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Abstract A number of problems for the interaction of laser radiation with a heat-conducting half-space and a
layer are considered. The obtained solutions are compared with each other and with the solutions of the classic
heat equation and the wave equation. A laser impulse is modelled by defining the heat flux at the boundary for the
opaque medium, or by defining the distribution of heat sources in the volume for the semitransparent medium.
The power of the laser pulse depends on time as the Dirac delta function or as the Heaviside function do. It
allows for the simulation of instant and continuous laser exposure on the medium. Temperature distributions
are obtained by using Green’s functions for a half-space and a layer with the Dirichlet and Neumann boundary
conditions.

Keywords Hyperbolic heat conduction · Heat flux relaxation constant · Heat propagation speed ·
Heat transport in nanosystems · Heat pulse

1 Introduction

Investigation of the wave heat transfer is important for many developing technologies. Internal heat sources at
the nanoscale level (the size of a modern transistor is approximately a few nanometers) cause more intensive
temperature growth [1] than it is predicted by the classic theory and increase the requirements for future cooling
systems [2]. Temperature effects introduce significant changes to the mechanical properties of the nanolayers
[3], because the thinner the layer is, the more sensitive it becomes to temperature effects. Studies of heat wave
transfer can be useful for the determination of the thermomechanical characteristics of micro- and nanoscale
objects such as thin plates and rods that are used in micro- and nanoelectromechanical devices (MEMS and
NEMS).
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For heat-conducting processes of sufficiently short timescales, it is appropriate [4] to consider a model that
takes into account the finite speed of heat propagation:

ρCv(τ T̈ + Ṫ ) = λΔT (1)

where ρ is a material density, Cv is a constant volume specific heat, τ is a heat flux relaxation constant, T is the
deviation from the temperature T0 at which the material constants were measured, dot denotes time derivative,
λ is the material conductivity,Δ is the Laplace operator. The derivation of this equation is based on the law of
Cattaneo–Vernotte [5,6]:

τ ḣ + h = −λ∇T (2)

where h is a heat flux vector, ∇ is the del operator.
The Cattaneo–Vernotte law differs from classic Fourier’s law in that it includes the heat flux relaxation

constant τ , the presence of which means that the heat flux does not appear or disappear instantly if the
temperature gradient is loaded or unloaded [4]. The propagation speed (“c”) of thermal disturbances in a heat-
conducting medium depends on the value of τ : c = √

λ/(ρCvτ ). The value of the heat relaxation constant
ranges from 10−12 to 10−8 s for homogeneous materials in different aggregative states [7]. If timescale of the
experiment is comparable to the relaxation time value, it is recommended to use a generalized Fourier’s law.
Concepts and fundamentals of modern thermodynamics are discussed in [4,8–11].

It is widely known that there are other more complex models of thermal conductivity with a finite speed of
thermal waves in its linear approximation [4,12]: a model with a thermal memory [13], a model [14], which
takes into account the time lag of the heat flux and the temperature gradient, etc. A detailed review of thermal
conductivity models is presented in [4].

Equation (1) is a special case of the telegraph equation, which describes the wave propagation with losses.
Limit cases of Eq. (1) are the classic heat equation, if the term τ ḣ can be neglected, and the wave equation, if
τ |ḣ| � |h|.

2 The heat equation of the hyperbolic type

Let us consider heat-conducting media. The energy balance equation takes the following form:

ρU̇ = −∇ · h + ρq (3)

where U is the density of internal energy, q is the heat input rate into the volume. The relationship between
internal energy and temperature is stated as follows:

U = CvT (4)

Using the Cattaneo–Vernotte law (2), one can write the system of differential equations for the temperature
and the heat flux vector [15]: {

ρCv Ṫ = −∇ · h + ρq
h + τ ḣ = −λ∇T

(5)

Initial conditions for the system (5) are given by:

T
∣∣
t=0 = f (s); h

∣∣
t=0 = g(s); (6)

where s is the radius vector that defines the spatial position of the points of media.
By excluding the heat flux vector from the system (5), one obtains an equation for the temperature:

ρCv(Ṫ + τ T̈ )− λΔT = ρ(q + τ q̇) (7)

An additional initial condition for the first-order derivative of the temperature can be obtained from the
known value of the heat flux at t = 0 and the first equation of the system (5). Let us formulate the initial
conditions for Eq. (7):

Ṫ
∣∣
t=0 = − 1

ρCv
∇ · g + 1

Cv
q; T

∣∣
t=0 = f (s); (8)

The initial condition for the heat flux is an alternative of the initial condition for the heating rate Ṫ .
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If a contact method of the temperature measurement is used, the definition of Ṫ presents some difficulties.
By the means of contact method, the temperature can be recorded only after the thermodynamic equilibrium
over time is achieved and the temperature becomes a constant value. There are other ways to measure the
temperature. One of them is a laser thermometry. It allows measuring of the temperature and the heat flux on a
surface and in a volume of a sample without the contact. This method allows the observation of nonequilibrium
processes of the heat transfer due to the high time resolution on the order of 10−12 s and the resolution by
coordinate on the order of 10−3 m. The temperature resolution is about 0.3 ◦C [16,17].

