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Galaxies are arranged in interconnected walls and filaments forming a cosmic web encompassing huge, nearly empty, regions
between the structures. Many statistical methods have been proposed in the past in order to describe the galaxy distribution and
discriminate the different cosmological models. We present in this paper multiscale geometric transforms sensitive to clusters,
sheets, and walls: the 3D isotropic undecimated wavelet transform, the 3D ridgelet transform, and the 3D beamlet transform.
We show that statistical properties of transform coefficients measure in a coherent and statistically reliable way, the degree of
clustering, filamentarity, sheetedness, and voidedness of a data set.
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1. INTRODUCTION

Galaxies are not uniformly distributed throughout the uni-
verse. Voids, filaments, clusters, and walls of galaxies can be

observed, and their distribution constrains our cosmologi-
cal theories. Therefore we need reliable statistical methods
to compare the observed galaxy distribution with theoretical
models and cosmological simulations.

The standard approach for testing models is to define
a point process which can be characterized by statistical

descriptors. This could be the distribution of galaxies of a
specific type in deep redshift surveys of galaxies (or of clus-
ters of galaxies).1 In order to compare models of structure
formation, the different distribution of dark matter particles

1Making 3D maps of galaxies requires knowing how far away each galaxy
is from Earth. One way to get this distance is to use Hubble’s law for the
expansion of the universe and to measure the shift, called redshift, to redder
colors of spectral features in the galaxy spectrum. The greater the redshift,
the larger the velocity, and, by Hubble’s law, the larger the distance.
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in N-body simulations could be analyzed as well, with the
same statistics.

The two-point correlation function ξ(r) has been the pri-
mary tool for quantifying large-scale cosmic structure [1].
Assuming that the galaxy distribution in the Universe is a
realization of a stationary and isotropic random process,
the two-point correlation function can be defined from the
probability δP of finding an object within a volume ele-
ment δV at distance r from a randomly chosen object or
position inside the volume: δP = n(1 + ξ(r))δV , where
n is the mean density of objects. The function ξ(r) mea-
sures the clustering properties of objects in a given vol-
ume. It is zero for a uniform random distribution, pos-
itive (resp., negative) for a more (resp., less) clustered
distribution. For a hierarchical clustering or fractal pro-
cess, 1 + ξ(r) follows a power-law behavior with exponent
D2 − 3. Since ξ(r) ∼ r−γ for the observed galaxy dis-
tribution, the correlation dimension for the range where
ξ(r) ≫ 1 is D2 ≃ 3 − γ. The Fourier transform of
the correlation function is the power spectrum. The di-
rect measurement of the power spectrum from redshift sur-
veys is of major interest because model predictions are
made in terms of the power spectral density. It seems clear
that the real space power spectrum departs from a sin-
gle power-law ruling out simple unbounded fractal mod-
els [2]. The two-point correlation function can been gen-
eralized to the N-point correlation function [3, 4], and
all the hierarchy can be related with the physics responsi-
ble for the clustering of matter. Nevertheless they are diffi-
cult to measure, and therefore other related statistical mea-
sures have been introduced as a complement in the sta-
tistical description of the spatial distribution of galaxies
[5], such as the void probability function [6], the mul-
tifractal approach [7], the minimal spanning tree [8, 9,
10], the Minkowski functionals [11, 12], or the J func-
tion [13, 14] which is defined as the ratio J(r) = (1 −
G(r))/(1 − F(r)), where F is the distribution function of
the distance r of an arbitrary point in R3 to the near-
est object in the catalog, and G is the distribution func-
tion of the distance r of an object to the nearest ob-
ject. Wavelets have also been used for analyzing the pro-
jected 2D or the 3D galaxy distribution [15, 16, 17, 18,
19].

New geometric multiscale methods have recently
emerged, the beamlet transform [20, 21] and the ridgelet
transform [22]; these allow us to represent data containing,
respectively, filaments and sheets, while wavelets represent
well isotropic features (i.e., clusters in 3D). As each of these
three transforms is tuned to a specific kind of feature, all of
them are useful and should be combined to describe a given
catalog.

