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Abstract--The Karhunen-Lo~ve transform (KLT) is applied to study the ventricu/ar 
repo/arisation period as reflected in the ST-T complex of the surface ECG. The KLT 
coefficients provide a sensitive means of quantitating ST-T shapes. A training set of 

ST-T complexes is used to derive a set of KL T basis vectors that permits representa- 
tion of 90% of the signal energy using four KLT coefficients. As a truncated KLT 
expansion tends to favor representation of the signal over any additive noise, a time 
series of KL T coefficients obtained from successive SToT complexes is better suited 
for representation of both medium-term variations (such as ischemic changes) and 
short-term variations (such as ST-T alternans) than discrete parameters such as the 

ST level or other local indices. For analysis of ischemic changes, an adaptive filter is 
described that can be used to estimate the KL T coefficient, yielding an increase in 
the signal-to-noise ratio of 10 dB (u=0.1), with a convergence time of about three 
beats. A beat spectrum of the unfiltered KL T coefficient series is used for detection of 
ST-T alterans. These methods are illustrated with examples from the European ST-T 
Database. About 20% of records revealed quasi-periodic salvos of ischemic 
ST-T change episodes and another 20% exhibit repetitive, but not clearly periodic 

patterns of ST-T change episodes. About 5% of ischemic episodes were associated 
with ST-T alternans. 
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1 Introduction 

ELECTROCARDIOGRAPHIC (ECG) information is derived from 
analysis of both the depolarisation (QRS complex) and repo- 
larisation (ST-T waveform) phases of the cardiac electrical 
cycle. Considerable interest has been directed at ventricular 
repolarisation (VR) in recent years because subtle ST-T 
changes can be a marker of electrical instability that may 
result in increased susceptibility to ventricular fibrillation 
(VF) and sudden cardiac death (SCD) (ROSENBAUM et al., 

1994 Repolarisation can be pemarbed by multiple factors, 
including ischaemia, structural heart disease, metabolic 
factors (e.g. electrolyte abnormalities, drugs) and netrrohumoral 
factors. 

At present, there are no generally accepted non-invasive 
indices of the risk of SCD, although such indices would have 
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very substantial implications for both public health policy and 
medical practice, and many studies have sought to develop 
such indices. Among the most promising candidates are 
measurements of heart rate variability (HRV) (KLIEGER et 

al., 1984; MYERS et al., 1986), ventricular late potentials 
(BERBARI and LAZZARA, 1988; BREITHARDT et al., 1991), 
repolarisation duration (QT) interval (PUDDU and BOURASSA, 
1986), QT variability (MERRI et al., 1993; SPERANZA et al., 

1993), assessment of heterogeneity of repolarisation (QT 
dispersion) in different leads, and repolarisation altemans 
(CLANCY et al., 1991; ROSENBAUM et al., 1994) (a possible 
precursor of ventricular fibrillation). Except for the first two, all 
of these indices are derived from the ST-T complex of  the 
ECG, which has long been known as a highly sensitive (though 
arguably less predictive) marker of myocardial ischaemia 
(GALLrNO et al., 1984; AKSELROD et al., 1987). 

Most of these indices to describe VR are derived from 
discrete features of the ST-T complex, a practice that reflects 
the difficulty of deriving integrated measurements using visual 
analysis. However, the ST-T waveform represents a complex 
spatial and temporal summation of electrical potentials from 
innumerable ventricular cells. Therefore, if physiologically and 
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clinically relevant information is contained within the ST-T 
complex, this information may not necessarily be concentrated 
within any individual differential feature or subinterval such as 
ST levels and QT intervals, but may be represented by the 
entire ST-T waveform. 

The proliferation of  additional 'heuristic' measurements that 
describe the ST-T complex shape clearly demonstrates the need 
to consider more than the traditional measurements to char- 
acterise subtle changes in VR. Furthermore, noise and other 
sources of  measurement error (such as errors in fiducial or 
baseline estimation) have far more deleterious effects on 
measurements of  isolated features and simple differential 
measurements than on integrated measurements. These consid- 
erations, together with the increasing evidence for the impor- 
tance of  repolarisation alterations as a marker of  electrical 
instability and SCD, led us to consider the objective of  
developing an analytic technique based on the entire ST-T 
complex. 

We chose to use the Karhunen-Lo~ve transform (KLT), 
which has the power to characterise the shape of  the entire ST- 
T complex, and which is minimally affected by noise. We 
propose that a feature set of  KLT coefficients would provide a 
superior method for characterising each beat, and that the KLT 
feature set would provide a much more sensitive and robust 
quantisation of  ST-T shape than the discrete measures 
commonly used in clinical practice, such as ST or QT 
measures. 

In a previous study (JAGER et al., 1992), the KLT was 
successfully applied to analyse the ST segment of  the ECG, 
with the specific aim of  obtaining noise-tolerant methods for 
ischaemia detection. In this study, we have applied the KLT to 
the entire ST-T complex, to include as much information about 
VR as possible, with the broader aim of  noise-tolerant char- 
acterisation of  both beat-to-beat and longer-term variations in 
VR. 

In the following Sections, we describe our technique for ST- 
T complex representation, including construction of  KLT basis 
functions and derivation of  KL,, coefficient time series kl,,(i). 

We also present an adaptive filter (LAGUNA et al., 1996a; 
THAKOR et al., 1993), suitable for estimating the kl ,( i)  time 
series, that reduces the noise of  the kl,,(i) estimation while 
preserving the deterministic coefficient information. We apply 
these techniques to ECG records from the European ST-T 
database, and we show how the first and second kl,,(i) 

(n = 0, 1) series can be used to monitor ST segment changes 
in these records. We illustrate this point with examples of  
periodic behaviour of  the ischaemic process within these 
records. We also analyse the power spectral density (PSD) of  
the kl ,( i)  series. This analysis is made using PSD estimation of  
the kl , ( i )  coefficients expressed with temporal reference to the 
beat order (DEBOER et al., 1984) (as previously used for HRV 
analysis) rather than the beat occurrence time t i. This analysis 
also points out the possibility of  detecting ventricular alternans 
using the peaks of  the spectrum at 0.5 beats -l 'beatquency'. 
We show examples (from the European ST-T database) of  the 
appearance of  alternans in association with ischaemic ST and 
T-wave changes that were successfully detected by this 
method. 