Let us specify the temperature at the boundary ∂Ω:

T
∣∣
∂Ω

= ϕ(t, s); s ∈ ∂Ω (9)

It is also possible to specify a projection of the heat flux vector on a normal to the boundary Ω instead of (9):

hn
∣∣
∂Ω

= ψ(t, s); s ∈ ∂Ω (10)

where hn = n · h is a projection of the heat flux vector h on a normal n to ∂Ω . When the boundary conditions
are imposed on the heat flux, as in the above case, it may be easier to first find h(s, t), excluding the temperature
from system (5). An equation for the vector of heat flux similar to (7) will be obtained:

ρCv(ḣ + τ ḧ)− λ∇∇ · h = λρ∇q (11)

An additional initial condition for ḣ can be obtained using the second equation of system (5). Let us write out
the initial conditions for Eq. (11):

ḣ
∣∣
t=0 = −λ

τ
∇ f − 1

τ
g; h

∣∣
t=0 = g(s); (12)

Integrating the first equation of system (5) over time, one can get the expression for the temperature:

T (s, t) = 1

ρCv

t∫
0

(ρq − ∇ · h) dt + f (s) (13)

If the temperature distribution was obtained using Eq. (7), one can find an expression for heat flux by solving
the second equation of the system (5):

h(s, t) = e−t/τ

⎛
⎝g(s)− λ

τ

t∫
0

et/τ∇T (s, t)dt

⎞
⎠ (14)

3 Wave processes in a half-space if the thermal load is applied on the boundary

Let us consider the half-space: 0 ≤ s ≤ +∞. External volumetric exposures are absent. The heat propagation
process is described by the homogeneous heat equation. Let us introduce new variables κ and ν, which are
associated with time t and the coordinate s as follows: κ = s

√
ρCv/(λτ), ν = t/τ . In this case, Eq. (11) for

the heat flux takes the following form:

ḣ + ḧ − h′′ = 0 (15)

The prime symbols denote the derivative on κ . The value of the heat flux is limited at infinity. The heat flux is a
given function of time at the boundary. The heat wave propagation process under the step and pulse boundary
conditions is studied bellow.
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3.1 The heat flux at the boundary depends on time as the Dirac delta function

The initial conditions for the heat flux (12) are homogeneous:

h
∣∣
ν=0 = 0; ḣ

∣∣
ν=0 = 0; (16)

The value of the heat flux at the boundary κ = 0 depends on time as the δ function:

h
∣∣
κ=0 = h0δ(ν − 0) (17)

A multiplier h0 has been added to save the heat flux dimension.
A solution of the problem (15)–(16), obtained using the Laplace transform [15,18], is given by:

h = h0e−ν/2
[
δ (ν − κ)+ κ

2
√
ν2 − κ2

I1

(
1

2

√
ν2 − κ2

)
H (ν − κ)

]
(18)

where I1 is the modified Bessel function of the first kind. Using (13), one obtains temperature distribution in
the half-space:

T = −
ν∫

0

∂h(κ, ν)

∂κ
dν (19)

Profiles of the temperature waves (19) are plotted at the different values of time in Fig. 1a and b.
Let us consider its two limit cases. A solution of the problem (17)–(16) for the wave equation is given by

(Fig. 1c):

T = h0δ (ν − κ) (20)

For the classic heat equation, a temperature expression follows:

T = h0√
πν

exp

(
−κ

2

4ν

)
(21)

The wave front in the solution (21) is absent. The profiles of the solution (21) for the different times are shown
in Fig. 1d.
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Fig. 1 Time shape of the impulse on the boundary of the half-space is the δ function. Solution profiles are plotted for the different
time values: τ, 2τ, 3τ, 6τ, 8τ, 10τ seconds; curves a, b are the solution profiles corresponding to the hyperbolic heat equation;
curve c is the solution profile corresponding to the wave equation; curve d is the solution profile corresponding to the classic
parabolic heat equation
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Fig. 2 Time shape of the impulse on the boundary is the Heaviside step function. Solution profiles are plotted for the different
time values: τ/2, τ, 3τ/2, 3τ, 4τ, 5τ seconds; curves a, b are the solution profiles corresponding to the hyperbolic heat equation;
curve c is the solution profile corresponding to the wave equation; curve d is the solution profile corresponding to the classic
parabolic heat equation

Comparing Fig. 1a and c, it is easy to see the similarities and differences between the solutions of the
hyperbolic and the wave equations. The curves for both of the equations have the δ function jumps on its wave
fronts. The solution of the wave equation differs from zero only at its front. The region of the wave profile of
the hyperbolic equation between the origin and the wave front becomes similar to the solution of the classic
heat equation with time. The differences between the solutions of the classic and hyperbolic equations become
visible at the values of time of the order of the relaxation constant τ .

3.2 The heat flux at the boundary depends on time as the Heaviside step function

The value of the heat flux at the boundary depends on time as the Heaviside step function:

h|κ=0 = h0 H(ν − 0), H(ν) =
[

1, ν ≥ 0
0, ν < 0 (22)

The initial conditions for the heat flux (12):

h
∣∣
ν=0 = 0; ḣ

∣∣
ν=0 = 0; (23)

A solution of the problem (15), (22), (23), obtained using the Laplace transform, is given by [19]:

h = h0

⎛
⎝exp

(
−κ

2

)
+ κ

2

ν∫
κ

exp (−ξ/2)√
ξ − κ2

I1

(
1

2

√
ξ − κ2

)
dξ

⎞
⎠ H (ν − κ) (24)

Using (19), one obtains the temperature distribution in the half-space. Profiles of the temperature waves (19)
are plotted at the different values of time in Fig. 2a and b.

Let us consider the two limit cases: the wave equation and the classic heat equation. A solution of the wave
equation (Fig. 2c) is given by

T = h0 H (ν − κ) (25)

The classic statement of the problem leads to a following solution (in the dimensionless variables):

T = h0

(
2 exp

(
−κ

2

4ν

)√
ν

π
− erfc

(
κ

2
√
ν

)
κ

)
(26)
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where erfc(z) is the complementary error function:

erfc(z) = 1 − 2√
π

z∫
0

e−ξ2
dξ

A feature peculiar to the classic heat equation is the absence of the wave front in solution graphics. The graphics
for the classic solution (26) are shown in Fig. 2d. For all values of time, the curves look the same, but at small
values of time the temperature reaches the abscissa axis faster. Comparing Fig. 2a and c, one can see that
the solution of the hyperbolic equations is similar to the solution of the wave equation for short times: the
wave profile is close to a “step.” The solution of the hyperbolic equation is more like the one of the parabolic
equation at the larger times: the temperature discontinuity at the wave front rapidly decreases with the distance
from the boundary.

