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Fig. 1 Polymer closed-cell foams with different density (photos by curtesy of A. Kraatz, German Institute for Polymers, Darmstadt [7])

– the equations for the three-dimensional continuum. In contrast, the direct approach is based on the straight-forward

introduction of the two-dimensional equations. This approach in combination with the effective properties concept allows

the global analysis of all branches of plate theories (homogeneous, sandwich, laminated, etc.). The different possibilities of

the formulation of plate theories are discussed in [10–12] among others.

Fig. 2 Nonhomogeneous structure of the foam

In this contribution, we present a new theory based on the direct approach combined with the effective properties concept.

We consider plates made of polymer foams with a highly nonhomogeneous structure through the thickness (see Fig. 2) and

apply the theory of plates and shells formulated in [13–17]. From the direct approach point of view, a plate or a shell is

modeled as a material surface each particle of which has five degrees of freedom (three displacements and two rotations, the

rotation about the normal to the plate is not considered). Such a model can be accepted in the case of plates with constant

or slow changing thickness. For the linear elastic variant the identification of the elastic stiffness tensors was proposed

in [18–20]. Using the techniques presented in these articles the static boundary-value problems for FGM plates made of

metal foams which behave elastically are solved in [21]. Here we extend this analysis to the case of viscoelastic polymer

foams.

1 Governing equations

Let us consider for simplicity the geometrically and physically linear theory. In addition, we assume plate-like structures.

The basic equations connecting the strains with the displacements and rotations or stating the static equilibrium or the

equation of motion can be deduced by applying hypotheses (like the Kirchhoff’s hypotheses) or mathematical techniques

(like power series expansion). In both cases one gets the expressions for the constitutive behavior assuming elastic or

inelastic material behavior.



A quite different way is given by the direct approach. The starting point in this case is a two-dimensional deformable

surface. On each part of this deformable surface forces and moments are acting – they are the primary variables. The

next step is the introduction of the deformation measures. Finally, it is necessary to combine the forces and the moments

with the deformation variables (constitutive equations). But the identification of the effective properties (stiffness and other

parameters) must be performed for each class of plates individually, solving, for example, boundary value problems. The

identification of the two-dimensional characteristics is a non-trivial problem since they must be computed from the three-

dimensional parameters applying assumptions like the introduction of stress resultants (forces and moments) instead the

stress tensor components.

Let us introduce the governing equations. The equations of motion are formulated as the Euler’s laws of dynamics

[19–21]

· T∇ · T + q = ρü + ρΘΘ1 · ϕ̈ϕ, ∇∇ · M + T× + m = ρΘΘT
1 ·· üu + ρΘΘ2 · ϕ̈. (1)

Here T , M are the tensors of forces and moments, qq, mm are the surface loads (forces and moments), TT× is the vector

invariant of the force tensor [22], ∇ is the nabla (Hamilton) operator, uu,ϕϕ are the vectors of displacements and rotations,

Θ1,ΘΘ2 are the first and the second tensor of inertia, ρ is the density (effective property of the deformable surface), (. . .)T

denotes transposed and ˙(. . .) is the time derivative. The geometrical equations are given as

µµ = (∇u · a∇u · a∇u · a)sym, γγγ = ∇u · n∇u · n∇u · n + ϕc · ϕc · ϕ, κκ = ϕ∇ϕ∇ϕ.

a is the first metric tensor (plane tensor), nn is the unit outer normal vector at the surface, c = − × na × n is the discriminant

tensor, µ, γ, and κκ are the strain tensors (the tensor of in-plane strains, the vector of transverse shear strains, and the tensor

of the out-of-plane strains, respectively), (. . .)sym denotes the symmetric part.

The boundary conditions are given by the relations

ν · T = ff, ν ·MM = ll (ll · n = 0) or uu = u0, ϕ = ϕϕ0 along S. (2)

Here f and l are external force and moment vectors, respectively, acting along the boundary S of the plate, while uu0

and ϕ0 are given functions describing the displacements and rotations of the plate boundary, respectively. ν is the unit

outward normal vector in the tangential plane to the boundary S (ν · nn = 0). The relations (2) are the static and the

kinematic boundary conditions. Other types of boundary conditions are possible. For example, the boundary conditions

corresponding to a hinge are given by

ν · M · τ = 0, u = 0, ϕϕ · τ = 0. (3)

Here, ττ is the unit tangent vector in the tangential plane to the boundary S (ττ · n = ττ · ν = 0).

