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The thermal properties, including thermal time constants, of GaInN light-emitting diodes �LEDs�
and laser diodes �LDs� are analyzed. The thermal properties of unpackaged LED chips are described
by a single time constant, that is, the thermal time constant associated with the substrate. For
unpackaged LD chips, we introduce a heat-spreading volume. The thermal properties of unpackaged
LD chips are described by a single time constant, that is, the thermal time constant associated with
the heat spreading volume. Furthermore, we develop a multistage RthCth thermal model for
packaged LEDs. The model shows that the transient response of the junction temperature of LEDs
can be described by a multiexponential function. Each time constant of this function is
approximately the product of a thermal resistance, Rth, and a thermal capacitance, Cth. The transient
response of the junction temperature is measured for a high-power flip-chip LED, emitting at 395
nm, by the forward-voltage method. A two stage RthCth model is used to analyze the thermal
properties of the packaged LED. Two time constants, 2.72 ms and 18.8 ms are extracted from the
junction temperature decay measurement and attributed to the thermal time constant of the LED
GaInN/sapphire chip and LED Si submount, respectively. © 2010 American Institute of Physics.
�doi:10.1063/1.3493117�

I. INTRODUCTION

Presently, III–V nitride based light-emitting diodes
�LEDs� are in great demand, due to new markets such as
retrofit LED lighting and liquid crystal display backlighting.
Self-heating of LEDs is an important issue that affects the
internal quantum efficiency, external quantum efficiency and
reliability.1 Several junction-temperature measurement meth-
ods have been reported, including the forward-voltage
method2 and the spectral-shift electroluminescence method.3

Using the forward-voltage method, the junction temperature
has been measured under continuous wave conditions.2 Us-
ing the forward-voltage method, the transient junction tem-
perature after the LED current is switched on or off has been
measured as well.4 The origin of thermal time constants is
found in the thermal storage capacitance and the thermal
resistance by which the thermal capacitance is connected to a
heat source. Using time-domain4 and frequency-domain5

measurements, the thermal time constant of LED chips re-
ported in the literature ranges between 1 and 7 ms; for laser
diode �LD� chips, a thermal time constant reported in the
literature is about 1 �s.6,7 The study of thermal time con-
stants is useful because it reveals the dynamic thermal be-
havior of a device and provides information on the thermal
structure of the device.

High-power GaInN flip-chip packaged LEDs are widely
used due to their advantages in thermal management and
light-extraction.8 In the present study, by using an RthCth

model, we analyze different thermal time constants of GaInN

LEDs and LDs. The transient junction temperature of a high-
power packaged GaInN flip-chip LED is measured and the
thermal properties of the LED are analyzed.

In Sec. II, the thermal time constants of an LED and an
LD at the chip level are calculated. The thermal time con-
stant of a GaInN LED chip is determined by using the ther-
mal resistance and the thermal capacitance of the substrate
and found to be on the order of millisecond �ms�. For a
GaInN LD, the thermal time constant is on the order of mi-
crosecond ��s�, which is determined by the heat spreading
volume. In Sec. III, we analyze the thermal properties of a
typical packaged GaInN LED and develop a multistage
RthCth model. The transient junction temperature is expressed
as a multiexponential function with each time constant asso-
ciated with a specific Rth and Cth. Section IV briefly presents
experimental procedures of the transient junction tempera-
ture measurement. Section V presents experimental results
and analyzes them using the theoretical model developed in
prior sections. Major conclusions are summarized in Sec. VI.