4 Wave processes in the layer caused by the influence of internal heat sources

Let us consider the laser impact on the layer with the thickness of l. The penetration depth of the laser radiation
into the medium can be significant at the nanoscale level even for opaque materials; thus, it is possible to use
Bouguer’s law for modelling the absorption of the laser radiation by the material. According to Bouguer’s
law, the intensity of a parallel beam of the monochromatic light exponentially decays when it passes through
a medium:

I (s) = I0e−αs (27)

where s is the distance from the layer boundary, I0 is the intensity of the incident light, α is an absorption
coefficient of the substance. If the intensity of a short laser impulse is absorbed by the medium according to
the Bouguer’s law, then the power of internal sources can be written as:

q(s, t) = I0δ(t − 0)e−αs

where the δ function approximates the dependence of a short laser impulse intensity on time, more precise
form of which is the Gaussian distribution.

4.1 The intensity of the internal heat sources depends on time as the Dirac delta function

4.1.1 The thermally insulated layer

For the sake of brevity, let us introduce a new notation:

η = h
1

I0

√
Cv
ρλ

; ς = s

√
ρCv
λ

; ϑ = T
Cv
I0

; γ = α

√
λ

ρCv
; μ = l

√
ρCv
λ

; (28)

The differential equation for the heat flux (11) will be represented as:

η̇ + τ η̈ − η′′ = γ δ(t − 0)e−γ ς (29)

The boundary conditions for Eq. (29) are written as follows:

η
∣∣
ς=0 = 0; η

∣∣
ς=μ = 0; (30)

Initial conditions (12) for the heat flux with regard to the new notation have the form:

η
∣∣
t=0 = 0; η̇

∣∣
t=0 = 0; (31)
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Once obtained, the expression for η(ς, t) allows us to find the temperature distribution ϑ(ς, t) for the layer if
the heat flux at the boundaries is absent. For this, we use the expression (13):

ϑ(ς, t) = −
t∫

0

η′(ς, t)dt + e−γ ς H(t) (32)

In order to obtain the solution of the problem (29)–(31), let us change the variable:

η(ς, t) = exp

(
− t

2τ

)
w(ς, t) (33)

After introducing the new variable, Eq. (29) will take the form of the linear nonhomogeneous Klein–Gordon
equation:

ẅ = 1

τ
w′′ + 1

4τ
w + γ

τ
δ(t − 0)e−γ ς (34)

The initial and boundary conditions after the variable change will have the form:

w
∣∣
t=0 = 0; ẇ

∣∣
t=0 = 0; w

∣∣
ς=0 = 0; w

∣∣
ς=μ = 0; (35)

The solution of (34)–(35) can be conveniently obtained by using Green’s functions method. The formula [20]
for the distribution of w(ς, t) in the layer with the homogeneous initial and boundary conditions is written as:

w(ς, t) =
t∫

0

μ∫
0

Φ(ξ, ζ )G(ς, ξ, t − ζ )dξdζ (36)

where Green’s function G has the form [20]:

G(ς, ξ, t) = 2

μ

∞∑
n=1

sin

[
πnς

μ

]
sin

[
πnξ

μ

] sin

[
t

√
1
τ

(
πn
μ

)2 − 1
4τ 2

]
√

1
τ

(
πn
μ

)2 − 1
4τ 2

(37)

The source function in Eq. (34) has a form:

Φ(ς, t) = γ

τ
δ(t − 0)e−γ ς

The result of integrating expression (36) is substituted in (33) to obtain the expression for the heat flux:

η = 4μγ e−μγ− 1
2 t/τ

∞∑
n=1

(nπeμγ − (−1)n) sin
[

nπς
μ

]
sin

[
Snt
2τμ

]
Sn

(
n2π2 + μ2γ 2

) H(t) (38)

where Sn = √
4n2π2τ − μ2;

It is easily seen that heat flux (38) takes the real values for any sign of the expression under the radical of
Sn . Substituting (38) in (32), we obtain an expression for the temperature:

ϑ = e−ςγ H(t)− 2μγ e−μγ− 1
2 t/τ

∞∑
n=1

cos
[

nπς
μ

]
(eμγ − (−1)n)

Sn
(
n2π2 + μ2γ 2

)
×

(
Sn

(
e

t
2τ − cos

[
Snt

2μτ

])
− μ sin

[
Snt

2μτ

])
H(t) (39)
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l0

I0 s

Fig. 3 The hyperbolic heat conduction problem for the semitransparent layer

A solution of the problem in the classic formulation for the insulated layer is a series obtained by Green’s
function method:

ϑ = e−γ (ς−tγ )

2

∞∑
n=−∞

e−2μnγ
(

erf

[
2μn + ς − 2tγ

2
√

t

]
+ erf

[
μ− 2μn − ς + 2tγ

2
√

t

]

+ e2γ (2μn+ς)
(

erf

[
μ+ 2μn + ς + 2tγ

2
√

t

]
− erf

[
2μn + ς + 2tγ

2
√

t

]))
H(t) (40)

where erf[z] is the error function:

erf[z] = 2√
π

z∫
0

e−ξ2
dξ

Another limit case is the pure wave equation. A solution in this case can be written as:

ϑ = e−ςγ H(t)− 2μγ e−μγ
∞∑

n=1

cos
[

nπς
μ

] (
1 − cos

[
nπ t
μ

√
τ

])
(eμγ − (−1)n)

n2π2 + μ2γ 2 H(t) (41)

An expression for the temperature (39) on the wave front as a function of coordinate ς can be obtained as
a special case (t = ς

√
τ ) of the solution for an abrupt heat source given in work [21] for a half-space. The

temperature value ϑ1 at the wave front if the wave has not reached the right boundary is given as follows:

ϑ1(ς) = 1

2r

(
(r + 1)e

rς√
τ + r − 1

)
e
− (r+1)ς

2
√
τ

−γ ς ; r =
√

4γ 2τ + 1 (42)

Time profiles of the solutions (39)–(41) are shown in Fig. 4 with the same scale of the horizontal axis, but
with different scales of the vertical axis. The solution of the hyperbolic heat Eq. (39) is shown in Fig. 4a and
b. The temperature values on the wave front (42) are shown by dashed lines in Fig. 4a and b. The solution (41)
of the wave equation is shown in Fig. 4c, and the solution (40) of the classic heat equation is shown in Fig. 4d.