Polymers near their glass transition temperature behave like viscoelastic materials. That means that the moduli of the

polymers depend on the strain-rate or the time of loading. Thus, a foam made of such a polymer behaves viscoelastically

too. The two-dimensional constitutive equations of a viscoelastic plate were formulated in the general form in [15]. For

simplicity, let us consider a through-the-thickness symmetric structure of the plate under consideration and an isotropic

material behavior. In this case, the constitutive equations for the stress resultants follows as:

• in-plane forces

· aT · aT · a = Aµµ ≡

t
∫

−∞

AA(t − τ) ····· µ̇µµ dτ, (4)

• transverse shear forces

· nT · n = Gγ ≡

t
∫

−∞

Γ(t − τ) ·· γ̇γ dτ, (5)

• moments

MT = Cκκ ≡

t
∫

−∞

C(t − τ) ·· κ̇dτ. (6)



Here,A, G, and C are linear viscoelastic operators, A(t), C(t) are 4th rank tensors, ΓΓ(t) is a 2nd rank tensor which describes

the effective stiffness properties (relaxation functions for the plate). They depend on the material properties and the cross-

section geometry. In the case of isotropic and symmetric-over-the-thickness plates the effective stiffness tensors have the

following structure [17]

AA = A11aa1aaa1 + A22(aa2aa2 + aa4aaa4), CCC = C22(aa2aa2 + aa4aaa4) + C33aa3aaa3, ΓΓΓ = Γaaa,

with

a1 = a = e1e1 + e2e2, a2 = ee1e1 − e2e2, aa3 = c = ee1ee2 − e2e1, aa4 = ee1ee2 + e2e1.

ee1, eee2 are the unit basic vectors. In addition, one obtains the orthogonality condition for the aaai (i = 1, 2, 3, 4)

1

2
aai ·· aj = δij ,

where δij is the Kronecker’s symbol.

2 Effective properties

For elastic plates, the identification of the components of the effective stiffness tensors was shown in [17–20]. By the same

technique, the analogous viscoelastic stiffness tensor components can be computed [15]. Below we discuss the special case

of the standard viscoelastic body.

Let us consider the three-dimensional isotropic viscoelastic constitutive equations [1, 23]

σ =

t
∫

−∞

2µ(t − τ)ė dτ +

t
∫

−∞

K(t − τ)ėII dτ, e =
1

3
tr ε, e = εε − eI , (7)

or

εε =

t
∫

−∞

M(t − τ)ṡss dτ +

t
∫

−∞

J(t − τ)σ̇III dτ, σ =
1

3
trσσσ, sss = σσσ − σII, (8)

where σσ and ε are the stress and the strain tensor, respectively, II is the three-dimensional unit tensor. µ(t) and K(t) are

the shear and the bulk relaxation functions, while M(t) and J(t) are the shear and the bulk creep functions. Alternative

expressions (but not equivalent!) for the integral constitutive equations of a viscoelastic body are the differential constitutive

equations [23]

P (∂t)σ = Q(∂t)ε, P1(∂t)sss = Q1(∂t)eee, (9)

where ∂t(. . .) denotes the time derivative, P (∂t), P1(∂t), Q(∂t), Q1(∂t) are polynomials. In addition, there exists a third

type of expressions – the complex moduli representation.

A special case of (9) is the standard linear viscoelastic body [1]

σ̇ +
K̂

η
σ =

K∞K̂

η
ε + (K∞ + K̂)ε̇, ṡs +

Ĝ

η1

s =
G∞Ĝ

η1

ee + (G∞ + Ĝ)ėe. (10)

Here K̂ and K∞ are the instantaneous and long-term bulk moduli, Ĝ and G∞ are the instantaneous and long-term shear

moduli, and η and η1 are the viscosities at the hydrostatic and the shear loadings, respectively. All these properties should

be estimated experimentally.