2 The Karhunen-Loeve transform applied to ST-T 
complex 

The KLT (HADDAD and PARSONS, 1991) is a signal- 
dependent linear transform that is optimum in the following 
sense: for a given signal (an ST-T complex) lasting N samples 
and any given number of  parameters n ~< N, if the signal is 
reconstructed from the first n terms of  the series expansion of a 

linear transformation, the lowest expected mean-squared error 
will be obtained if the transform is chosen to be the KLT. 

The KLT thus has two major advantages over other linear 
transforms: it concentrates the signal information in the 
minimum number of  parameters and it defines the domain 
where the signal and noise are most separated. These properties 
are obtained at the expense of  generality, however: it is by 
estimation of the 'most likely' variations in waveform shape 
that the KLT acquires its property of  noise rejection. 

A KLT for a given type of  signal must be derived from the 
statistics of  examples of  that signal; it is unlikely to be useful 
(with the same optimum properties) for analysis of  other types 
of  signal. Thus, a significant constraint of  the KLT is that it is 
necessary to collect a representative 'training' set of  the signals 
to be analysed, to derive the KLT basis functions (eigenfunc- 
tions). The performance of  the KLT, in terms of  capacity to 
concentrate information in a small coefficient set, depends on 
how well the training set has been constructed. Once each ST-T 
complex is characterised by 17 kl coefficients, we construct n kl 

series (kl,,(i)) as the series formed by the kl coefficients of  the 
ith beat. 

In this Section we describe our technique for analysing the 
ST-T complex using the KLT. First, we discuss the derivation 
of  the training set, including the preprocessing performed on 
the ECG to attenuate noise and to exclude beats likely to be 
significantly corrupted by noise. We then present an adaptive 
filter for estimating the kl,,(i) series of  an ECG record. 

In this work, we represent each ST-T complex first by a 
pattern vector, x, whose components are the time-ordered 
samples of  the ST-T complex (after baseline correction and 
normalisation, described below). The KLT is a rotational 
transformation of  a pattern vector into a feature vector, 
whose components are the KLT coefficients. As shown 
below, the first few components of  the feature vector represent 
almost all of  the signal energy, and the remaining components 
need not even be computed. 

The derivation of  the KLT basis functions begins with 
estimation of the covariance matrix C of  the pattern vectors 
of  the training set (HADDAD and PARSONS, 1991). 

C : E{(x  - m ) ( x  - m)  v} (1) 

where m is the mean pattern vector over the entire training set. 
The covariance matrix reflects the distribution of  the pattern 
vectors in the pattern space. The orthogonal eigenvectors of  C 
are the basis functions of  the KLT, and the eigenvalues )-k, 
represent the average dispersion o f  the projection of  a pattern 
vector onto the corresponding basis function. 

After sorting the eigenvectors in order by their respective 
eigenvalues, such that 2 k >/2k+l, for k = 0, 1 . . . . .  N - 1, the 
corresponding basis functions are arranged in order of  repre- 
sentational strength. The basis function corresponding to the 
largest eigenvalue is that function best able to represent an 
arbitrary pattern vector from the training set; the next function 
is the (orthogonal) function best able to represent the residual 
error obtained from fitting the first function etc. 

The value of  N is equal to the number of  components in the 
pattern vector and depends on the length of  the waveform and 
on the sampling frequency; in this case, the length is 600 ms, 
and the sampling frequency is 250 Hz, so that N = 150. 

In this study, the mean pattern vector m can be forced to be 
zero, if we assume that each ST-T complex in the training set 
can represent both itself and its inverted counterpart. This 
represents the possibility that any ST-T complex may appear 
inverted simply as an artefact o f  the choice of  the lead polarity 
when the ECG is recorded. Thus, the covariance matrix can be 
expressed simply as 

C = E{(x)(x) T} (2) 
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and the eigenvalues, rather than representing the average 
dispersion of the ST-T projection onto the associated basis 
function, instead represent the average energy of  this projec- 
tion. 

2.1 Derivation o f  training set and KL,, basis functions 

To obtain a representative training set of  normal and 
abnormal ST-T waveforms, we selected a wide variety of  
ECG records, totalling 105 in all (LAGUNA et al., 1997): 15 
from the MIT-BIH Arrhythmia Database (MOODY and MARK, 
1990a); six from the MIT-BIH ST Change Database; 13 from 
the MIT-BIH Supra-ventricular Arrhythmia Database; ten 
recordings of healthy subjects from BIH; 33 from the 
European ST-T Database (TADDEI et al., 1992), four from 
the MIT-BIH Long-term Database; and 24 from SCD record- 
ings collected at BIH, which included a wide spectrum of T- 
wave shapes, ST elevation, ST depressions etc. 

From each of  these 105 recordings, a 15 min excerpt was 
selected. As the noise discrimination power of  the KLT 
depends on the distribution of the pattern vectors as reflected 
in the covariance matrix, we tried to avoid including segments 
that were obviously corrupted by baseline wander or other 
noise. 

From these 105 15 rain records, we selected the training set 
of  ST-T complexes according to the following procedure. First, 
QRS complexes were detected and labelled using ARISTOTLE 
software (MOODY and MARK, 1982). Each detected QRS 
complex was marked at a fiducial point corresponding to the 
centre of gravity of  the significant peaks of the convolution of  
the QRS complex with the QRS detection function, a matched 
filter characterised by a W-shaped impulse response. This 
method of fiducial point placement was chosen for its stability 
with respect to minor morphology changes, as in respiration- 
related axis shift, as well as for its tolerance of impulse noise. 
The QRS fiducial points generally coincide with the R-wave 
peaks of  monophasic QRS complexes and lie between the 
major positive and negative deflections of biphasic QRS 
complexes. 

We defined the ST-T complex as the portion of  the signal 
within a window beginning 85 ms following a QRS mark qi, 

and ending 240 ms prior to the next QRS mark qi+l. If the RR 
interval rr i (defined as the interval between the QRS marks) is 
less than 720 ms, the end of  the window is located at qi + 2 rr i 

(i.e. two-thirds of  the way from the initial QRS mark to the 
following one). This strategy permits inclusion of  the whole 
ST-T complex, independently of the QT duration. (The ST-T 
window is restricted to 600 ms.) 

In those cases where T-waves end later than 240 ms prior to 
the next QRS mark, it is very likely that the T-waves are 
distorted by the next P-wave. It is better to exclude those beats 
rather than have them corrupt the training set. These values 
have been selected according to the clinical values of  intervals 
and from our experimental work when deriving the KLT of the 
ST-T complex. When we refer to ST-T as defined here we 
include the U wave, in the cases where it exists (this will be 
observed later when discussing Fig. 2). 