Sections 2, 3, and 4 describe, respectively, the 3D wavelet
transform, the 3D ridgelet transform, and the 3D beam-
let transform. It is shown in Section 5 through a set of ex-
periments how these three 3D transforms can be combined
in order to describe statistically the distribution of galax-
ies.

2. THE 3D WAVELET TRANSFORM

2.1. The undecimated isotropic wavelet transform

For each a > 0, b1, b2, b3 ∈ R3, the wavelet is defined by

ψa,b1,b2,b3 : R3 −→ R,

ψa,b1,b2,b3

(

x1, x2, x3

)

= a−3/2 · ψ
(

x1 − b1

a
,
x2 − b2

a
,
x3 − b3

a

)

.

(1)

Given a function f ∈ L2(R3), we define its wavelet coef-
ficients by

W f : R4 −→ R,

W f
(

a, b1, b2, b3

)

=
∫

ψa,b1,b2,b3
(x) f (x)dx.

(2)

Figure 1 shows an example of 3D wavelet function.
It is standard to digitize the transform for data c(x, y, z)

with x, y, z ∈ {1, . . . ,N} as follows. The wavelet transform
of a signal produces, at each scale j, a set of zero-mean coef-
ficient values {w j}. Let φ be a lowpass filter and we define
φ j(x) = φ(2 jx) and c j = c ∗ φ j . Using an undecimated
isotropic wavelet decomposition [23], the set {w j} has the
same number of pixels as the signal and this wavelet trans-
form is redundant. Furthermore, using a wavelet defined as
the difference between the scaling functions of two successive
scales

1

8
ψ
(
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2
,
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2
,
z

2

)

= φ(x, y, z)− 1

8
φ
(

x

2
,
y

2
,
z

2

)

, (3)

the original cube c = c0 can be expressed as the sum of all the
wavelet scales and the smoothed array cJ :

c0,x,y,z = cJ ,x,y,z +
J
∑

j=1

w j,x,y,z. (4)

The set w = {w1,w2, . . . ,wJ , cJ} represents the wavelet trans-
form of the data. If we let W denote the wavelet transform
operator and N the pixels in c, the wavelet transform w
(w = Wc) has (J + 1)N pixels, for a redundancy factor of
J + 1. The scaling function φ is generally chosen as a spline
of degree 3, and the 3D implementation is based on three 1D
sets of (separable) convolutions. Like the scaling function φ,
the wavelet function ψ is isotropic (see Figure 2). More de-
tails can be found in [23, 24].

3. THE 3D RIDGELET TRANSFORM

3.1. The 2D ridgelet transform

The 2d continuous ridgelet transform of a function f ∈
L2(R2) was defined in [22] as follows.
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Figure 1: Example of wavelet function.
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Figure 2: Definition of angle1 θ1 and θ2 in (a) R2 (2D case) and (b) R3 (3D case).

Select a smooth function ψ ∈ L2(R), satisfying admissi-
bility condition

∫

∣

∣ψ̂(ξ)
∣

∣

2

|ξ| dξ <∞, (5)

which holds if ψ has a sufficient decay and a vanishing mean
∫

ψ(t)dt = 0 (ψ can be normalized so that it has unit energy
1/(2π)

∫

|ψ̂(ξ)|2dξ = 1). For each a > 0, b ∈ R, and θ1 ∈
[0, 2π[, we define the ridgelet by

ψa,b,θ1 : R2 −→ R,

ψa,b,θ1

(

x1, x2

)

= a−1/2 · ψ
(
(

x1 cos θ1 + x2 sin θ1 − b
)

a

)

.
(6)

Given a function f ∈ L2(R2), we define its ridgelet coeffi-
cients by

R f : R3 −→ R,

R f
(

a, b, θ1

)

=
∫

ψa,b,θ1
(x) f (x)dx.