Due to (10), it yields that the following relations are valid [1]

K(t) = K∞ + K̂ exp

(

−
K̂

η
t

)

, µ(t) = G∞ + Ĝ exp

(

−
Ĝ

η1

t

)

. (11)

Using the Laplace transform of a function f(t)

f̄(s) =

∞
∫

0

f(t)e−stdt,



one can write Eqs. (7), (8) in the form [1]

σ̄σ = 2sµ(s)ēee + sK(s)ēIII, ε̄ε = sM(s)s̄ss + sJ(s)σ̄II. (12)

Further we consider two cases:

Case 1 : Homogeneous plates – all properties are constant (no dependency on the thickness coordinate z).

Case 2 : Inhomogeneous plates (sandwich, multilayered, functionally graded) – all properties are even functions of z.

Note that in both cases we have no coupling between the in-plane and the out-of-plane behavior.

In the case of isotropic material behavior one has two material properties describing the viscoelastic behavior. They

depend on the thickness coordinate z and on the time t

K = K(z, t), µ = µ(z, t).

In addition, a density function must be considered. Let us assume the simplest case – the density depends only on the

thickness coordinate

ρ0 = ρ0(z) .

ρ0 is the density of the three-dimensional solid.

Using the analogy between (12) and the Hooke’s law we can extend the identification procedure [17–20] to the Laplace

mapping of the effective relaxation or creep functions, see [15]. The in-plane (membrane) stiffness tensor components are

Ā11 =
1

2

〈

Ē

1 − ν̄

〉

, Ā22 =
1

2

〈

Ē

1 + ν̄

〉

=< µ̄ >, (13)

the out-of-plane (plate) stiffness tensor components are

C̄33 =
1

2

〈

Ē

1 − ν̄
z2

〉

, C̄22 =
1

2

〈

Ē

1 + ν̄
z2

〉

=< µ̄z2 >, (14)

and the transverse shear stiffness tensor component is

Γ̄ = λ2C̄22 (15)

with λ following from a Sturm-Liouville problem

d

dz

(

µ̄
dZ

dz

)

+ λ2µ̄Z = 0,
dZ

dz

∣

∣

∣

∣

∣

|z|= h

2

= 0. (16)

Here < (. . .) >=

h/2
∫

−h/2

(. . .)dz, h is the thickness of the plate. The following relations hold true [23]

Ē =
9µ̄K̄

µ̄ + 3K̄
, ν̄ =

3K̄ − 2µ̄

2(µ̄ + 3K̄)
.

The corresponding relaxation functions E(t) and ν(t) may be used instead of µ(t) and K(t). Let us note that for the

viscoelastic plate µ̄ = µ̄(z, s). Thus, λ = λ(s). The tensors of inertia and the plate density are given by [14, 17]

ρ = 〈ρ0〉 , ρΘ1 = −〈ρ0z〉 c, ρΘ2 = Θaa, Θ =
〈

ρ0z
2
〉

. (17)

Considering the symmetry of the thickness geometry and of the material properties of the plate, from (17) one gets that

ΘΘ1 = 0. Θ characterizes the rotatory inertia of the cross-section of the plate.



3 Examples of effective stiffness relaxation functions

For the sake of simplicity, let us consider the case ν(t) = ν = const (see [23] for details). That means that the following

relations hold true

E(t) = 2µ(t)(1 + ν), K(t) =
2µ(t)(1 + ν)

3(1 − 2ν)
.

For the constitutive equations of the standard viscoelastic solid, the latter relation implies that η1 = η, and

K∞ =
2G∞(1 + ν)

3(1 − 2ν)
, K̂ =

2Ĝ(1 + ν)

3(1 − 2ν)
.

Thus, in this case one gets four independent material constants. They are G∞, Ĝ (or K∞, K̂), η, and ν.

3.1 Homogeneous plate

The simplest test for the correctness of the estimated stiffness properties is the homogeneous isotropic plate. The basic

geometrical property is the thickness h, the material properties of the plate are symmetric with respect to the mid-plane.