To avoid the effects of  ectopic and other abnormal beats on 
the ST-T complex, we accepted only ST-T complexes asso- 
ciated with QRS complexes labelled as normal by ARISTOTLE 
(MooDY and MARK, 1990b), and we further required that both 
the previous and following QRS complexes also be labelled as 
normal. 

For each beat, we estimated the iso-electric level in the PR 
interval as the signal averaged during the 20ms interval 
beginning 80ms prior to the QRS mark. This iso-electric 
value, measured in the different beats, was used as input to 
the cubic spline interpolation of  the ECG signal in the baseline 
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cancellation (MEYER and KEISER, 1977). Beats for which the 
estimated iso-electric level differed by more than 0.2 mV from 
that of the previous or following beat were excluded from the 
training set. 

The presence of  delta waves associated with pre-excitation 
(Wolff-Parkinson-White syndrome) in four records required 
us to use intervals beginning 100 ms (records sel50, se1308, 
and sell 7152) or 120 ms (record se1230) prior to the QRS mark 
for the iso-electric level estimation in these cases. We then 
manually rejected a small number of  ST-T complexes that we 
judged subjectively to be particularly noisy. The remaining 
97 663 x 2 leads ST-T complexes formed the training set. 

We generated the set of  pattern vectors for the training set in 
six different ways, to test the effects of ST-T dependence on 
heart rate (HR) and of  noise on the KLT representation. We 
used both uniformly sampled ST-T complexes and complexes 
corrected with Bazett's formula (BAZETT, 1920) and then 
resampled. We corrected for baseline variation using cubic 
splines and using a high-pass filter. (As the KLT basis 
functions will be influenced by incorrectly determined iso- 
electric levels, we selected recordings with minimum baseline 
variation. Even in such recordings, however, it is still necessary 
to account for baseline variation caused by respiration.) 
Finally, given the low-frequency content of  the ST-T 
complex (THAKOR et al., 1984), we also studied the effects 
of  bandpass filtering the ECG signal as a means of  improving 
the signal-to-noise ratio. These considerations led us to develop 
six sets of pattern vectors from the training set: 

Set 1: 

Set 2." 

Set 3: 

Set 4: 

Set 5: 

Set 6: 

Cubic splines were used for baseline removal (MEYER 
and KEISER, 1977). The knots were taken to be the 
centres of  the iso-electric intervals, as defined above. 
As in set 1, but we corrected for the effects of  heart rate 
on the ST-T complex using Bazett's formula. This is 
performed by resampling within the ST-T window at a 
sampling frequency equal to the original (250Hz) 
divided by ,/-k-~, where rr i is the previous RR interval 
and is expressed in seconds. The result is a corrected 
ST-T complex STT~.(t') = STT( t /  ~ ) .  

A second-order highpass filter (LYNN, 1977) was used, 
with a cutoff frequency of  1 Hz for baseline removal. 
As in set 3, but with HR correction as in set 2. 
Bandpass filtering was used: a highpass filter, as in set 
3, together with a second-order lowpass filter ( - 3  dB at 
28 Hz) for attenuation of high-frequency noise. 
As in set 5, but with HR correction as in set 2. 

In each case, the pattern vectors were normalised by magnitude 
(i.e. scaled such that the signal energy was constant); in this 
way, each pattern vector is accorded equal importance when 
the KLT basis functions are derived. 

As the durations of  the ST-T complexes vary (the final part 
of  the ST-T complex is not always available, owing to the 
appearance of the next P-wave and QRS complex), the 
estimation of  certain elements of  the covariance matrix is 
problematic. Although it would be possible to extend the 
pattern vectors (by adding zero elements) so that all are of 
equal length, this procedure would tend to reduce the signifi- 
cance of non-zero elements in these positions when they are 
available, thereby lending an artefactual bias in favour of the 
initial elements. We prefer to address this issue by estimating 
each element of  the covariance matrix using only those ST-T 
complexes for which the corresponding elements are available. 
This procedure avoids introducing artefacts of the window 
definition into the covariance matrix estimate; its consequence 
is that the final portions of  the derived basis functions are 
derived from a smaller sample than the initial portions. 
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In Fig. I we plot the cumulative eigenvalue energy (CEE) 

~ 2 k  
k=0 

CEE(n)  = I00 
N - I  

k=0 

(3) 

as a function of  the KL. order n, for the KLT basis functions 
derived using pattern vector set 1 (with cubic spline baseline 
correction), and for the KLT basis functions derived using set 2 
(with correction for heart rate). Note how the CEE for set 2 is 
higher than the CEE for set 1 for low values of  n, reflecting the 
reduction in waveform variability once the effects of  heart rate 
are (at least in part) accounted for. This results in representing 
approximately 5% more energy by the first two HR corrected 
basis functions than by their uncorrected counterparts (Fig. 1). 

In the training set, the average HR is quite low, as a result of  
our requirement of minimum baseline wander (generally 
accompanying low levels of  physical activity and consequent 
low HR). This works to the disadvantage of  the set 1 basis 
functions, as there is relatively little representation of  ST-T 
complexes corresponding to high HR, with energy concen- 
trated in the initial part of the window. The HR-corrected 
pattern vectors corresponding to ST-T complexes in high HR, 
however, closely resemble those in set 2, and are thus better 
represented by the low-order KLT coefficients of  set 2 than 
those of  set 1 (for an example, see Section 2.2). 

Although correction for HR produces an improvement in the 
quality of the KLT, we do not observe any improvement using 
high-pass or bandpass filtering (pattern vector sets 3-6). This 
result agrees with the supposition that the KLT is the most 
effective linear method for separating the signal from the noise, 
and that any other linear filter cannot produce further improve- 
ments. Cubic spline correction of  baseline variation produced 
slightly better results than high-pass filtering. 

The first 14 KLT basis functions are displayed in Fig. 2 for 
the uncorrected set 1 (solid lines) and for the corrected set 2 
(broken lines). It is apparent that the energy in the corrected set 
is concentrated at a later time than that in the uncorrected set. 
As most heart rates exceed 60 beats min -~, the correction 
applied to most ST-T complexes tends to stretch them (i.e. to 
move the concentration of  energy towards the end of  the 
window). 