(7)

It has been shown [22] that the ridgelet transform is pre-
cisely the application of a 1D wavelet transform to the slices
of the Radon transform (where the angular variable θ1 is con-
stant). This method is in a sense optimal to detect lines of
the size of the image (the integration increase as the length of
the line). More details on the implementation of the digital
ridgelet transform can be found in [25].
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Figure 3: Example of 2D ridgelet function.
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Figure 4: Example of ridgelet function.

Figure 3 (left) shows an example ridgelet function. This
function is constant along lines x1 cos θ + x2 sin θ = const.
Transverse to these ridges it is a wavelet (see Figure 3(b)).

3.2. From 2D to 3D

The 3D continuous ridgelet transform of a function f ∈
L2(R3) is given by

R f : R4 −→ R,

R f
(

a, b, θ1, θ2

)

=
∫

ψa,b,θ1,θ2
(x) f (x)dx,

(8)

(1) 3D-FFT. Compute ĉ(k1, k2, k3), the 3D FFT of the cube
c(i1, i2, i3).

(2) Cartesian-to-spherical conversion. Using an interpolation
scheme, substitute the sampled values of ĉ obtained on
the Cartesian coordinate system (k1, k2, k3) with sampled
values in a spherical coordinate system (θ1, θ2, ρ).

(3) Extract lines. Extract the 3N2 lines (of size N) passing
through the origin and the boundary of ĉ.

(4) 1D-IFFT. Compute the 1D inverse FFT on each line.
(5) 1D-WT. Compute the 1D wavelet transform on each

line.

Algorithm 1: The 3D ridgelet transform algorithm.

where a > 0, b ∈ R, θ1 ∈ [0, 2π[, and θ2 ∈ [0,π[. The
ridgelet function is defined by

ψa,b,θ1,θ2 : R3 −→ R,

ψa,b,θ1,θ2

(

x1, x2, x3

)

=a−1/2·ψ
(
(

x1 cos θ1 cos θ2 +x2 sin θ1 cos θ2 +x3 sin θ2−b
)

a

)

.

(9)

Figure 4 shows an example of ridgelet function. It is a
wavelet function in the direction defined by the line (θ1, θ2),
and it is constant along the orthogonal plane to this line.

As in the 2D case, the 3D ridgelet transform can be built
by extracting lines in the Fourier domain. Let c(i1, i2, i3) be a
cube of size (N ,N ,N); the steps can be seen in Algorithm 1
steps.

Figure 5 shows the 3D ridgelet transform flowgraph. The
3D ridgelet transform allows us to detect sheets in a cube.

Local 3D ridgelet transform

The ridgelet transform is optimal to find sheets of the size
of the cube. To detect smaller sheets, a partitioning must be
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Figure 5: 3D ridgelet transform flowgraph.

introduced [26]. The cube c is decomposed into blocks of
lower side-length b so that for a N × N × N cube, we count
N/b blocks in each direction. After the block partitioning, the
tranform is tuned for sheets of size b× b and of thickness a j ,
a j corresponding to the different dyadic scales used in the
transformation.

4. THE 3D BEAMLET TRANSFORM

4.1. Definition

The X-ray transform of a continuum function f (x, y, z) with
(x, y, z) ∈ R3 is defined by

(X f )(L) =
∫

L
f (p)dp, (10)

where L is a line in R3, and p is a variable indexing points in
the line. The transformation contains all line integrals of f .
The beamlet transform (BT) can be seen as a multiscale digi-
tal X-ray transform. It is multiscale transform because, in ad-
dition to the multiorientation and multilocation line integral
calculation, it integrated also over line segments at different
lengths. The 3D BT is an extension to the 2D BT, proposed
by Donoho and Huo [20].

The system of 3D beams

The transform requires an expressive set of line segments,
including line segments with various lengths, locations, and
orientations lying inside a 3D volume.

A seemingly natural candidate for the set of line segments
is the family of all line segments between each voxel corner
and every other voxel corner, the set of 3D beams. For a 3D
data set with n3 voxels, there areO(n6) 3D beams. It is infeasi-
ble to use the collection of 3D beams as a basic data structure

since any algorithm based on this set will have a complexity
with lower bound of n6 and hence be unworkable for typical
3D data size.