All material properties are constant over the thickness, that means they do not depend on the thickness coordinate. The

non-zero components of the classical relaxation tensors are

A11(t) =
E(t)h

2(1 − ν)
, A22(t) =

E(t)h

2(1 + ν)
= µ(t)h,

C33(t) =
E(t)h3

24(1 − ν)
, C22(t) =

E(t)h3

24(1 + ν)
=

µ(t)h3

12
.

The density and the rotatory inertia coefficient are

ρ = ρ0h, Θ =
ρ0h

3

12
. (18)

The transverse shear relaxation function follows from (15). The solution of (16) with µ̄ = µ̄(s) is given by cosλz = 0
with its smallest eigenvalue

λ =
π

h
,

which does not depend on s. Finally, one obtains

Γ(t) =
π2

h2

µ(t)h3

12
=

π2

12
µ(t)h. (19)

π2/12 is the so-called shear correction factor which was first introduced by Timoshenko [24] in the theory of beams. The

value coincides with the Mindlin’s estimate in the plate theory [25] from which Reissner’s estimate 5/6 [26] differs slightly.

It is evident that in the case of homogeneous viscoelastic plates with constant Poisson ratio one gets the same relations

for the effective stiffness tensors as in the case of elastic plates [19,20]. There is only one difference - they are now functions

of t.

3.2 Functionally graded material

In this paragraph we consider small deformations of a functionally graded plate made of a viscoelastic polymer foam. For

the strip made of a porous polymer foam the distribution of the pores over the thickness can vary significantly (see, for

example, Fig. 2). Let us introduce h as the thickness of the panel, ρs as the density of the bulk material and ρp as the

minimum value of the density of the foam. For the description of the symmetric distribution of the porosity we assume the

power law [21]

V (z) = α + (1 − α)

∣

∣

∣

∣

2z

h

∣

∣

∣

∣

n

, (20)



where

α =
ρp

ρs

is the minimal relative density. n = 0 corresponds to the homogeneous plate described in the previous paragraph.

The properties of a foam strongly depend on the porosity and the cell structure. For the polymer foam, in [5] the

modification of the standard linear viscoelastic solid is proposed. For the open-cell foam, the constitutive law has the form

σ̇ +
K̂

η
σ = C1V (z)2

[

K∞K̂

η
ε + (K∞ + K̂)ε̇

]

, (21)

while for the closed-cell foam the constitutive equation has the form

σ̇ +
K̂

η
σ = C2

[

φ2V (z)2 + (1 − φ)V (z)
]

[

K∞K̂

η
ε + (K∞ + K̂)ε̇

]

. (22)

Here, C1 ≈ 1, C2 ≈ 1, and φ describe the relative volume of the solid polymer concentrated near the cell edges. Usually,

φ = 0.6 . . .0.7. K∞, K̂ , η are material constants of the polymer used in manufacturing of the foam.

From Eqs. (21), (22) one can see that the corresponding relaxation functions are given by the relations

K = K(z, t) = K(t)κ(z), (23)

where K(t) is defined by Eq. (11), while κ(z) = C1V (z)2 for the open-cell foam and κ(z) = C2

[

φ2V (z)2 + (1 − φ)V (z)
]

for the closed-cell foam, respectively. By analogy to (23), the following relation can be established for the shear relaxation

function

µ = µ(z, t) = µ(t)m(z) . (24)

Eqs. (23) and (24) have the meaning that the viscoelastic properties of a foam, for example, the time of relaxation, do not

depend on the porosity distribution. Note, that representations (23) and (24) are only simplifying assumptions for spatial

nonhomogeneous foams.

Using experimental data presented in [2, 5] one can assume ν = const. In this case, we obtain that A11, A22, C33, C22

are connected by

A11 =
1 + ν

1 − ν
A22, C33 =

1 + ν

1 − ν
C22. (25)

For the open-cell foam A22 and C22 are given by

A22 = h

[

α2 +
2α(1 − α)

n + 1
+

(1 − α)2

2n + 1

]

µ(t), C22 =
h3

12

[

α2 +
6α(1 − α)

n + 3
+

3(1 − α)2

2n + 3

]

µ(t), (26)

while for the closed-cell foam by

A22 = h

{

φ2

[

α2 +
2α(1 − α)

n + 1
+

(1 − α)2

2n + 1

]

+ (1 − φ)

[

α +
1 − α

n + 1

]}

µ(t),

C22 =
h3

12

{

φ2

[

α2 +
6α(1 − α)

n + 3
+

3(1 − α)2

2n + 3

]

+ (1 − φ)

[

α +
3(1 − α)

n + 3

]}

µ(t).