The first basis function and, to a lesser extent, the second one 
represent the dominant low-frequency components of  the ST-T 
complex concentrated in the first 400 ms after the QRS. The 
next few basis functions contain more high-frequency energy 
and contain energy more evenly distributed across the entire 
complex. These functions represent components present in 
abnormally prolonged ST-T complexes and in U-waves, 

where present within the window. The remaining higher- 
order basis vectors shown in Fig. 2 contain almost exclusively 
high-frequency content related to noise in the training set. 

By inspection of  the basis vectors, we can predict that the 
first two KLT coefficients klo(i ) and kl I (i) should be a good 
tool for detecting ischaemic ST-T changes, as they contain 
virtually all of the low-frequency energy; we discuss this point 
further in Section 3.2. Also, looking to the basis 0, it is 
apparent that it will mostly represent ST segment elevation 
waveforms (has a positive value at the ST segment) that will 
result in positive klo(i ) values; in contrast, basis 1 (has a 
negative value at the ST segment) will represent ST segment 
depression waveforms resulting in positive kl 1 (i) values. 

2.2 KLT representation o f  the ST-T complex 

To illustrate the ability of  the KLT to represent an arbitrary 
ST-T complex, we will analyse in this section the reconstruc- 
tion of  several real ST-T complexes. 

In Fig. 3, we present the reconstruction of three ST-T 
complexes with three, five and eight KLT coefficients, using 
both set 1 (uncorrected) and set 2 (HR-corrected) KLT basis 
functions. The first complex (Figs. 3a and b) includes a 
prominent U-wave. As high amplitude of  U-waves was 
unusual in the training set, a faithful reconstruction requires 
more than the first few KLT coefficients. The RR interval in 
this case is 1228 ms, implying only a small HR correction; we 
see, however (Fig. 3b), how this small shift to the left results in 
a markedly better reconstruction with the low-order coeffi- 
cients. At the right, the cumulative signal energy 
(CE(n) , ~ N-t = !00 )-~4=0 k l~ /Zk=o  STT2(k)) is shown for each 
reconstruction. 

Figs. 3c and d show an ST-T complex during high HR 
(RR = 440 ms). The signal energy is concentrated in the earliest 
part of  the ST-T, and is poorly represented by the uncorrected 
KLT coefficients (Fig. 3c). The HR correction in this case 
shifts the ST-T complex to the right, producing a much better 
representation with the first three coefficients (Fig. 3d). This 
example shows the value of  HR correction in cases where the 
HR is quite far from typical values. 

Finally, Figs. 3e and f present the reconstruction of  a 
biphasic ST-T complex with R R = 8 1 2 m s .  Given that this 
shape is not dominant in the training set, more coefficients 
are required, for an accurate reconstruction, than in typical 
cases. The HR correction in this case is small, but a small 
improvement in the low-order reconstruction is still obtained. 
There always remains the question of  how many coefficients 
are needed for an accurate reconstruction. For very rare wave- 
shapes (that can always occur), a much larger number of  KLT 
coefficients may be required, but, in our studies, we did not 
find clinically significant wave-shapes that were not well 
reconstructed overall with the first three to four coefficients. 

100~ 

1 3 5 7 9 11 13 15 17 19 21 23 25 25 29 

n 

Fig. 1 Cumulative eigenvahte energy CEE(n) = 100 Y'~=0 )-~/ 
N - I  

~)'~o 2k as function of  the sorted eigenvalue order rt 
N = 150 is total number of  eigenvahtes ).k. ([]) Results 
obtained using pattern vector set 1 (baselines corrected 
using cubic splines); (g~) Results obtained using set 2 
(with correction for heart rate) 

3 Monitoring the kl.(i) series 

In the preceeding Section, we described how to derive a 
KLT representation of  a single ST-T complex. In clinical 
practice, the dynamic behaviour over time of  ST-T morphology 
is even more important than the characteristics of  an isolated 
complex. ST-T dynamics can be characterised by the study of  
KLT coefficient time series kl,(i) ,  using many of  the techni- 
ques Used in studies of  HRV. We can assign to each beat mark 
(QRS fiducial point) the KLT coefficients of its ST-T complex. 
In this way we will have as many (scalar) time series as there 
are KLT coefficients needed to represent the ST-T complex. 
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The direct way to monitor kl.(i) is to obtain it from the inner 
product of  the KLT basis with the pattern vectors of  the ST-T 
complexes to be analysed. These pattern vectors are obtained in 
the same manner as those in the training set (using cubic spline 
baseline removal, and HR correction if we are using the set 2 
KLT). In this case, however, we do not normalise the energy of  
the ST-T complex pattern vectors, as we are interested in 
monitoring variations in energy as well as in morphology. 
We are not as restrictive as in the training set about rejecting 
beats, as now the obtained kl n will influence only the beat that 
is represented and will not affect the others, as could happen if 
considered at the training set. The inner product is performed 
over the interval in which the ST-T complex is defined (not 

necessarily the entire window over which the basis function 
extends); this policy is equivalent to appending additional zero 
components to the pattern vector, as needed, to match its length 
to that of  the basis function (see Section 2.1). 

Direct estimation in this way, however, results in a noisy 
kl ,( i  ) time series. Noise is introduced into the kl , ( i  ) time series 
from a variety of sources, including noise in the ST-T 
complexes not removed by the KLT, residual error in the 
KLT domain representation of  the ST-T complexes, mis- 
estimation of  the iso-electric level (because of  noise in the 
PR interval, or QRS fiducial mis-estimation), residual baseline 
variations and ectopic beats not rejected. Noise in the kl,(i) 

time series can be reduced using an adaptive filter that removes 
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Reconstruction of  three ST-T complexes with KLT. (a) ST-T complex with U-wave and its reconstruction based on three, five and eight 
KL T coefficients, together with cumulative energy (CE(n)) as fimction of kl,( i) order (n), plotted on right. (a) Uncorrected (set 1) KL T; (b) 
same ST-Tcomplex, reconstructed using HR-corrected (set 2) tCLT. (c), (d) and (e), (f), show similar reconstructions for two other ST-T 
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noise uncorrelated with the ST-T complex. This technique is 

useful for monitoring medium- to long-term variations in the 
ST-T complex, such as for detecting ischaemic ST-T changes; 

on the other hand, when we are interested in beat to-beat 
variations (alternans), direct kl,(i) estimation is necessary. 