4.2. The beamlet system

A dyadic cube C(k1, k2, k3, j) ⊂ [0, 1]3 is the collection of 3D
points

{

(

x1, x2, x3

)

:

[

k1

2 j ,

(

k1 + 1
)

2 j

]

×
[

k2

2 j ,
(k2 + 1)

2 j

]

×
[

k3

2 j ,

(

k3 + 1
)

2 j

]

}

,

(11)

where 0 ≤ k1, k2, k3 < 2 j for an integer j ≥ 0, called the scale.

Such cubes can be viewed as descended from the unit
cube C(0, 0, 0, 0) = [0, 1]3 by recursive partitioning. Hence,
the result of splitting C(0, 0, 0, 0) in half along each axis is the
eight cubes C(k1, k2, k3, 1) where ki ∈ {0, 1} (see Figure 6),
splitting those in half along each axis we get the 64 subcubes
C(k1, k2, k3, 2) where ki ∈ {0, 1, 2, 3}, and if we decompose
the unit cube into n3 voxels using a uniform n-by-n-by-n grid
with n = 2J dyadic, then the individual voxels are the n3 cells
C(k1, k2, k3, J), 0 ≤ k1, k2, k3 < n.

Associated to each dyadic cube we can build a system of
line segments that have both of their end-points lying on the
cube boundary. We call each such segment a beamlet. If we
consider all pairs of boundary voxel corners, we get O(n4)
beamlets for a dyadic cube with a side-length of n voxels
(we actually work with a slightly different system in which
each line is parametrized by a slope and an intercept instead
of its end-points as explained below). However, we will still
have O(n4) cardinality. Assuming a voxel size of 1/n we get
J + 1 scales of dyadic cubes where n = 2J , for any scale
0 ≤ j ≤ J there are 23 j dyadic cubes of scale j and since each
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Figure 6: Dyadic cubes.

(a) (b)

Figure 7: Examples of beamlets at two different scales: (a) scale 0 (coarsest scale) and (b) scale 1 (next finer scale).

dyadic cube at scale j has a side-length of 2J− j voxels, we get
O(24(J− j)) beamlets associated with the dyadic cube and a to-
tal of O(24J− j) = O(n4/2 j) beamlets at scale j. If we sum the
number of beamlets at all scales we get O(n4) beamlets.

This gives a multiscale arrangement of line segments in
3D with controlled cardinality of O(n4), the scale of a beam-
let is defined as the scale of the dyadic cube it belongs to
so lower scales correspond to longer line segments and finer
scales correspond to shorter line segments. Figure 7 shows 2
beamlets at different scales.

To index the beamlets in a given dyadic cube, we use
slope-intercept coordinates. For a data cube of n×n×n vox-
els, consider a coordinate system with the cube center of mass
at the origin and a unit length for a voxel. Hence, for (x, y, z)
in the data cube we have |x|, |y|, |z| ≤ n/2. We can consider
three kinds of lines: x-driven, y-driven, and z-driven, depend-
ing on which axis provides the shallowest slopes. An x-driven
line takes the form

z = szx + tz, y = syx + ty (12)

with slopes sz, sy , and intercepts tz and ty . Here the slopes
|sz|, |sy| ≤ 1. y- and z-driven lines are defined with an in-
terchange of roles between x and y or z, as the case may be.

The slopes and intercepts run through equispaced sets:

sx, sy , sz ∈
{

2ℓ

n
: ℓ = −n

2
, . . . ,

n

2− 1

}

,

tx, ty , tz ∈
{

ℓ : −n

2
, . . . ,

n

2− 1

}

.

(13)

Beamlets in a data cube of side n have lengths between
n/2 and

√
3n (the main diagonal).

Computational aspects

Beamlet coefficients are line integrals over the set of beam-
lets. A digital 3D image can be regarded as a 3D piece-wise
constant function and each line integral is just a weighted
sum of the voxel intensities along the corresponding line seg-
ment. Donoho and Levi [21] discuss in detail different ap-
proaches for computing line integrals in a 3D digital image.
Computing the beamlet coefficients for real application data
sets can be a challenging computational task since for a data
cube with n × n × n voxels, we have to compute O(n4) co-
efficients. By developing efficient cache aware algorithms we
are able to handle 3D data sets of size up to n = 256 on a
typical desktop computer in less than a day running time.