A temperature maximum is observed at small times in the salient point near the exposed boundary of the
layer (Fig. 4a). This effect is noticeable in hyperbolic heat conduction problems with various dependencies
of internal heat sources on time [21]. Such maximum is also observed in the solution of the wave equation
(Fig. 4c) for all values of t . Time profiles in Fig. 4a with increasing time (the curves t = 8τ ) become similar to
the monotonically decreasing classic solution in Fig. 4d: the temperature maximum is shifting from the inner
part of the layer to its boundary.

The problem (29)–(30) is a generalization of the boundary-value problem (15)–(16) for the case of the
volumetric impact. In the solution graphics of the boundary-value problem (19), a discontinuous jump can be
observed instead of the salient point. The graphic vanishes right after the wave front as it is shown in Fig. 1a
and b. The solution graphs of the problem with the volumetric heat source (Fig. 4a) gradually decay after
attaining a maximum at its wave front. At the same time, the solution profiles for the classic thermoconductivity
of both problems shown in Figs. 4d and 1d are quite similar in shape.

The solution profiles of (39) are shown in Fig. 5 for various γ values (γ1 < γ2 < γ3) but at the same
moment of time. The γ constant characterizes a penetration depth of the laser radiation into the medium.
With the increase in γ , the temperature at the border decreases and the temperature maximum becomes more
noticeable. With decreasing of γ , the curves become similar to the classical solution (Fig. 4d).

Let us consider the reflection of the heat wave from the opposite boundary of the layer. We assume that
the layer is thin enough so the wave does not completely decay until it reaches the opposite border. In Fig. 6a,
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Fig. 4 Volumetric heat supply is considered. Boundaries of the layer are thermally insulated. Solution profiles for the different
time values are presented: τ/2, 2τ, 5τ, 6τ, 8τ, 11τ seconds; curves a, b are the solution profiles corresponding to the hyperbolic
heat equation; curve c is the solution profile corresponding to the wave equation; curve d is the solution profiles corresponding
to the classic parabolic heat equation
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Fig. 5 Solution profiles for the hyperbolic heat equation at the same moment of time, but for different values of attenuation
coefficient: γ1 < γ2 < γ3
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Fig. 6 Reflection of the heat wave from the opposite boundary under the conditions of thermal insulations of the layer

the wave is moving from left to right and in Fig. 6b from right to left. Upon reflection from the boundary, the
temperature reaches its local maximum [22], which gradually approaches to a constant value with time.

Let us consider the behavior of the temperature at the boundary of the layer, where it is the easiest to measure.
The temperature dependence on time at the exposed boundary is shown in Fig. 7a and the dependence T (t)
at the opposite boundary is shown in Fig. 7b. The presence of maximums and minimums on the graph of the
hyperbolic solution (which is shown by the solid line) is the result of the heat wave movement in the layer
(Fig. 6). The graph of the classic solution is monotonous (dashed line) and decays faster. The value of T (t)
approaches a constant value with increasing time both in classic and hyperbolic heat conduction theories.

Taking into account the wave nature of heat propagation, it is necessary to make substantial changes in
the thermal insulation methods. The effect of the total internal reflection at the interface of two media has
been known from optics and acoustics [23]. The boundary of the medium will be an absolute reflector of heat
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Fig. 7 The temperature dependence on time at the boundary of a thin layer. a Temperature at the irradiated boundary; b temperature
at the opposite boundary

waves if a wave strikes it at an angle larger than a critical angleΘ . If the wave propagation speed in the second
medium is greater than in the first medium (c1 < c2), then the critical angle Θ is given by sinΘ = c1/c2. In
the notations of the hyperbolic thermal conductivity theory, the heat propagation velocity can be rewritten as
c = √

λ/(ρCvτ ).

4.1.2 The boundaries of the layer are kept at the constant temperature

Differential equation for the temperature (7) in the notation (28) takes the form:

ϑ̇ + τ ϑ̈ − ϑ ′′ = (δ(t − 0)+ τ δ̇(t − 0))e−γ ς (43)

Initial conditions (8) for the temperature are as follows:

ϑ
∣∣
t=0 = 0; ϑ̇

∣∣
t=0 = 0; (44)

The boundary conditions are:

ϑ
∣∣
ς=0 = 0; ϑ

∣∣
ς=μ = 0; (45)

Let us make the variable change in Eq. (43):

ϑ(ς, t) = exp

(
− t

2τ

)
w(ς, t) (46)

After the variable changes, Eq. (43) will be as follows:

ẅ = 1

τ
w′′ + 1

4τ 2w +
(
δ(t − 0)

2τ
+ δ̇(t − 0)

)
e−γ ς (47)

The initial and boundary conditions will take a form:

w
∣∣
t=0 = 0; ẇ

∣∣
t=0 = 0; w

∣∣
ς=0 = 0; w

∣∣
ς=μ = 0; (48)

To obtain a solution of the problem (47), (48), we use formula (37). Substituting w(ς, t) into (46), we obtain
an expression for the temperature ϑ(ς, t):

ϑ = 2πe−μγ− t
2τ

∞∑
n=1

n (eμγ − (−1)n) sin
[

nπς
μ

]
Sn

(
n2π2 + μ2γ 2

)
×

(
Sn cos

[
1

2
Snt

]
+ μ sin

[
1

2
Snt

])
H(t) (49)
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Fig. 8 Volumetric heat supply is considered. Boundaries of the layer are kept at a constant temperature. Solution profiles for
the different time values are presented: τ/4, 2τ, 4τ, 6τ, 8τ, 10τ seconds; curves a, b are the solution profiles corresponding to
the hyperbolic heat equation; curve c is the solution profile corresponding to the wave equation; curve d is the solution profile
corresponding to the classic parabolic heat equation