3.1 Adaptive ktn(i ) estimate 

Adaptive estimation of quasi-periodic signals such as the 
ST-T complex permits reduction of noise uncorrelated with the 
signal, with attendant improvements in the ability to track 
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subtle dynamic variations in these signals. This technique has 
been applied to analysis of  ECG signals (LAGUNA et al., 1992; 
1996a) and evoked potentials (THAKOR et al., 1993). It makes 
use of  the recurring features of  the signal and is based on the 
adaptive linear combiner (WIDROW and STEARNS, 1985). 

In effect, the adaptive filter input signal (the primary input 
dk) consists of  concatenated ST-T complexes only, with all 
intervening data removed. Short complexes are lengthened by 
appending zeros as necessary, so that a new complex begins 
every N samples. The adaptive system dynamically estimates 
the amount of each reference input present in the input signal. 
In LAQUNA et al. (1996a), the reference inputs used for the 
estimation of the deterministic signal were the orthonormal 
Hermite functions; in LAGUNA et al. (1992), the reference 
inputs were unit impulses and, in THAKOR et al., (1993) they 
were sine, cosine and Walsh functions. In the present study, the 
reference inputs are the KLT basis functions to be used to 
represent the ST-T complexes. 

Fig. 4 shows this process in schematic form. We define the 
beginning of each ST-T complex (85 ms following the QRS 
fiducial mark in each case) as the time of  the stimulus. The N 
samples that follow the stimulus are assumed to be the sum of 
the signal of  interest (a deterministic signal component 
s k = STTk,  correlated with the stimulus) and an uncorrelated 
noise component n~.. If the deterministic component is strictly 
periodic with a period of N samples, then it satisfies s k = sk+ N 

for all k. 
The reference inputs K L i k  ( j  = 0 . . . . .  n - 1) (n ~< N) are 

formed by concatenating copies of the jth KLT basis function 
to be used to represent the ST-T complexes; thus 
KLjk  = KLjk+N. 

In the KLT vectorial space, d k can be expressed as the sum 
of all the KLT components and the uncorrelated noise: 

N - I  

d k = y~. k l jKLik  + n k (4) 
j=0 

The output of  the adaptive filter Yk, is the signal that we want to 
be an estimate of  sk, and e k is the error signal ek = 
Sk + nk -- Yk with 

n-1 

Yk = ~ wikKLjk  (5) 
j=0 

If K L  k denotes the vector of  reference inputs, and W k denotes 
the weight vector: 

KLk  = [KLo  k, K L I  k . . . . .  K L , , - t  k] T 

W k  : [w0 k, WI k . . . .  , Wn-1 k]T 

then 

T 
Yk = K L k  Wk = W r  KLk  

(6) 

(7) 

dk=Sk+n k 

KLn-1 k Wn-1 k ~  

I 
LMS 

Fig. 4 Adaptive estimation system for kl.(i) 

Minimising the mean squared error ~ = E[e~] using any 
adaptive algorithm (WIDROW and STEARNS, 1985), the 
weight vector converges to the optimum solution W * =  
R - t P  (WIDROW and STEARNS, 1985), where 

R = E [ K L k K L  T] P -- E[dkXLk] (8) 

In this case, given the orthonormality conditions of the base 
elements of KLT vectorial space and (by definition) the lack of 
correlation between the noise n k and the KLT basis KL,, k, R 
and P reduce to 

R = N P = [kl~ kll . . . . .  k In- l ]r  (9) 

and the optimum weight vector W*, which minimises the mean 
squared error ~ = E[e2], is given by 

W* = [kl o, kll . . . . .  k/,,_l] r. (10) 

This result means that each weight w i is an estimate of the ith 
KLT coefficient for s k. Thus the weight vector is a character- 
isation of  the deterministic signal component, and the output 
signal Yk, in the optimum case, takes the value 

n- I  n- I  

Yk = Y~. w'[KLik  = ~_, k ! iKL ik  (11) 
j=0 j=O 

i.e. the projection of s k onto the subspace spanned by K L j k  

(i --- 0 . . . . .  n - 1) with n ~< N. Thus Yk is the nth-order KLT 
representation ofsk, and y~. = s k ifn = N (i.e. if all of the KLT 
components are included). 

The minimum mean squared error ~,,,i,,, will be 

~,,,~,, = E[d~] - p T W *  (12) 

Given that the weight vector oscillates around this optimum 
value, Yk is an unbiased estimate of  s k. The remaining noise 
due to the misadjustment M depends upon the adaptive 
algorithm used to adjust the weight vector (WIDROW and 
STEARNS, 1985). The elements of  the weight vector, evaluated 
at the end of each ST-T complex, are the adaptive estimates of 
the KLT coefficients of  that complex. The quality of the Yk 

estimation is thus directly related to the quality of  the KLT 
estimation. 

In this study, we have used the least mean squares (LMS) 
algorithm (WIDROW and STEARNS, 1985) 

Wk+ I ~- W k "~ 2 # e k K L  k (13) 

The condition that assures the convergence of the algorithm is 
(FEUER and WEINSTEIN, 1985) 

1 N 

0 < # < 3 tr[R] --  3n (14) 

The time constant zm.~e for the convergence of  the MSE is 

1 N 
%.se -- 4~). - 4# (15) 

where 2 = 1 / N  is the eigenvalue of the matrix R (all the 
eigenvalues are identical), rinse is expressed in sampling 
intervals. The gain constant # thus controls the stability and 
the speed of  convergence. The estimate of  the weight vector 
can be obtained within a single beat, given an appropriate 
choice o f g  that satisfies ('Cmse < N) if necessary. Thus adaptive 
filtering can be used, in principle, even for tracking beat-by- 
beat ST-T variations. 