Analysis of the Spatial Distribution of Galaxies 2461

60

50

40

30

20

10

60
50

40
30

20
10

0

y

0 10 20 30 40 50 60

x

−10−5 0 5 10
−0.5

0

0.5

1

−10 −5 0 5 10

−10

−5

0

5

10

Figure 8: Example of beamlet function.

We will mention that in many cases there is no interest in the
coarsest scales coefficient that consumes most of the compu-
tation time and in that case the overall running time can be
significantly faster. The algorithms can also be easily imple-
mented on a parallel machine of a computer cluster using a
system such as MPI in order to solve bigger problems.

(1) 3D-FFT. Compute ĉ(k1, k2, k3), the three-dimensional
FFT of the cube c(i1, i2, i3).

(2) Cartesian to spherical conversion. Using an interpolation
scheme, substitute the sampled values of ĉ obtained on
the Cartesian coordinate system (k1, k2, k3) with sampled
values in a spherical coordinate system (θ1, θ2, ρ).

(3) Extract planes. Extract the 3N2 planes (of size N ×N)
passing through the origin (each line used in the 3D
ridgelet transform defines a set of orthogonal planes; we
take the one including the origin).

(4) 2D-IFFT. Compute the 2D inverse FFT on each plane.
(5) 2D-WT. Compute the 2D wavelet transform on each

plane.

Algorithm 2: The 3D beamlet transform algorithm.

4.3. The FFT-based transformation

Let ψ ∈ L2(R2) be a smooth function satisfying a 2D vari-
ant of the admissibility condition, the 3D continuous beamlet
transform of a function f ∈ L2(R3) is given by

B f : R5 −→ R,

B f
(

a, b1, b2, θ1, θ2

)

=
∫

ψa,b,θ1,θ2
(x) f (x)dx,

(14)

where a > 0, b1, b2 ∈ R, θ1 ∈ [0, 2π[, and θ2 ∈ [0,π[. The
beamlet function is defined by

ψa,b1,b2,θ1,θ2 : R3 −→ R,

ψa,b1,b2,θ1,θ2

(

x1, x2, x3

)

= a−1/2 · ψ
(
(

− x1 sin θ1 + x2 cos θ1 + b1

)

a
,

(

x1 cos θ1 cos θ2 + x2 sin θ1 cos θ2 − x3 sin θ2 + b2

)

a

)

.
(15)

Figure 8 shows an example of beamlet function. It is con-
stant along lines of direction (θ1, θ2), and a 2D wavelet func-
tion along plane orthogonal to this direction.

The 3D beamlet transform can be built using the “gen-
eralized projection-slice theorem” [27]. Let f (x) be a func-
tion on Rn; and let Radm f denote the m-dimensional par-
tial Radon transform along the first m directions, m < n.
Radm f is a function of (p,µm; xm+1, . . . , xn), µm a unit di-
rectional vector in Rn (note that for a given projection an-
gle, the m-dimensional partial Radon transform of f (x) has
(n−m) untransformated spatial dimensions and a (n−m+1)-
dimensional projection profile). In addition, let {F f }(k)
denote the n-dimensional Fourier transform where x and k
are conjugate variables.

The Fourier transform of the m-dimensional partial
radon transform Radm f is related to the Fourier transform
of f (F f ) by the projection-slice relation

{

Fn−m+1Radm f
}(

k, km+1, . . . , kn
)

= {F f }
(

kµm, km+1, . . . , kn
)

.
(16)

Let c(i1, i2, i3) be a cube of size (N ,N ,N); the steps of the
Beamlet algorithm can be seen in the following Algorithm 2.

Figure 9 gives the 3D beamlet transform flowgraph. The
3D beamlet transform allows us to detect filaments in a cube.
The beamlet transform algorithm presented in this section
differs from the one presented in [28]; see the discussion in
[21].
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Figure 9: 3D beamlet transform flowgraph.