The convergence of this series is considered in the “Appendix.” A solution for the layer with the constant
temperature at the boundaries in the classic thermal conductivity is given as follows:

ϑ = eγ (tγ−ς)

2

∞∑
n=−∞

e−2μnγ
(

erf

[
2μn + ς − 2tγ

2
√

t

]
+ erf

[
μ− 2μn − ς + 2tγ

2
√

t

]

+ e2(2μn+ς)γ
(

erf

[
2μn + ς + 2tγ

2
√

t

]
− erf

[
μ+ 2μn + ς + 2tγ

2
√

t

]))
H(t) (50)

Using the method of Green’s functions, we obtain a solution for the wave equation:

ϑ = 2πe−μγ
∞∑

n=1

n cos
[

nπ t
μ

√
τ

]
(eμγ − (−1)n) sin

[
nπς
μ

]
n2π2 + μ2γ 2 H(t) (51)

The values of temperature on the wave front are different because of the discontinuity jump. The temperature
value at the wave front approaching from right is given by (42). The temperature value at the wave front
approaching from left is given by:

ϑ2(ς) = ϑ1(ς)− e
− ς

2
√
τ (52)

The solution of the hyperbolic heat Eq. (49) is shown in Fig. 8a and b. The temperature values on the wave
front are shown by dashed lines in Fig. 8a and b. The upper dashed line is given by (42) and the lower dashed
line is given by (52). The solution of the wave equation is shown in Fig. 8c, and the solution of the classic heat
Eq. (50) is shown in Fig. 8d. Pairs of the figures: Fig. 8a, c and b, d has the same scale of the horizontal axes,
but different scales of the vertical axes.

Under the considered boundary conditions, one can observe areas where the temperature drops below its
initial value, such areas have negative values of T . Global maximum and minimum values of the temperature
are reached in a thin layer near the irradiated boundary. For short times (curves t = τ/2), the solution
profile of the hyperbolic equation (Fig. 8a) is similar to the solution profile of the wave equation (Fig. 8c):
a temperature minimum that lies in the region of the negative T and a significant gap between the minimum
and the maximum by the T axis can be observed. Over time the minimum and maximum approach each other
(Fig. 8b), the minimum of the solution curve leaves the range of negative values and the graph becomes similar
to the classic one (Fig. 8d).
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Let us consider in detail the area with negative values of T in solution (49). We shall assume that the
temperature wave has not reached the right boundary of the layer, so the layer can be treated as a half-space.
Taking the Laplace transform of Eq. (43) using the initial conditions (44), one obtains:

pϑ + τp2ϑ − ϑ
′′ = (1 + τp)e−γ ς (53)

where

ϑ(ς, p) = L[ϑ(ς, t)] (54)

The transformed boundary conditions are given by:

ϑ
∣∣
ς=0 = 0; ϑ

∣∣
ς→∞ = 0; (55)

A solution for the problem (53), (55) is the following function:

ϑ(ς, p) =
(pτ + 1)e−ς(γ+√

p(pτ+1))
(

eς
√

p(pτ+1) − eγ ς
)

p2τ + p − γ 2 (56)

The Taylor expansion of (56) at infinity by variable p and at 0 by variable ς is given as follows:

ϑ(ς, p) = ς
(
2pτ − 2γ

√
τ + 1

)
2p

√
τ

+ O(ς)2 + O

(
1

p

)3/2

(57)

Taking the inverse Laplace transform of (57), one obtains [24] the first term of Taylor series for ϑ(ς, t) at
(0, 0):

ϑ(ς, t) ≈
(

x

2
√
τ

− γ x

)
H(t)+ √

τ xδ(t) (58)

For t > 0, it is possible to evaluate when the temperature ϑ takes positive or negative values in the vicinity of
the irradiated boundary. It depends on a relationship between the heat flux relaxation constant τ in a medium
and a value of τ0:

τ0 = 1

4γ 2 (59)

If τ > τ0, then ϑ takes negative values in the vicinity of the irradiated boundary; otherwise, if τ < τ0, ϑ takes
positive values.

Let us estimate the constant τ0 for typical metals (e.g., aluminum, copper, gold, and silver). As it was
stated above (28): γ = α

√
λ/(ρCv). The value of the square root for the considered metals is approximately√

λ/(ρCv) ≈ 0.01. The value of the absorbtion coefficient can be estimated as α = ε−1, where the ε is a
skin depth [25]. The skin depth significantly depends on frequency (or signal duration): within the range from
10 GHz to 1 THz, it varies from 10−6 to 10−7 m [25]. The continuum mechanics approach is still valid for
such frequencies [26]. Consequently, the value of τ0 varies from 10−9 to 10−11 s. These values match the
estimations of τ for metals and solids [7] by the order of magnitude.

Temperature profiles (49) for the case of τ < τ0 are plotted in Fig. 9. The effect of cooling near the
irradiated boundary is not observed.

Function δ̇(t) can be rewritten as δ(t)/t , so it can be easily seen that δ̇(t) has negative values if approaching
from the left and positive values if approaching from the right. The negative values at the right-hand sight of
a nonhomogeneous wave equation lead to negative peaks in solution (51) plotted in Fig. 8c. Generally, if the
impulse decays within some period of time, then the derivative τ q̇ (7) will also have negative values. These
negative values will be the more noticeable the faster q decays with time and the greater τ constant is.