II. THERMAL TIME CONSTANTS OF AN LED AND AN
LD AT THE CHIP LEVEL

Figures 1�a� and 1�b� show a hypothetical circular LED
chip and a hypothetical circular LD chip, respectively. A cir-
cular geometry is chosen to keep the calculation simple
while capturing the essence of the heat flow. With good ap-
proximation, the basic results that will be obtained should
also be applicable to square-shaped chips having the same
area as the circular chips. Due to nonradiative recombination
and resistive losses, heat is generated in the active region of
an LED. Transfer of heat from the active region to the sub-a�Electronic mail: efschubert@rpi.edu.
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strate occurs by means of thermal conduction; transfer of
heat to air occurs by means of thermal convection. Due to
the high thermal resistance between the active region and air,
the thermal energy mostly transfers from the active region to
the substrate. We therefore neglect heat transfer from the
active region to air and this will be assumed throughout our
study. An LED’s active region has approximately the same
area as the LED chip, while an LD’s active region, e.g., the
active region of a vertical-cavity-surface-emitting laser, has a
much smaller area than the LD chip. A schematic illustration
of the heat transfer problem of an LED and LD structure is
shown in Figs. 1�c� and 1�d�, respectively. As inferred from
Fig. 1�c�, the substrate of the LED chip conducts the heat but
does not act as a heat spreader. As inferred from Fig. 1�d�,
the substrate of the LD chip acts as a heat spreader.

Because electrical RC circuits and thermal conduction
are governed by mathematically identical equations, an elec-
trothermal analogy is widely used in heat conduction
analysis.9 This analogy allows one to apply the laws of elec-
tric circuit theory to solve the heat conduction problem. In
the electrothermal analogy, the heat flow is equivalent to an
electric current flow; the temperature difference is equivalent
to the potential difference; the thermal resistance and the
thermal capacitance are equivalent to the electrical resistance
and the electrical capacitance, respectively.

Next, we will consider two cases. In the first case, cor-
responding to an LED, the heat source covers the entire sub-
strate �rheat=rsubstrate�. In the second case, corresponding to an
LD, the heat source is much smaller than the substrate
�rheat�rsubstrate�.

Case I �LED�: rheat=rsubstrate The heat transfer structure is
shown in Fig. 1�c� and it can be modeled by a one-
dimensional �1D� structure using an RthCth circuit with a
thermal capacitor and a thermal resistor in series. Thus the
thermal time constant of the heating or cooling process for a
1D material can be expressed as:

�th = RthCth, �1�

where Rth and Cth are the thermal resistance and the thermal
capacitance of the 1D substrate material, respectively. Equa-

tion �1� gives the thermal response time for a 1D material
after the power is switched on or switched off. The 1D ther-
mal resistance of a substrate is given by:

Rth =
dsubstrate

kthAsubstrate
, �2�

where dsubstrate is the thickness of the substrate along the heat
transfer direction, Asubstrate is the cross-section area of the
substrate, and kth is the thermal conductivity of the substrate
material. The thermal capacitance of the 1D substrate mate-
rial is given by:

Cth = cth�dsubstrateAsubstrate, �3�

where cth is the thermal capacitance per unit mass �specific
heat� and � is the mass density of the substrate material. For
sapphire, kth=0.350 W cm−1 K−1, cth=0.760 J g−1 K−1, and
�=3.98 g cm−3; for GaN, kth=1.30 W cm−1 K−1, cth

=0.490 J g−1 K−1, and �=6.15 g cm−3. The thermal time
constant of the 1D substrate material is approximately given
by:

�th � RthCth =
cth�

kth
dsubstrate

2 . �4�

This simple, approximate result is close to the exact result of
the thermal time constant �also called thermal penetration
time�, which can be obtained by an analytical calculation:4

�th =
�

4

cth�

kth
dsubstrate

2 . �5�

Comparison of Eqs. �4� and �5� indicates that the thermal
time constant derived from the RthCth circuit is a good ap-
proximation of the transient response for the heating and
cooling process.

It is found from Eq. �4� that the thermal time constant for
the 1D substrate material does not depend on Asubstrate. For a
GaInN LED chip with a 200 �m thick sapphire substrate,
the thermal time constant, calculated from Eq. �4�, is 3.5 ms.
It was reported in Ref. 10 that the thermal time constant for
GaInN LEDs on a sapphire substrate is 1–2 ms. Ref. 4 re-

FIG. 1. �Color online� Heat dissipation in �a� an LED
and �b� an LD at chip level and schematic illustration of
�c� the circular LED and �d� the circular LD on a
substrate.
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ported �th=0.72 ms for an GaAs LED on a GaAs substrate
with parameters: cth=0.327 J g−1 K−1, �=5.32 g cm−3, kth

=0.55 W cm−1 K−1, and dsubstrate=170 �m, while our calcu-
lated thermal time constant for this case is �th=0.91 ms. It
can therefore be concluded that the thermal time constants of
LEDs is on the order of a ms.