5. EXPERIMENTS

5.1. Experiment 1

We have simulated three data sets containing, respectively, a
cluster, a plane, and a line. To each data set, Poisson noise
has been added with eight different background levels. We
applied the three transforms on the 24 simulated data sets.
The coefficient distribution from each transformation was
normalized using twenty realizations of a Poisson noise hav-
ing the same number of counts as in the data.

Figure 10 shows the maximum value of the normal-
ized distribution versus the noise level for our three simu-
lated data sets. As expected, wavelets, ridgelets, and beam-
lets are, respectively, the best for detecting clusters, sheets,
and lines. A feature can typically be detected with a very
high signal-to-noise ratio in a matched transform, while re-
maining indetectible in some other transforms. For exam-
ple, the wall is detected at more than 60σ by the ridgelet
transform, but at less than 5σ by the wavelet transform.
The line is detected almost at 10σ by the beamlet trans-
form, and with worse than 3σ detection level by wavelets.
These results show the importance of using several trans-
forms for an optimal detection of all features contained in
a data set.

5.2. Experiment 2

We use here two simulated data sets to illustrate the discrim-
inative power of multiscale methods. The first one is a sim-
ulation from stochastic geometry. It is based on a Voronoi
model. The second one is a mock catalog of the galaxy distri-
bution drawn from a Λ-CDM N-body cosmological model
[29]. Both processes have very similar two-point correlation
functions at small scales, although they look quite different
and have been generated following completely different al-
gorithms.

(i) The first comes from Voronoi simulation. We locate a

point in each of the vertices of a Voronoi tessellation
of 1500 cells defined by 1500 nuclei distributed follow-
ing a binomial process. There are 10 085 vertices lying
within a box of 141.4 h−1 Mpc side.

(ii) The second point pattern represents the galaxy po-
sitions extracted from a cosmological Λ-CDM N-
body simulation. The simulation has been carried
out by the Virgo consortium and related groups (see
http://www.mpa-garching.mpg.de/Virgo). The simu-
lation is a low-density (Ω = 0.3) model with cosmo-
logical constant Λ = 0.7. It is, therefore, an approxi-
mation to the real galaxy distribution [29]. There are
15 445 galaxies within a box with side 141.3 h−1 Mpc.
Galaxies in this catalog have stellar masses exceeding
2× 1010 M⊙.

Figure 11 shows the two simulated data sets, and
Figure 12 shows the two-point correlation function curve
for the two-point processes. The two-point fields are differ-
ent, but as can be seen in Figure 12, both have very similar
two-point correlation functions in a huge range of scales (2
decades).

We have applied the three transforms to each data set,

and we have calculated the skewness vector S = (s
j
w, s

j
r , s

j
b)

and the kurtosis vector K = (k
j
w, k

j
r , k

j
b) at each scale j.

s
j
w, s

j
r , s

j
b are, respectively, the skewness at scale j of the wavelet

coefficients, the ridgelet coefficients, and the beamlet coeffi-

cients. k
j
w, k

j
r , k

j
b are, respectively, the kurtosis at scale j of the

wavelet coefficients, the ridgelet coefficients, and the beamlet
coefficients. Figure 13 shows the kurtosis and the skewness
vectors of the two data sets at the two first scales. In contrast
to the case with the two-point correlation function, this fig-
ure shows strong differences between the two data sets, par-

ticularly on the wavelet axis, which indicates that the second
data contains more or higher density clusters than the first

one.

http://www.mpa-garching.mpg.de/Virgo
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Figure 10: Poisson realization for a low noise level: simulation of cubes containing (a) a cluster , (b) a plane, and (c) a line.
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Figure 11: Simulated data sets. (a) The Voronoi vertices point pattern and (b) the galaxies of the GIF Λ-CDM N-body simulation.
(c) One 10 h−1 width slice of each data set.
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Figure 12: The two-point correlation function of the Voronoi ver-
tices process and the GIF Λ-CDM N-body simulation. They are very
similar in the range [0.02, 2] h−1 Mpc.