(27)

Here it was assumed that C1 = 1, C2 = 1, and that φ does not depend on z.

From Eqs. (26), (27) it is easy to see that the classical relaxation functions differ only by factors from the shear re-

laxation function. Note, that one can easily extend Eqs. (21), (22) to the case of general constitutive equations (7) or (9).

Thus, using the assumption that ν = const, one can calculate the classical effective stiffness relaxation functions for the

general viscoelastic constitutive equations multiplying the shear relaxation function with the corresponding factor similar

to Eqs. (26), (27). In the more general situation with ν = ν(t) or taking into account other viscoelastic phenomena, for

example, the filtration of a fluid in the saturated foam, the effective stiffness relaxation functions may be more complex

than for the pure solid polymer discussed here.



To obtain the dependence of the transverse shear stiffness relaxation function we have to solve Eq. (16). In the general

case, the solution of the spectral problem (16) may be performed numerically only. For example, in [21] the shooting

method [27] was used. Let us note that for the viscoelastic plate µ̄ = µ̄(z, s). Thus, λ = λ(s). It means that for the

determination of Γ(t) one has to solve (16) for any arbitrary value of s and with the help of λ = λ(s) to find numerically

the inverse Laplace transform of λ2(s)C̄22(s). But in the special case of Eq. (24) one gets that µ̄ = µ̄(s)m(z). That means

that λ does not depend on s, and thus Γ(t) = λ2C22(t). For the sake of simplicity, we will further take assumption (24)

into account.

Let us find the bounds for the values of λ. Introducing a new independent variable ζ by the formula

ζ =

z
∫

−h/2

dz

m(z)
,

one can transform (16) to the form (for details see, for example, [28])

d2Z

dζ2
+ λ2m2Z = 0,

dZ

dζ

∣

∣

∣

∣

∣

ζ=0,L

= 0. (28)

Here L denotes

L =

h/2
∫

−h/2

dz

m(z)
.

Substituting ζ = ζ/L, one can transform the spectral problem (28) to the canonical form

d2Z

dζ2
+ λ2L2m2Z = 0,

dZ

dζ

∣

∣

∣

∣

∣

ζ=0,1

= 0. (29)

The following theorem holds [29]:

Theorem 3.1. If one has two eigen-value problems

d2Z

dζ2
+ λ2f1Z = 0,

d2Z

dζ2
+ λ2f2Z = 0,

dZ

dζ

∣

∣

∣

∣

∣

ζ=0,1

= 0 (30)

with two functions f1(ζ) and f2(ζ) such that f1 ≤ f2, then the following inequality holds true λ1 ≥ λ2. Here λ1 and λ2

are the eigen-values corresponding to the functions f1(ζ) and f2(ζ), respectively.

Using this theorem and the inequality mmin ≤ m ≤ mmax, we obtain the lower and upper bounds of λ

π

Lmmax

≤ λ ≤
π

Lmmin

. (31)

For the homogeneous plate mmin = mmax = m, L = h/m, and both bounds coincide.

Finally, we should mention that in the case of constant Poisson’s ratio and with the assumption (24) the determination

of the effective in-plane, bending, and transverse shear stiffness tensors of a symmetric FGM viscoelastic plate made of

a polymer foam can be computed by the same method as for elastic plates [21]. The relaxation functions for viscoelastic

FGM plates can be found from the values of the corresponding effective stiffness of an elastic FGM plate by multiplication

with the normalized shear relaxation function of the polymer solid.