To measure the excess of  mean squared error, we calculate 
the misadjustment (WIDROW and STEARNS, 1985) 

E x c e s s M S E  
M - (16) 

~min 
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which, for the LMS algorithm, can be approximated by 
(W~DROW and STEARNS, 1985) 

n 
M ~-- # tr[R] = # ~ (17) 

The mean square error ~ is 

#n'~ (1 N~I k l 2 ) j +EIn l (18, 

The MSE thus depends on the noise power, the power in the 
ST-T complex not represented by the first n kl~ coefficients and 
the gain constant/~. Note that the dependence on the KLT order 
n is not strong, as an increase in n value increases the 
(1 + ( # n / N ) )  factor and decreases the y-~.)~l kl~ factor. 
Thus. the optimum solution minimises n and maximises 
Y~.~Jo kl}; this property is intrinsic to the KLT. Given that, at 
the steady state, the estimated signal Yk is orthogonal to the 
error e k (WIDROW and STEARNS, 1985), the ExcessMSE is the 
excess of  error power introduced in Yk, and the signal-to-noise 
ratio of  this estimation SNRy,  will be 

1 n-I 

SNRy = (pro / 1 N-I kl 2 \-~)~-~j~=~ j +  E[n~]) (19, 

If we consider that the ST-T energy is strongly concentrated in 
the first n coefficients, we can neglect the term }--~.~l k!~, 
obtaining 

1 N - I  

"=  N 
SNRy  = /#n \  -- SNRd ~ (20) 

~..~ ) E[nk]2 Wl 

where S N R  d is the SNR of the original signal. Comparison of 
this SNRy  with that obtained from the direct estimation of 
kl,(i) will give the SNR improvement A S N R  achieved by the 
adaptive system. Direct kl,(i) estimation yields a signal-to- 
noise ratio, SNR~ irecr, that can be estimated if we assume the 
noise is white and that its PSD is uniformly distributed in the 
KLT domain: 

SgR~irec t ~]~-_lokl2 
= - ~_ SNRd N (21) 

2 n n E[nA  

Thus the SNR improvement obtained using the adaptive filter 
is 

A S N R - -  SNRy 1 
SNRaf.ec t = ; (22) 

Thus we find that, for appropriately chosen values of  #, the 
adaptive estimate of  kln(i ) is cleaner than a kl,(i) time series 
obtained directly from the inner product. The choice of  # 
involves the typical trade-off between stability and rate of  
convergence, which limits the amount of  improvement that can 
be obtained in practice, given the need to track changes 
occurring within a few beats in typical cases. When the interest 
of the estimation is in the ischaemic changes that occur 
gradually from beat to beat the convergence restriction will 
be that it occurs in a reduced number of  beats. The next Section 
will consider the real-case election. 

3.2 Application to real signals with ischaemic episodes 

In this Section, we present the results of  estimating and 
monitoring the kln(i ) values on several real ECG records. The 
parameters that we have selected for the adaptive estimate are 
# =0 .1 ,  with n = 4  kl,(i) functions and N = 150. These 
values do not approach the convergence limit #1ira = 12.5, 
and give a time constant rmse = N / 4 p  = 375 = 2.5 beats. 
This convergence time is reasonable for monitoring ischaemic 
ST changes that typically occur over much longer intervals. 
The A S N R  obtained in this case is 1/p = I0 dB, representing 
a large improvement in the kl,(i) estimation. 

The real signals are taken from the European ST-T database 
(TADDEI et al., 1992). This database contains records manually 
annotated by clinical experts who identified episodes of  
significant ST-T changes consistent with ischaemia. The 
database was designed to provide a resource for the develop- 
ment and evaluation of automated ischaemia detectors. All of  
the patient records in the database have been analysed with our 
KLT technique, and its performance is illustrated by several 
selected cases chosen to illustrate the properties of  the KLT 
technique. 

To assist in the interpretation of  the kl coefficients, we show 
in Fig. 5 the kl o time series from the ECG of  a patient during 
percutaneous transluminal coronary angioplasty (PTCA). The 
ST-T complex shows marked morphological variations from 
inflation to post-inflation. Note how, during the first period 
(balloon inflation,, the ST segment is positive, as is kl o. During 
the post-inflation period, the ST-T complex inverts its ampli- 
tude and oscillates in magnitude. This is reflected in the kl o 

series as an oscillating negative value of the kl o coefficients. 
Fig. 6 illustrates kl,(i) time series, each 2 h in length, for 

three ECG records from the European ST-T database. Fig. 6a 
compares the klo(i ) series of  record e0103 for each of the two 
recorded ECG leads, estimated as the inner product between 
the ST-T complex and the first (uncorrected) KLT basis 
function. Fig. 6b shows the same series, obtained using the 
adaptive estimate with the parameters as given above, and 
showing a A S N R  of about 10dB compared with those of  
Fig. 6a. Note the simultaneous appearance of ischaemic ST-q" 
changes in both leads, which is repeated quasi-periodically. 
Note also the similarity of  the temporal pattern of  sequential 
ischaemic episodes. 

1:20 5:00 5:20 5:33 

i~176176 

1oo a 
klo(i) 

(u -100 i 

0 2 4 6 8 
time, rain 

| 

10 

Fig. 5 Example of time series of first kl coefficient kl o, from patient 
with large ST-T variations during PTCA. Four sample beats 
are shown at top of Figure, corresponding to times indicated 
by arrows on klo(i ) series. Note how, during balloon inflation 
period, ST-T complex is positive, corresponding to positive kl o 
values. After deflation of  balloon, ST-T complex inverts 
polarity and oscillates in magnitude.This is reflected in kl o 
time series as negative oscillating value 
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The Figure clearly shows eight ischaemic episodes, corre- 
sponding to the eight peaks in the kl,,(i) time series. Only five 
of these are marked in the database reference annotations, as 
three of these episodes (first, second, and seventh) are below 
the standard thresholds for defining ischaemic ST-T episodes. 
The technique we present allows these sub-threshold episodes 
to be identified unambiguously, and allows the long-term 
pattern of  quasi-periodic ischaemic changes to be observed 
more clearly than would be possible otherwise. As the time 
series are initialised to zero, the time required for the adaptive 
algorithm to reach steady state (at the left edge of Figs. 6b, d 
and f )  can be seen to be negligible in comparison with the 
evolution of the ischaemic variations. 

Fig. 6c shows the klo(i ) (left) and kl I (i) (right) series of the 
ECG signal (only lead MLIII) of  record e0105, and Fig. 6d 
shows their adaptively estimated counterparts. In this case, 
each of the seven peaks corresponds to an ischaemic ST-T 
episode marked in the database reference annotations. By study 
of  two or more KLT coefficients in a single lead, we can easily 
monitor changes in ST-T morphology. Note how the ST 
segment elevation that corresponds to potential ischaemia in 
the e0105 record results in increased klo(i) values and 
decreased (negative) kl l ( i  ) values, as pointed out in 
Section 2.1. Note again that the temporal pattern of each 
ischaemic episode is quite constant. 
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Fig. 6 kl,(i) plots for three records of  Earopean ST-T database. (a), (b) klo(i ) time series of  record eO103 (a) estimated directly from inner 
product, and (b) with adaptive estimate; those on left correspond to first lead (V4); those on right correspond to second lead (MLIII). (c), 
(d) klo(i ) time series for record col05 on left, and kl I (i) time series for same lead (MLIII) on right. (e), ( f)  Uncorrected klo(i) time series 