Case II �LD�: rheat�rsubstrate When the heat source radius
rheat�rsubstrate, which is the case shown in Fig. 1�d�, the ther-
mal resistance of the device is given by the thermal spread-
ing resistance. The analytical calculation of the spreading
resistance is not an easy problem. However, the asymptotic
solution can be obtained when rheat�dsubstrate and rheat

�dsubstrate. The heat transfer problem can be described by the
Laplace equation in cylindrical coordinates �r, and z�:

�2u

�r2 +
1

r

�u

�r
+

�2u

�z2 = 0, �6�

where u�r ,z� is the local temperature increase above the am-
bient temperature. The three boundary conditions are:

u�r � rheat,z = 0�

= 	T0 �uniform temperature source� , �7�

�u

�z
�r 
 rheat,z = 0� = 0 �due to symmetry� , �8�

u�r,z = dsubstrate� = 0,

�the substrate bottom is at room temperature� ,

�9�

where 	T0 is the heat source temperature increase above the
ambient temperature.

When rheat�dsubstrate �LD case�, we can simplify the
problem by assuming that the substrate is infinitely thick
�dsubstrate→��; this assumption will not significantly change
the temperature distribution in the substrate near the heat
source. The third boundary condition, at the bottom of the
substrate, then becomes:

u�r,z = �� = 0. �10�

Using the boundary conditions of Eqs. �7�, �8�, and �10�, the
differential Eq. �6� can be solved using Hankel transform.11

The solution is in the form of an integral of Bessel function.
By applying the oblate spheroid coordinate transformation:

z = � , �11�

and

r = ��1 − �2��1 + 2� , �12�

and then using the finite Legendre transform, the solution of
the temperature distribution is obtained in a very simple
form:12

u =
2	T0

�
arccot  . �13�

This equation indicates that the isothermal surfaces are
semiellipsoids. The thermal spreading resistance is then ob-
tained:

Rth,spread =
	T0

Pz
=

1

4kthrheat
, �14�

where Pz is the thermal power flow from the heat source to
the substrate. Pz is calculated from the integration of the
thermal flow in the z direction over the whole heat source
area. Note that Eq. �14� has the same form as the formula for
the electrical spreading resistance of a circular electric
contact.13

When rheat�dsubstrate, we can approximate the problem
by a 1D problem and the spreading effect can be neglected.
When rheat is in between the two limiting cases, the analytical
calculation is either in the form of an infinite series or an
integral of Bessel functions.11,12,14,15 Cox and Strack ob-
tained an empirical formula for the spreading resistance by
an electrolytic tank measurement:13

Rth,spread =
1

2kth�rheat
arctan�2dsubstrate

rheat
	 . �15�

Figure 2 shows the thermal spreading resistance as a function
of the heat source radius; a sapphire substrate thickness of
dsubstrate=200 �m is assumed. The two dashed lines are ana-
lytic approximations for the two limiting cases: rheat

�dsubstrate and rheat�dsubstrate.
The thermal capacitance of the substrate in Fig. 1�d� can

be determined by using the effective heating volume of the
substrate. When rheat�dsubstrate, the isothermal surfaces are
semiellipsoids. Defining the spreading length rspread by:

u�r = rspread,z = 0� =
1

e
	T0 �e = 2.718� , �16�

and the spreading depth dspread by

u�r = 0,z = dspread� =
1

e
	T0, �17�

yields

rspread = rheat�cot2
�

2e
+ 1 = 1.83rheat, �18�

and

FIG. 2. �Color online� Thermal spreading resistance as a function of heat
source radius for a circular heat source located on a substrate; two dashed
lines are approximations for two limiting cases �green curve for rheat

�dsubstrate and blue curve for rheat�dsubstrate�.

