction
of the pile has a more pronounced effect on the settlement
required for shaft capacity mobilisation. The analyses with a
deformable pile show that the shaft resistance develops more
gradually, with QsL mobilised at head displacements that are
25% greater than for a rigid pile (because of the shortening
of the pile as the axial load increases). The fact that the
Poisson’s effect on the limit shaft capacity of the drilled
shafts is very small is also evident from the analytical equa-

tions and plots based on numerical results presented by De
Nicola & Randolph (1993) if the input parameters take values
that are typical for drilled shafts.

Comparison with experimental results
Data from experimental and field studies published in the

literature support the notion that the value of K for dense
sand and low confinement can be much greater than K0.
Touma & Reese (1974) and Reese et al. (1976) performed a
series of instrumented pile load tests. According to these
studies, the average K across the portion of the pile that is
embedded in sand can be taken as 0.7 if the pile is not
embedded more than 8 m in sand and as 0.5–0.6 if the pile
embedment in sand is larger. It appears that the results of
the present FE analysis are largely in agreement with these
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numbers for the usual range of soil densities and levels of
effective overburden stress encountered in drilled shaft
(bored pile) designs. The Reese & O’Neill (1988) design
equation (� ¼ 1.5 � 0.245z0:5 with 0.25 < � < 1.2, for
NSPT > 15) reflects conditions of the sandy formations of
the Texas Gulf Coast region, which, according to O’Neill &
Hassan (1994), are overconsolidated and aged. The K0 value
considered by O’Neill & Hassan (1994) at depths larger than
15 m appears to be of the order of 0.8. Using our numerical
results and considering K0 ¼ 0.8, we predict � in the range
0.6–1.25 for sand ranging from medium dense at 20 m
depth to dense sand at 2 m depth; these values are in good
agreement with the Reese & O’ Neill (1988) equation.

Lehane et al. (1993) performed field load tests on instru-
mented piles that were installed in loose to medium dense
sand using jacking (displacement piles). Their data show that
the radial effective stress acting on the pile shaft at peak
resistance conditions during the load test was 1.3 to 1.7
times higher than the one recorded after installation. In the
case of displacement piles: (a) the density and stress state of
the soil in the vicinity of the shaft change during pile
installation from their original in situ values; and (b) the soil
density and the stress state at the start of the pile loading
are not uniform (varying predominantly in the radial direc-
tion). Setting aside these two deviations with respect to the
non-displacement piles we modelled, the Lehane et al.
(1993) tests provide evidence that the radial stress increase
during axial loading can be significant even in medium
dense sand.

Fioravante (2002) and Colombi (2005) present data from
model tests of non-displacement piles performed in a cen-
trifuge. Some of the tests involved model piles with high
relative roughness (Rn ¼ 0.45) embedded in Toyoura sand
with DR � 90% and 66%. Relative roughness Rn is the ratio
of the absolute roughness Rmax, expressing the maximum
asperity height measured over a specific length LR (usually
¼ D50) along the frictional interface, to the D50 of the sand.
For such a high value of Rn, failure occurs inside the soil
mass surrounding the shaft rather than between pile shaft
and soil (Uesugi et al., 1988; Lings & Dietz, 2005), as in
the case of a drilled shaft. Taking into account that the
residual friction coefficient of Toyoura sand in direct inter-
face simple shear tests with high interface roughness is
around 0.6 (Uesugi et al., 1988), the Fioravante (2002) data

suggest that the value of K for bored piles in very dense
sand can be in the range of 1.2 to 3.7, with the higher
values corresponding to shallower depths (lower confining
stresses).

It is well known that, although centrifuge testing achieves
the establishment in small-scale models of a stress field and
stress gradients that are representative of real ground condi-
tions, the relatively large size of the sand grains with respect
to the model pile diameter is in contrast with prototype
conditions. For the diameter of model piles, which is usually
of the order of a few centimetres, even fine sand would
correspond to gravel-size material in prototype scale. Since
the shear band developing along the pile shaft is independent
of the centrifuge acceleration and is of the order of 10D50,
the shear band thickness ts is a non-negligible fraction of the
model pile diameter Bm. Such large values of ts/Bm produce
excessively large values of K, as shown in an earlier section.