Curves in Fig. 10 pass through the minimums of T (s), which are found at different moments of time.
Coordinate s is plotted along the horizontal axis. It is assumed that the opposite boundary of the layer is
sufficiently far from the irradiated boundary and does not affect the results. In Fig. 10, three curves are built for
the different values of the heat flux relaxation constant: τ1 < τ2 < τ3. Each curve comes out of the coordinate
origin, has the only minimum (|θ1| < |θ2| < |θ3|), and reaches the horizontal axis over the certain time
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Fig. 9 Volumetric heat supply is considered. Boundaries of the layer are kept at a constant temperature. Solution profiles corre-
sponding to the hyperbolic heat equation for the different time values are presented: τ/2, 5τ/2, 5τ seconds. Cooling areas in the
vicinity of the irradiated boundary are not observed

t1 t2 t3
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τ2

τ3

Tmin

θ1
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Fig. 10 Temperature minima near the boundary of the layer, exposed to the short laser impulse

(b)(a)

Fig. 11 Reflection of the heat wave from the opposite boundary. The temperature at the boundaries is kept constant

τ > 0τ

t

τ < 0τ

h

0

Fig. 12 Dependence of the heat flux at the irradiated boundary on time

interval: t1 < t2 < t3. Numerical analysis shows that with the increasing of the heat flux relaxation constant,
the absolute temperature minimum θ = min T (s, t) is shifted deeper into the layer.

In Fig. 11a, the wave is moving from left to right and in Fig. 11b from right to left. The amplitude of the
temperature wave changes its sign when reflecting from the opposite boundary, which is typical for the wave
equation under the considered boundary conditions.

Let us consider heat flux η at the irradiated boundary of the layer. Introducing temperature (49) into
expression (14) for a heat flux and assuming ς = 0, one obtains:

η(t) = 4π2e−γμ− t
2τ

∞∑
n=1

((−1)n − eγμ) n2 sin
(

t Sn
2μτ

)
(
γ 2μ2 + π2n2

)
Sn

(60)

Curves in Fig. 12 were plotted for the heat flux at the irradiated boundary (60) upon the following conditions:
τ > τ0 for the dashed curve and τ < τ0 for the solid curve. The value of the heat flux (60) at the initial moment
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Fig. 13 Solution profiles for the hyperbolic heat equation at the same moment of time, but for different values of attenuation
coefficient: γ1 < γ2 < γ3

(b)(a)

Fig. 14 The temperature distributions in the uniformly (γ = 0) heated layer gradually cooling under the boundary conditions of
the first kind

of time is a finite quantity and it increases along with decreasing heat flux relaxation constant. If τ tends to
zero (the classic thermoconductivity limit case), then the value of the heat flux at t = 0 tends to infinity. The
effect of cooling at the vicinity of the irradiated boundary is observed at the lower absolute values of the heat
flux (dashed curve in Fig. 12).

If the temperature wave with positive peak values reaches the boundary (Fig. 11), then the heat flux changes
its sign to negative (or in other words turns outwards the layer) undergoing a discontinuity jump (Fig. 12). If
a “negative wave” reaches the boundary, then the heat flux becomes positive (turns inwards the layer). Due
to unrestricted value of the heat flux at the boundaries, it is possible to emit or absorb any amount of energy
needed to invert the sign of wave peak values. In the case of thermal insulation, wave peak values do not change
their signs reflecting from the boundaries (Fig. 6). If some conditions are imposed on the heat flux, then peak
values will be inverted just partly.

The effect of the temperature lowering below its initial value is observed under the considered boundary
conditions with unrestricted heat flux at the boundaries. In papers [27,28], it is stated that free heat exchange
is difficult to reproduce due to a high thermal resistance at the interface between nanoscale objects.

The temperature lowering below its initial value is the intrinsic part of hyperbolic model (7). To obtain
correct results in the vicinity of the absolute zero, it is necessary to use the Debye model [29], which incorporates
the nonlinear temperature dependence on the heat capacity, which is proportional to T 3.

Since the present resolution of testing devices (10−3 m by the coordinate [16]) is not sufficient to observe
hyperbolic heat conduction effects directly because it is recognized that such effects decay at a distance
of few nanometers [4], existing experimental data cannot prove or disprove theoretically predicted effects.
Many contradictory experimental results can be found in the literature: [30–35]. With further development of
technology, it would be possible to clarify the matter.

Increasing of constant γ lowers the values of maximums and minimums in the temperature graphs. The
lower curve in Fig. 13 corresponds to the larger value of constant γ (γ1 < γ2 < γ3). The larger the γ is, the
more noticeable the negative minimum of T becomes and the longer time they can be observed. Decreasing
of γ does not make the curves more similar to the classic solution (Fig. 8d) unlike the previously considered
problem.

Let us consider the special case of the solution (49) if γ = 0. It is possible if the laser power does not
decrease with the distance from the border and heat is supplied into the volume uniformly throughout its
thickness. A thin, evenly heated from aside along its length rod can be an example. Since its boundaries are
kept under a constant temperature, it gradually cools down. Time profiles for the special case of the solution
(49) are shown in Fig. 14a for the different moments of time (top to bottom): t = τ, 2τ, 4τ, 6τ, 8τ , and 16τ .
Profiles of the classic solution for the same moments of time are represented in Fig. 14b. The salient points
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and discontinuities can be observed on the first few curves, but with time the curves merge with the classic
solution. The temperature propagation process in this case can be observed by, for example, a thermovision
camera, if it possesses the appropriate resolution by coordinate and time.

If the characteristic times of the heat transfer process are sufficiently small so that it can be considered as
a wave process, then one can use a quarter-wave antireflection coating [23] to minimize the waves reflection
from the interface between two media. Parameters of such coating film should satisfy the well-known ratio:
Z1/4 = √

Z1 Z2, where Z1 and Z2 are wave resistances of the media on the left and on the right side of the
antireflection coating film. In the notation of the hyperbolic heat conduction theory, Z = √

λρCv/τ .