084504-3 Shan et al. J. Appl. Phys. 108, 084504 �2010�

Downloaded 27 Oct 2010 to 128.113.123.30. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



dspread = rheat cot
�

2e
= 1.53rheat. �19�

Then the effective heated volume is given by:

Vth = �rspread
2 dspread �valid for rheat � dsubstrate� . �20�

When rheat�dsubstrate, the spreading effect can be neglected.
Therefore, the heating volume of the substrate is the volume
underneath the heat source:

Vth = �rheat
2 dsubstrate �valid for rheat � dsubstrate� . �21�

We can construct the following equation that asymptotically
approaches these two limiting cases:

Vth = �rheat
2 dsubstrate tanh� Crheat

dsubstrate
	 , �22�

where C is a constant given by:

C =
rspread

2 dspread

rheat
3 = 5.12. �23�

Thus,

Cth = cth�Vth = cth��rheat
2 dsubstrate tanh� Crheat

dsubstrate
	 . �24�

The effective heating volume as a function of radius of the
heat source is shown in Fig. 3. When rheat�dsubstrate, the
effective heating volume depends only on the radius of the
heat source. When rheat�dsubstrate, the effective heating vol-
ume depends on both the radius of the heat source and the
thickness of the substrate.

Using Eq. �15� for Rth and Eq. �24� for Cth, the thermal
time constant is:

�th = RthCth

= rheatdsubstrate tanh� Crheat

dsubstrate
	arctan�2dsubstrate

rheat
	�cth

2kth
.

�25�

Figure 4 shows the thermal time constant calculated from
Eq. �25� as a function of the heat source radius. Inspection of
the figure reveals that for a sapphire substrate thickness of
200 �m, the thermal time constant varies from microsecond
to ms when the heat source radius varying from 1 �m to 1

mm. For a GaInN LD with sapphire substrate and a circular
active region with a radius of 5 �m, the thermal time con-
stant is about 8 �s, as obtained from Fig. 4. This time is on
the same order of magnitude ��s� as the simulated result
reported in Ref. 16. For a GaAs LD with GaAs substrate and
the same active region radius, the thermal time constant is
about 3 �s as inferred from Eq. �25�. This result agrees very
well with values reported in the literature, which are on the
order of 1 �s.6,17 Thus, the thermal time constants of LDs
with small circular active regions �rheat=5–10 �m� and lin-
ear stripe active regions are about 0.5–5 �s �Refs. 6, 16,
and 17� and 5–10 �s,7,18 respectively.

III. MULTIPLE THERMAL TIME CONSTANT MODEL

The thermal structure of a packaged LED can be mod-
eled as a multistage RthCth circuit. In this model, each ther-
mal component of the LED is considered as a lumped RthCth

stage. A typical flip-chip LED structure with its RthCth model
is shown in Fig. 5. The equivalent circuit is a � network
�Cauer network�. This network is appropriate for heat flow
problems, since heat is ultimately flowing to the ambient. We
note that this is not the case for a Foster network10 which
was claimed to violate the energy conservation law.19 In the
� RthCth network, the first RthCth stage is associated with the
LED chip and the chip-to-submount thermal interface mate-

FIG. 3. �Color online� Effective heating volume with respect to heat source
radius for a circular heat source located on a substrate; two dashed lines are
approximations for two limiting cases �green curve for rheat�dsubstrate and
blue curve for rheat�dsubstrate�.

FIG. 4. �Color online� Thermal time constant as a function of heat source
radius for a circular heat source located on a substrate; the two dashed lines
are approximations for two limiting cases �green curve for rheat�dsubstrate

and blue curve for rheat�dsubstrate�.