5.3. Experiment 3

In this experiment, we have used a Λ-CDM simulation based
on the N-body hydrodynamical code, RAMSES [30]. The
simulation uses an adaptive mesh refinement (AMR) tech-
nique, with a tree-based data structure allowing recursive
grid refinements on a cell-by-cell basis. The simulated data
were obtained using 2563 particles and 4.1 × 107 cells in the
AMR grid, reaching a formal resolution of 81923. The box
size was set to 100h−1 Mpc, with the following cosmological
parameters:

Ωm = 0.3, Ωλ = 0.7, Ωb = 0.039,

h = 0.7, σ8 = 0.92.
(17)

We used the results of this simulation at six different
redshifts (z = 5, 3, 2, 1, 0.5, 0). Figure 14 shows a projec-
tion of the simulated cubes along one axis. We applied the
3D wavelet transform, the 3D beamlet transform, and the
3D ridgelet transform on the six data sets. Let σ2

W ,z, j , σ
2
R,z, j ,

σ2
B,z, j denote the variance of the wavelet, the ridgelet, and the

beamlet coefficients of the scale j at redshift z.
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Figure 13: Skewness and kurtosis for the two simulated data sets: (a) skewness, scale 1, (b) skewness, scale 2, (c) kurtosis, scale 1, and
(d) kurtosis, scale 2.

Figure 15, shows, respectively, from top to bottom, the
wavelet spectrum Pw(z, j) = σ2

W ,z, j , the beamlet spectrum

Pb(z, j) = σ2
B,z, j , and the ridgelet spectrum Pr(z, j) =

σ2
R,z, j . In order to see the evolution of matter distribution

with redshift and scale, we calculate the ratio Mw/b( j, z) =
Pw(z, j)/Pb(z, j) and Mw/r( j, z) = Pw(z, j)/Pr(z, j).

Figure 16 shows the Mw/b and Mw/r curves as a function
of z and Figure 17 shows the M−1

w/b and M−1
w/r curves as a func-

tion of the scale number j.

The Mw/b curve does not show much evolution, while the
Mw/r curve presents a significant slope. This shows that the
beamlet transform is more sensitive to clustering than the

ridgelet transform. This is not surprising since the support
of beamlets is much smaller than the support of ridgelets.
Mw/r increases with z, reflecting the cluster formation. The

combination of multiscale transformations gives clear in-
formation about the degree of clustering, filamentarity, and
sheetedness.
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Figure 14: Λ-CDM simulation at different redshifts.

6. CONCLUSION

We have introduced in this paper a new method to analyze
catalogs of galaxies based on the distribution of coefficients
obtained by several geometric multiscale transforms.

We have introduced two new multiscale decompositions,
the 3D ridgelet transform and the 3D beamlet transform,
matched to sheetlike and filament features, respectively. We
described fast implementations using FFTs. We showed that
combining the information related to wavelet, ridgelet, and
beamlet coefficients leads to a new description of point cat-
alogs. In this paper, we described transform coefficients us-
ing skewness and kurtosis, but another recent statistic esti-
mator such the higher criticism [31] could be used as well.
Each multiscale transform is very sensitive to one kind of fea-
ture: wavelets to clusters; beamlets to filaments; and ridgelets
to walls. A similar method has been proposed for analyz-
ing CMB maps [32] where both the curvelet and the wavelet
transforms were used for the detection and the discrimina-
tion of non-Gaussianities. This combined multiscale statistic
is very powerful and we have shown that two data sets with
identical two-point correlation functions are clearly distin-
guished by our approach. These new tools lead to better con-
straints on cosmological models.
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Figure 15: (a) Wavelet spectrum, (b) beamlet spectrum, and
(c) ridgelet spectrum at different redshifts.
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Figure 16: (a) Wavelet/beamlet Mw/b(z, j) and (b) wavelet/ridgelet
Mw/r(z, j) curves for the scale number j equal to 1,2, and 3.
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