for record cOl 13 on left, and corresponding HR-corrected klo( i ) time series on right for same lead (MLIII). Temporal axes reflect time 
instant at which beat, corresponding to kl value, appears" 
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Finally, in Fig. 6e, the uncorrected and HR-corrected klo(i) 
time series for the first ECG signal of record e0113 are shown, 
and Fig. 6fshows their adaptively estimated counterparts. As in 
the previous examples, the adaptive estimation of ST 
morphology tracks ischaemic changes noted in the reference 
annotation files of the database. Note the slightly higher 
amplitude of the peaks in the HR-corrected series, showing 
that the first corrected kl,(i) basis function is better able to 
represent the ST-T complexes in this record than is the first 
uncorrected kl,(i) basis function. In Fig. 6fwe note that, of the 
eight well-marked peaks, seven correspond to ischaemic 
episodes annotated in the database, but one other (the 
second) was not so annotated in the database, although its 
presence is quite clear from inspection of the kl,(i) series. 

In the examples presented in Fig. 6, it can be seen that both 
traces (adaptive and inner product estimated) reflect the ST-T 
changes. However, when the changes are not as clearly defined 
(first salvo in Figs. 6a and b and last in Figs. 6e and f ) ,  the 
adaptive estimation is more suited. In addition, where auto- 
matic ischaemia detection is concerned, the influence of noise 
decreases the sensitivity and specificity of the inner product 
with respect to those of the adaptive estimate. 

Analysing the entire European ST-T database (90 records), 
we found that roughly 20% of the records demonstrated the 
quasi-periodic salvos of ST-T changes shown in Fig. 6. In most 
records containing multiple ST-T variation episodes, we noted 
similarity in the temporal structure of their kl,,(i) time series, 
suggesting a similar pathophysiological mechanism. It is clear 
that the KLT technique detects and locates transient ST-T 
variations. Subsequent detailed analysis of the record and/or 
collateral clinical information should be used to determine 
whether the ST-T variations are actually associated with 
ischaemic episodes. 

This technique has been used to design an automatic 
ischaemia detector (GP, ACiA, 1998), making use of the first 
four kl series. The automatic detector can be configured to 
detect either the ST segment, T-wave or ST-T complex 
episodes (for the detector validation, we used the manual 
annotations in ST segment and T-wave from the European 
ST-T database and the OR combination of ST and T episodes 
for the ST-T complex (TADDEI et al., 1992)). The preliminary 
results obtained in terms of sensitivity S and positive predic- 
tivity + P  are S =  81% and + P =  80%, when detecting ST 
episodes. This shows a very good performance of the technique 
which can help clinicians in ischaemic episode detection in 
Holter ECGs and may be useful for alarm design in coronary 
care units. 

3.3 kin(i) series compared with qt(i) series 

Repolarisation is reflected in both the shape of the ST-T 
waveform and also in the duration of the QT interval. We 
compared the kl,(i) time series, with the qt(i) time series using 
the techniques for QT estimation described elsewhere 
(LAGUNA et al., 1994). An example from record e0103 is 
shown in Fig. 7. In this case, the ischaemic episodes are clearly 
manifested in the kln(i ) time series. The qt(i) time series taken 
from lead III (but not that taken from lead V4) shows transient 
increases in the QT interval during the first four ischaemic 
episodes (but not the last three). The QT variations persisted 
after correction for heart rate using Bazett's formula. 

Fig. 8 shows that the transient QT prolongation accompanies 
ischaemic ST-T episodes (Fig. 8c), and becomes even more 
prominent after correction for heart rate (Fig. 8d). 

Analysing the entire European ST-T database (90 records), 
we found that roughly 50% of ischaemic records showed QT 
variations in at least one lead associated with the ischaemic 
episodes. 

3.4 kl,(i) series compared with st(i) series 

To show the differences between conventional ST level 
monitoring and the kl series monitoring we created ST level 
trend plots for several records and compared them with 
corresponding kl time series. The weighted averaging method 
was used to measure the ST segment deviations. This method is 
especially useful when the beat-to-beat noise level changes. 

ST segments were selected from averaged ECG complexes. 
To ensure convergence properties similar to those of the KLT 
estimation method previously described, only three beats were 
included in each sub-ensemble average. Also only normal beats 
surrounded by normal beats were included, to avoid artefacts. 
Each beat was added into the average with a weighting factor 
inversely proportional to its noise content. The weighted 
average (ZHONG and LU, 1991) is given by 

N he,a 

s = ~ w~xi(t) (23) 
i=I  

where Nheat is the number of beats to be averaged, x i is the ith 
beat, and w i is the weight applied to that beat. For simple signal 
averaging w i = 1/Nh,.,,, i.e. each beat has an equal weight. The 
weighting factor is 

wi-= ( ~ / z ) (  N,,,.,,I, l /  (24) 

where cr~ is the noise power of the ith beat. Once each three- 
beat average had been constructed, the ST level was measured 
by taking the mean value in a 10 ms interval, centred 60 ms 
from the end of the QRS. 

In Fig. 9a, we show the klo series of record e0129 (two 
leads) and, in Fig. 9b, we show the corresponding ST level 
series for each lead. Note the significant enhancement of the ST 
episodes by the KLT method, especially in lead V3. Fig. 10 
shows similar plots for record e0103, and again the superiority 
of the kl trend plots is clear. From these examples and others 
throughout the ESC ST-T database, we confirmed our expecta- 
tion that the KLT technique is much more robust and sensitive 
than the single ST level measure. 

3.5 ST-T a lternans detection from kln(i ) series 

The KLT can also be used to detect altemans in the ST-T 
complex. Alternans can be an index of the risk of SCD 
(CLANCY et al., 1991; ROSENBAUM et al., 1994). We calculate 
a spectrum from the series of KLT coefficients, with the 
independent variable being the beat number. The spectrum 
obtained in this way is a beat spectrum (DEBOER et al., 1984) 
rather than a frequency spectrum; the units corresponding to 
frequency are cycles per beat (beat-~). This spectrum is best 
suited for the study of altemans, as we are interested in beat 
periodicities rather than the time periodicities that require study 
of frequency spectra. 

Fig. 11 illustrates the detection of  subtle altemans in record 
e0105 of the European ST-T database using the kl,,(i) series 
and its beat spectrum. This record presents alternans in 
association with the ST-T variation (potentially ischaemic) 
episodes shown in Fig. 6. 