4 Viscoelastic bending behavior of a plate made of functionally graded material

Considering the symmetry of the material properties with respect to the mid-plane one gets a decoupling of the in-plane and

the plate states. Let us assume the plate bending problem with m = 0. Using the results presented in [21] and the Laplace

transform, one can reduce the set of governing equations to

D̄eff∆∆w̄ = q̄n −
D̄eff

Γ̄
∆q̄n, (32)



where D̄eff = C̄22 + C̄33 is the Laplace transform of the effective bending stiffness relaxation function, w̄ = ūu · n is the

Laplace transform of the plate deflection, q̄n = q̄ · n is Laplace transform of the transverse load, respectively. Note, that

here D̄eff = D0
eff µ̄(s), where D0

eff = (C22 + C33)/µ(t).
To analyze the influence of the transverse shear stiffness on the deflection of the plate, let us consider the bending of a

rectangular plate made of a functionally graded material. Let us assume that x1 ∈ [0, a], x2 ∈ [0, b], where a and b are the

length and the width of the plate, respectively. Using the assumption that ν = const and the Eqs. (14), (15), and (24) are

valid, we can rewrite Eq. (32) in the following form

D̄eff∆∆w̄ = q̄n −
2

1 − ν

1

λ2h2
∆q̄n. (33)

Introducing dimensionless variables by the formulas

W = h−1w, X1 = h−1x1, X2 = h−1x2, X1 ∈
[

0,
a

h

]

, X2 ∈

[

0,
b

h

]

,

Eq. (33) transforms to

µ̄(s)∆∆W̄ = Q −
2

1 − ν

1

λ2h2
∆Q. (34)

Here

∆ =
∂2

∂X2
1

+
∂2

∂X2
2

, Q =
q̄nh3

D0
eff

.

Let us consider a sinusoidal load

qn = Q0(t) sin
πhX1

a
sin

πhX2

b

and the boundary conditions (3). Then

Q = Q̄0(s) sin
πhX1

a
sin

πhX2

b
,

and the solution of Eq. (34) is given by

W̄ =
K

η2

Q̄0(s)

µ(s)
sin

πhx̄1

a
sin

πhx̄2

b
, K = 1 +

2η

1 − ν

1

λ2h2
, η =

(

πh

a

)2

+

(

πh

b

)2

. (35)

For the Kirchhoff’s plate theory one gets

K = KK ≡ 1,

for the homogeneous plate modeled in the sense of Mindlin’s plate theory

K = KM ≡ 1 +
2η

1 − ν

1

π2
,

and for the FGM plate

1 +
2η

1 − ν

L2m2
min

π2h2
≤ K ≤ 1 +

2η

1 − ν

L2m2
max

π2h2
.

The influence of the shear stiffness on the deflection of the elastic FGM plate was given in [21]. For the viscoelastic plate

both the qualitative and the quantitative influence of the shear stiffness is the same as in [21].

For example, let us consider an open-cell foam and the following values ν = 0.3, a = b, h = 0.05a, α = 0.9. Using the

calculation in [21] we obtain the following values of λ: λ = 0.83/h for n = 2, λ = 0.82/h for n = 5. The corresponding

values of the factor K are given by

KM ≈ 1.014, K ≈ 1.20 (n = 2), K ≈ 1.21 (n = 5).

That means that for the functionally graded plates the influence of the transverse shear stiffness may be significant. As well

as for elastic FGM plates for other types of boundary conditions, the influence on the deflection may be greater than for the

used simple-support type boundary conditions.



5 Discussion and outlook

The considered concept to model FGM plates within the framework of a 5-parametric theory of plates applying the direct

approach has an advantage in comparison with the classical theories of sandwich or laminated plates. The reason for this

conclusion is that the suggested model is not based on a priori hypotheses about the stress, strain, or displacement states in

the plate. Such an on hypotheses based model yields to a good agreement with experimental results if the plate is composed

of classical structural materials. Since the foams are materials with a very complex microstructure, simple hypotheses

cannot be established and a hypotheses-free theory results in better predictions of the global mechanical behavior. The main

conclusion from the results presented here is that assuming linear viscoelastic behavior one gets similar improvements of the

predictions like in the elastic case. This result follows immediately from the application of the Boltzmann’s correspondence

principle and the Laplace transform. Further investigations should be directed on more complex constitutive equations

of viscoelastic solids (ν 
= const, non-isotropic case, non-symmetric material properties with respect to the mid-plane,

thermomechanical behavior) and the description of the creep phenomenon in plates made of metal foams.
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