FIG. 5. �Color online� �a� A typical LED structure and its temperature dis-
tribution. �b� Corresponding multistage RthCth model of the LED.
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rial �CSTIM�. CSTIM is composed of gold bumps connect-
ing the chip and the Si submount. In the first stage, the ther-
mal resistance is Rth,1=Rth,chip+Rth,CSTIM and the thermal
capacitance Cth,1=Cth,chip. The thermal capacitance of
CSTIM is ignored due to the small volume of the gold
bumps compared with that of the LED chip. The second
RthCth stage is associated with the submount and the
submount-to-heat-sink thermal interface material �SHTIM�.
The SHTIM has a much smaller volume than that of the Si
submount. Thus, Rth,2=Rth,Submount+Rth,SHTIM and Cth,2

=Cth,submount. The third RthCth stage is associated with the
package heat sink and the printed circuit board �PCB�. And
we have Rth,3=Rth,heat sink+PCB+Rth,convection and Cth,3

=Cth,heat sink+PCB. We note that Fig. 5 shows no capacitor be-
tween the PCB and the ambient. This is due to the fact that
the ambient has an infinitely large thermal capacitance. We
can represent an infinitely large capacitor by a short circuit
since:

Zth =
1

i�Cth
→ 0 for Cth → � . �26�

Székely19 showed by network transformation that the
transient thermal response, after power is switched off, can
be expressed by a sum of exponential terms:

	T = 

i=1

n

	Ti exp�−
t

�th,i
	 . �27�

Note that for the general case, the thermal time constant �th,i

is not simply �th,i=Rth,iCth,i but is determined by the whole
RthCth circuit. However, in typical LED structures, the ther-
mal capacitances usually satisfy the following relation:

Cth,1 � Cth,2 � Cth,3 � Cth,4. �28�

This is because the volume of the component associated with
each thermal capacitance becomes increasingly bigger �LED
chip, Si submount, heat sink, PCB board, etc.�. On the other
hand, for a reasonable design of an LED, the thermal resis-
tances of different stages should be on the same order of
magnitude, that is,

Rth,1 � Rth,2 � Rth,3 � Rth,4, �29�

so that there is no “bottleneck” effect that would strongly
impede the heat flow. Thus, we have,

Rth,1Cth,1 � Rth,2Cth,2 � Rth,3Cth,3 � Rth,4Cth,4. �30�

With this condition, it will be proven in the Appendix that
the time constant of each exponential term is approximately
equal to �th,i=Rth,iCth,i. Schematic illustrations of the junction
temperature decay on linear time scale and logarithmic time
scale are shown in Figs. 6�a� and 6�b�, respectively. Figure
6�b� shows that using logarithmic time scale allows one to
distinguish between the different thermal time constants. The
distinct dependence of 	T on t, particularly the occurrence
of flat regions �d	T /d log�t�=0� and the occurrence of
strongly sloped regions �d	T /d log�t��0� can be used to
determine the time constants of specific stages and their as-
sociated components.

The temperature response after the power is switched on
can be qualitatively explained as follows: in the initial stage,
the LED chip is heated up in a very short time. Since
Cth,i
1�Cth,1, the thermal capacitors in the following stages
can be considered as a short-circuit connection to the
ground.20 Therefore, the thermal time constant �th,1

=Rth,1Cth,1. Subsequently the submount starts to heat up and
this is governed by a much longer thermal time constant,
which is dominated by the second RthCth stage; and so on.
The transient cooling process can be considered to be analo-
gous to the heating process.

IV. EXPERIMENTAL PROCEDURES USED IN THE
TRANSIENT JUNCTION TEMPERATURE
MEASUREMENT

The device under test is a high-power flip-chip LED
with emission at 395 nm. The structure of the LED package
is shown in Fig. 7. The LED is grown on sapphire substrate
by metal-organic vapor-phase epitaxy. The LED consists of a

FIG. 6. �Color online� Schematic junction temperature decay having three
exponential decay terms after the power is switched off at t=0 on �a� a
linear time scale and �b� a logarithmic time scale.

FIG. 7. �Color online� Packaged LED structure consisting of LED chip,
submount, and package and its thermal RthCth model.
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2 �m thick undoped GaN layer, a 3 �m Si-doped GaN
layer, six-period Si-doped GaInN/GaN multiple quantum
wells, a 24 nm Mg-doped AlGaN electron blocking layer, a
100 nm Mg-doped p-type GaN, and a 45 nm Mg-doped
p+-type GaN layer. The LED chip is mounted on the silicon
submount via CSTIM, i.e., the gold bumps. The submount
has a dimension of 2�2�0.4 mm3. The SHTIM, which is
made of silver paste, is used to attach the submount and the
heat sink. The heat sink is made of copper coated with alu-
minum.