We may attempt an interpretation of centrifuge tests
presented by Fioravante (2002) and Colombi (2005) by using
FE modelling and the soil-disc approach. In these tests, the
diameter of the model piles was 10 mm, which represented a
prototype pile in the field with a diameter of 0.8 m (applied
centrifuge acceleration 80g). For the case of Toyoura sand,
the ratio of the model pile diameter Bm (¼ 10 mm) to D50 is
approximately 53: thus the size of the leftmost element is
set to 0.19B (¼ 10D50B/Bm). A comparison between the
response from analyses with ts/B ¼ 0.0024 (ts ¼ 10D50 ¼
1.9 mm) and ts/B ¼ 0.19 (ts ¼ 152 mm) is made in Fig. 15.
As expected, there is a very large contrast between the
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stresses mobilised, reflecting a strong influence of scale.
Moreover, the analysis with ts/B ¼ 0.19, which represents
the shear band thickness in the centrifuge tests, is much less
brittle than the response of the analysis with realistic ts
values at prototype scale. Another interesting fact about the
analysis with large ts is that the mobilised friction angle � is
not 30.88 (� ¼ 0.60), as observed for the prototype, but
32.38 (� ¼ 0.63). This deviation is because, as the element
representing the shear band becomes larger, the distance of
the stress computation points (Gauss quadrature points) from
the pile shaft also increases.

A comparison is made in Fig. 16 between the FE predic-
tions of � and the centrifuge data (Fioravante, 2002;
Colombi, 2005). It can be seen that the analyses with ts/B ¼
0.19 (solid lines) are in fair agreement with the centrifuge
data, in contrast to the analyses with ts/B ¼ 0.0024. As
expected, the shaft resistance that the prototype would have
developed (obtained using a realistic shear band thickness ts
¼ 0.0024B and shown in the figure as a dashed line) is
much smaller than that observed in centrifuge tests and in
the simulations with ts/B ¼ 0.19 (solid lines). It is interest-
ing to note that, for the same centrifuge tests on dense
Toyoura sand (DR ¼ 90%) and � 9h0 ¼ 55 kPa, Lehane et al.
(2005) predicted, using an approach based on a cavity
expansion analogue, that the K/K0 of the prototype pile
ought to be only 0.34 times that measured in the model test.
According to our simulations, this number is around 0.42.

SUMMARY AND CONCLUSIONS
We conducted a numerical study of the factors affecting

the limit shaft resistance of non-displacement piles with the
aid of advanced constitutive modelling that captures the
effects of fabric-induced cross-anisotropy and of the inter-
mediate principal stress. Based on the results of the numer-
ical analysis, we can draw the following conclusions.

(a) The coefficient of lateral pressure K at full mobilisation
of limit shaft resistance increases with increasing sand

relative density and decreases with increasing initial
effective overburden stress. For a loose sand, K will be
approximately equal to K0, while it may be greater than
1 for high relative densities and low confining stresses,
even if the sand is normally consolidated.

(b) The K/K0 ratio decreases with increasing K0, suggesting
that the lateral stress build-up would be less intense in
the case of an overconsolidated sand.

(c) The value of K increases with decreasing pile diameter.
However, this effect is small to negligible for the range
of pile diameters and grain sizes usually encountered in
practice. The effect of scale becomes an important
issue in model pile testing in laboratory studies, in
which the ratio of mean grain size to the model pile
diameter is relatively large.

(d ) The friction angle � mobilised along the pile shaft is
independent of relative density and effective stress
level. For design purposes, it can be taken as 0.95�TXC

c

to �TXC
c , where �TXC

c is the critical-state friction angle
in triaxial compression.

(e) Despite the fact that the soil disc simulations (one-
dimensional axisymmetric) generally underpredict the
value of K that develops in two-dimensional axisym-
metric conditions, the K estimates based on one-
dimensional simulations constitute good approximations
of the real values for points not lying excessively close
to the ground surface (which essentially control the
total shaft resistance) and can be used for the
determination of the shaft resistance Qs.
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