4.2 The intensity of the internal heat sources depends on time as the Heaviside step function

Let us consider the continuous exposure of the layer to the laser radiation. The intensity of the internal heat
sources q(s, t) is constant in time:

q = I0 H(t − 0)e−αs (61)

4.2.1 The thermally insulated layer

Differential equation for the heat flux (11) with regard to (61) can be written as follows:

η̇ + τ η̈ − η′′ = γ H(t − 0)e−γ ς (62)

The notations, boundary, and initial conditions are the same as in the problem (29)–(31). Following the
procedure used above, we obtain an expression for the temperature:

ϑ = e−ςγ t H(t)− 2μγ e−μγ
∞∑

n=1

⎛
⎝ ((−1)n − eμγ ) cos

[
nπς
μ

]
n2π2

(
n2π2 + μ2γ 2

)
⎛
⎝μ2 − n2π2t

−e− t
2τ μ

⎛
⎝μ cos

[
t Sn

2τμ

]
+ μ2 − 2n2π2τ

Sn
sin

[
t Sn

2τμ

]⎞
⎠

⎞
⎠

⎞
⎠ H(t) (63)

A solution of this problem in the classic formulation is:

ϑ =
(
1 − e−μγ )

t

μγ
H(t)

+2μ3γ

∞∑
n=1

(eμγ − (−1)n) cos
[

nπς
μ

]
e−μγ

(
1 − exp

(
− n2π2t

μ2

))
n2π2

(
n2π2 + μ2γ 2

) H(t) (64)

In the limit case of the wave equation, an expression for ϑ is written as follows:

ϑ = e−ςγ t H(t)− 2μγ e−μγ

×
∞∑

n=1

((−1)n − eμγ ) cos
[

nπς
μ

] (
μ

√
τ sin

[
nπ t
μ

√
τ

]
− nπ t

)
nπ

(
n2π2 + μ2γ 2

) H(t) (65)

The temperature value on the wave front (t = ς
√
τ ) can be obtained as a special case of the solution [21] for

the half-space:

ϑ3(ς) = 1

2γ 2r
e
− (r+1)x

2
√
τ

−γ x
((

2γ 2τ + r + 1
)

e
r x√
τ − 2γ 2τ − 2re

(r+1)x
2
√
τ + r − 1

)
(66)

The solution graphics of the hyperbolic heat conduction equation (Fig. 15) monotonously decrease at all
values of time: they have no salient points or jumps, typical for the previously concerned problems. The dashed
line given by (66) intersects the temperature profiles at the points of inflexion (Fig. 16).
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Fig. 15 Volumetric heat supply is considered. Boundaries of the layer are thermally insulated. Solution profiles corresponding
to the hyperbolic heat equation for the different time values are presented
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Fig. 16 Volumetric heat supply is considered. Boundaries of the layer are thermally insulated. Solution profiles corresponding
to the wave equation (a) and to the classic parabolic heat equation (b) for the different time values are presented

If the attenuation of the laser radiation in the layer is significant, then the solution profiles in Fig. 15 are
similar to the solution profiles in Fig. 16a at short times (t = 2τ ). Curves in Fig. 15 become similar to the
curves for the classic heat conduction problem (Fig. 16b) with increasing of time (t = 8τ ) or with decreasing
of the attenuation coefficient γ in the medium. Furthermore, the solution becomes similar to the solution of
the boundary-value problem (Fig. 2b) with increasing of the attenuation coefficient: T values quicker reach
zero after its “wave front.” Classic solution curves (Figs. 2, 16b) are similar.

4.2.2 The boundaries are kept at a constant temperature

Differential equation for the temperature (7) with heat source (61) is written as follows:

ϑ̇ + τ ϑ̈ − ϑ ′′ = (H(t − 0)+ τδ(t − 0))e−γ ς (67)

The notations, boundary, and initial conditions are the same as in the problem (43)–(45). Following the
procedure used above, we obtain an expression for the temperature:

ϑ = 2μ2e−μγ
∞∑

n=1

(eμγ − (−1)n) sin
[

nπς
μ

]
nπ

(
n2π2 + μ2γ 2

)
×

(
1 − e− t

2τ

(
μ2 − 2n2π2τ

μSn
sin

[
t Sn

2τμ

]
+ cos

[
t Sn

2τμ

]))
H(t) (68)

A solution of the problem in the classic formulation can be written as follows:

ϑ =
∞∑

n=1

2 (−(−1)n + eμγ ) μ2 + e−μγ
(

1 − exp
(
− n2π2t

μ2

))
sin

[
nπς
μ

]
nπ

(
n2π2 + μ2γ 2

) H(t) (69)

In the limit case of the wave equation, an expression for ϑ is written as follows:

ϑ = 2μ
√
τe−μγ

∞∑
n=1

(−(−1)n + eμγ ) sin
[

nπς
μ

]
sin

[
nπ t
μ

√
τ

]
n2π2 + μ2γ 2 H(t) (70)
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Fig. 17 Volumetric heat supply is considered. Boundaries of the layer are kept at a constant temperature. Solution profiles
corresponding to the hyperbolic heat equation for the different time values are presented
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Fig. 18 Volumetric heat supply is considered. Boundaries of the layer are kept at a constant temperature. Solution profiles
corresponding to the wave equation (a) and to the classic parabolic heat equation (b) for the different time values are presented

Unlike the temperature graphics for the layer under the influence of the short laser impulse (Fig. 4a), the
graphics in Fig. 17 do not have the region of negative temperatures in the vicinity of the irradiated surface of
the layer. The temperature values on the wave front (66) are shown by the dashed line in Fig. 17.

For short times (curves t = τ/2), the solution profile of the hyperbolic equation (Fig. 17) is similar to the
solution profile of the wave equation (Fig. 18a): the temperature reaches its maximum at the salient point and
then quickly decays. With increasing of time (curves t = 3τ ), a second extremum point which is similar to the
extremum point of the classic curves (Fig. 18b) appears and the salient point ceases to be a global maximum.