Fig. 1 la shows beat-to-beat alternation of ST-T morphology 
during the first ST-T variation episode. Fig. l ib  shows the 
klo(i ) series calculated directly (at left) and its beat spectrum (at 

184 Medical & Biological Engineering & Computing 1999, Vol. 37 



Fig. 7 
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right). The clear peak at 0.5 beat-I represents the periodic beat- 
to-beat ST-T shape variations, visible in the time series as a 
high-frequency, high-amplitude modulation near the middle of  
the 15rain series. In addition, the beat spectrum reveals the 
appearance of  a 0.25 beat -J peak associated with a period 4 
variation in ST-T morphology, also observable in Fig. 1 la. 

There is another peak at 0.0 beat -t  and its harmonic at 1.0 
beat -I  that represent a DC component over the entire kl,(i) 

series. This comes from the overall kl,(i) variation due to the 
underlying ischaemic evolution. 

Figs. 1 lc  and d show another episode of alternans, occurring 
during the sixth ST-T variation episode of the record (see Figs. 
6c and d). In this episode, both period 2 and period 4 altemans 
are even more marked than in the first example. Although the 
altemans can be detected even when adaptive kin(i) estimates 
are used (Fig. l ie) ,  the resulting attenuation of short-term 
variation makes it clear that the directly estimated kl,(i) series 
is better suited for this purpose. 

Fig. l I f  (left) shows the HR spectrum, obtained using a 
technique for power spectral density estimation of irregularly 
sampled signals (LAGUNA et al., 1998); this spectrum confirms 
that the alternans is not an artefact of  an underlying HR 
modulation. Fig. I If(right) shows the kln(i ) frequency spec- 
trum, estimated using the same technique; the alternans is less 
apparent in this frequency spectrum than in the beat spectra, as 
a result of  the change in HR that makes the altemans not 

strictly time periodic. The beat spectrum (Fig. l ld, right) of the 
kl,,(i) is thus much more appropriate for altemans detection 
than the time spectrum (Fig. l l f, right). 

Finally, Figs. l lg and h show this analysis during a non- 
ischaemic period of the same record. In this case, the beat-to 
beat altemans has almost disappeared, but the period 4 
altemans remains apparent. 

By study of the entire record, we can observe that the period 
2 altemans appears in association with the ST-T variation 

episodes, usually in the Iater portions of each episode, but 
disappears rapidly during recovery. The period 4 altemans is 
also associated with the ST-T varying episodes, but persists 
after recovery. It seems that the period 4 altemans is more 
prominent in the non-ischaemic periods (Fig. 1 lh) than during 
ischaemic periods (Fig. 1 ld). This happens because the total 
power is normalised to unity, and then, when the period 2 
disappears, most of  the relevant energy is at period 4. The 
interpretation should be made in relative terms rather than 
absolute. 

Based on this 'beatquency' spectrum and KLT series, we 
developed an altemans detector (LAGUNA et al., 1996b) that 
detects altemans representing around 60,uV amplitude varia- 
tions of  the ST-T complex. A detailed analysis of  the European 
ST-T database has shown that about 5% of ischaemic episodes 
present altemans associated with them, and, also, more than 
50% of the alternans present in the recordings are associated 
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with the ischaemic episodes (LAGUNA et al., 1996b). This 
corroborates previous clinical works that relate the altemans 
phenomena strongly with the ischaemia. This detector can be 
used as a new index when analysing Holter ECG recordings to 
prevent ventricular arrythmias. 

4 D i s c u s s i o n  a n d  c o n c l u s i o n s  

In this work, we have presented a KLT technique for 
studying the repolarisation period of  the heart throughout the 
ST-T complex of  the ECG signal. We have developed a KLT 
training set of  ST-T complexes, containing a broad range of  
morphologies, to obtain the KLT basis vectors. We have shown 
that this representation permits about 90% of the signal energy 
to be represented by the first four kl,,(i) coefficients. 

We have shown that heart rate correction of  the ST-T 
complex using Bazett's formula improves the performance of  
the KLT, whereas neither linear high-pass nor linear bandpass 
filtering has any beneficial effect. The KLT has been used to 
detect ST-T shape variations, with results demonstrating its 
sensitivity for detecting ST variations (potentially related to 
ischaemic events). 

We have described an adaptive filter, based on the adaptive 
linear combiner with the LMS algorithm, for improving the 
signal-to-noise ratio of  a time series of KLT coefficients. The 
adaptive estimation system delive~;s an improvement of  about 
10 dB for a practical choice of  parameters for monitoring 
ischaemic ST-T changes. The direct estimates of  the KLT 
coefficient time series and beat spectra derived from them 
have been shown to be well suited for study of  ST-T altemans. 

In demonstrating the application of  these techniques to 
analysis of  the entire European ST-T database, we have 
shown that about 20% of the records reveal a quasi-periodic 
pattern of  ischaemic ST-T episodes, and another 20% exhibit 
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repetitive, but not clearly periodic, patterns of ST-T change 
episodes. These observations are drawn from information 
coming from the entire ST-T complex; it would be difficult, 
if not impossible, to reach similar conclusions with confidence 
using classical differential measurements of ventricular repo- 
larisation, such as measurements of  ST level or QT interval. 

The salvo patterns of  ischaemia suggest an oscillatory or 
periodic instability of the coronary blood supply, perhaps due 
to cyclic vasospasm. More study of the phenomenon is 
warranted, as the temporal patterns of  ischaemia may guide 
therapeutic interventions. Preliminary results on automatic 
ischaemia detection using four kl coefficients give a sensitivity 
of  81% and a positive predictivity of  80% for the European ST- 
T database. 

Finally, we have observed altemans of periods 2 and 4 in 
association with ischaemic episodes, with different responses 
to recovery. Period 4 alternans and the association of  altemans 
with ST-T changes (ischaemia) have not been previously 
reported; the techniques we describe make the study of  these 
phenomena possible. However a complementary analysis of  
the respiration will be required to establish whether the period 
4 alternans are a result of  the respiration rate coupled with HR 
or are intrinsic period 4 altemans. A complete analysis of  the 
European ST-T database reveals that 5% of the ischaemic 
episodes present period 2 altemans associated with them. 

The KLT technique can be used for long-term tracking of 
ST-T variations and may open the door for development of 
improved automatic detectors of  transient ST-T changes. 
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