5 Conclusion

In this work, we obtained and investigated the solutions of various hyperbolic heat conduction problems for a
layer under the influence of laser pulses. It is shown in several examples that in a short time of the order of the
heat flux relaxation constant t ∼ τ and at distances from the irradiated surface of the order of s ∼ cτ (where
c = √

λ/(ρCvτ ) is the heat propagation speed in the medium), the solution of the hyperbolic heat equation is
similar to the solution of the wave equation. If times are one order of magnitude greater than τ , the hyperbolic
solution is practically indistinguishable from the classic solution.

The temperature values at the boundaries and the temperature distribution inside the uniformly heated layer
were plotted for the convenient comparison of the results with experimental data.

Two types of heat conduction problems that simulate the exposure of the layer to laser radiation where
considered: laser radiation heats only the surface of the material (the heat flux is specified at the boundary)
and the laser radiation penetrates into a skin layer, the thickness of which is characterized by the attenuation
coefficient α (the distribution of the heat sources is specified in the material volume).

If the heat flux applied at the boundary depends on time as the δ function, then the discontinuity jump
will be observed at the thermal wave front. In the layer with the distributed heat sources, the power of which
depends on time as the δ function, salient points can be observed instead of the discontinuity jump at the front.

The problems, which concern the heat flux, and the power of internal heat sources, which depend on
time as the Heaviside step function, are also investigated. It is shown that in the boundary-value problem,
the temperature graph breaks at the wave front, while the solution graphics for the problem concerning the
volumetric sources decrease to zero gradually.

Under homogeneous boundary conditions, one can observe the areas where the temperature drops below
its initial value (Figs. 8a, b, d, 17d) or the areas where the solution graph has two extreme points. The
solution graphs of the hyperbolic heat conduction problem with homogeneous boundary conditions differ
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more significantly from the classic limit case and retain their differences for longer than under the boundary
conditions of thermal insulation.

If τ > τ0 (59), the temperature in the vicinity of the irradiated boundary drops below its initial value for
a short time to the order of the τ constant in the medium. The lifetime of the negative temperature minimum
increases along with the heat flux relaxation constant. The greater the τ constant, the lower the absolute
temperature minimum θ = min T (s, t) is. The numerical analysis shows that for a fixed τ , it is possible to find
an optimal value for the laser attenuation constant γ∗ and the value of θ will be minimal.

Experimental determination of the heat flux relaxation constant τ presents a challenging problem. A number
of authors [30–35] give conflicting results that differ by orders of magnitude. The paper [35] gives an overview
of publications devoted to the experimental determination of the constant τ and a comparative table of the
empirically obtained values of τ from the papers [31–34]. The values of τ given in these papers range from a
few seconds to tens of seconds. On the other hand, there is a theoretical estimation of the heat flux relaxation
time based on the phonon theory [36]. According to this estimation, the values of τ are ten orders of magnitude
smaller than it is stated in the above publications. For example, τAl ≈ 10−11 s for aluminum. By the period of
time t = τAl , the heat wave will travel the distance s ≈ 3×10−8 m which is five orders of magnitude less than
the available coordinate resolution (10−3 m) of the existing temperature measurement methods [16]. However,
if the value of τ is close to the values presented in the works [31–34], then nonclassical effects presented in
this article should be observed at larger scales.
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Appendix

Let us decompose (49) into the sum of series. Here, we consider the convergence proof of one of them (the
convergence of other series can be easily proved):

∞∑
n=1

n cos

[
t
√

4n2π2τ−μ2

2μτ

]
sin

[
nπς
μ

]
n2π2 + μ2γ 2 (71)

(ς, t are the coordinate and time: μ, τ, γ are positive constants)
According to the Dirichlet’s convergence test, whether the sequence of partial sums is limited:

∣∣∣∣
n∑

k=1

cos

[
t
√

4k2π2τ − μ2

2μτ

]
sin

[
kπς

μ

] ∣∣∣∣ ≤ M

and the series:

∞∑
n=1

n

n2π2 + μ2γ 2

monotonically approaches zero beginning from some number n, then the series (71) converges.

Proof If n < ∞, then one can always find such a positive M that

∣∣∣∣
n∑

k=1

cos

[
t
√

4k2π2τ − μ2

2μτ

]
sin

[
kπς

μ

] ∣∣∣∣ ≤ M (72)

If n → ∞, then the expression under the cos can be expended into the asymptotic series for large k:

t
√

4k2π2τ − μ2

2μτ
= π tk

μ
√
τ

+ O

[
1

k1

]
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Let us rewrite the cos from (72) in the following form:

cos

[
t
√

4k2π2τ − μ2

2μτ

]
=

(
cos

[
t
√

4k2π2τ − μ2

2μτ

]
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[
π tk

μ
√
τ

])
+ cos

[
π tk

μ
√
τ

]

= −2 sin

[
t
√

4k2π2τ − μ2

4τμ
− π tk

2μ
√
τ

]
sin

[
π tk

2μ
√
τ

+ t
√

4k2π2τ − μ2

4τμ

]
+ cos

[
π tk

μ
√
τ

]

Let us make an estimation:
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[
t
√

4k2π2τ − μ2

2μτ

]
≤ 2

∣∣∣∣ sin
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t
√

4k2π2τ − μ2

4τμ
− π tk

2μ
√
τ

] ∣∣∣∣ × 1 +
∣∣∣∣ cos

[
π tk

μ
√
τ

] ∣∣∣∣
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Substituting obtained estimation into the expression (72), we obtain:∣∣∣∣
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The second series in the last expression converges according to Dirichlet’s test; therefore, the sequence of its
partial sums is limited. Let us estimate the first sum in the last expression:

n∑
k=1

(∣∣∣∣ cos

[
π tk√
τμ

] ∣∣∣∣ sin

[
kπς

μ

])
≤
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n∑

k=1

(
sin

[
kπς

μ

]) ∣∣∣∣
The last partial sum under the modulus sign is the Dirichlet kernel, which is bounded if n → ∞. If the sequence
of the partial sums (72) is bounded, then the series (71) converges, QED. ��
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