In our experiments, the measurement method for the
junction temperature is the forward-voltage method.2 This
method includes two steps. In the first step, the sample is
placed in a temperature controlled oven. For different oven
temperatures, the forward voltage is measured at an injection
current of 10 mA, which is the “probe current” to be used in
the second step. The probe current is low enough so that the
junction temperature remains the same as the oven tempera-
ture. In the second step, the forward voltage of the device is
measured at the probe current. The junction temperature of
the device is then determined by using the calibration data
obtained in the first step.

By a linear fit of the Vf versus Toven curve from the first
step, the temperature coefficient dVf /dT is obtained for a
probe current of 10 mA. For our measurement, the tempera-
ture coefficient is determined to be �1.84 mV/K, which is in
a good agreement with the theoretical calculation reported in
Ref. 2. In the transient junction temperature measurement,
we attach the LED package to a large copper block so that
the temperature of the package heat sink is at room tempera-
ture. Currents with pulse duration of 200 ms �i.e., quasi-dc�
and period of 1 s are injected into the sample. The currents
vary from 200 to 800 mA with an increment of 100 mA. 200
ms is experimentally proven to be much longer than the time
required for heating the device to the steady state. During the
cooling period, we apply a probe current of 10 mA. This
probe current does not induce significant heat to the junction
and thus will not influence the temperature during cooling.
The junction temperature is obtained from the calibrated for-
ward voltage at the probe current.

V. EXPERIMENTAL RESULTS ANALYSIS

Figure 8 shows the transient junction temperature re-
sponse after the power is switched off. The quasi-dc currents
range between 200 and 800 mA. We use a logarithmic time
scale as abscissa, which can show very different time con-
stants in one diagram. The experimental data is fitted by a
single exponential function as well as multiexponential func-
tions. We found that a single exponential function does not fit
the experimental data well. Therefore, we fit the experimen-
tal results by the following function which has two exponen-
tial terms:

	T�t� = 	T1 exp�−
t

�th,1
	 + 	T2 exp�−

t

�th,2
	 . �31�

Four fitting parameters are used to fit the equation to the
experimental data: 	T1, 	T2, �th,1, and �th,2. The theoretical
fits are also shown in Fig. 8. Inspection of the figure reveals

that the experimental data is fitted very well by the equation.
The four fitting parameters as a function of current are

shown in Fig. 9. It is found that 	T1 and 	T2 monotonically
increase with current. However, the ratio of 	T2 and 	T1

does not change much with current. The average value of
	T2 /	T1 is about 3.3. Moreover, �th,1 and �th,2 vary little
with current. By averaging the thermal time constants over
different currents, we obtain the two thermal time constants:
�th,1=2.72 ms�0.68 ms and �th,2=18.8 ms�0.8 ms. This
indicates that, as expected, the thermal properties of the LED
are determined by the thermal resistance and the thermal
capacitance of the materials and not by the input power. The
two time constants obtained from the fitting, �th,1 and �th,2,
are considered as the times required for cooling down �or
heating up� the chip and the submount, respectively.

Figure 10 shows the steady-state junction temperature at
t�0 �before the power is switched off� versus the input
power. The linear fit of the junction temperature versus the
input power yields an approximate thermal resistance of
12.2 K W−1 from the chip to the package heat sink. From
Eqs. �A12�, �A13� and �A14�, the following fitting param-
eters of the two stage RthCth circuit are extracted: Rth,1

=2.83 K W−1, Rth,2=9.39 K W−1, Cth,1=0.962 mJ K−1 and
Cth,2=2.00 mJ K−1. The calculated thermal capacitances of
the chip and the Si submount are 0.652 mJ K−1 �chip: V

FIG. 8. �Color online� Measured temperature decay curves for different
drive currents of a GaInN LED. The LED drive current is switched off at
t=0. The solid lines are fitting curves that closely match the experimental
data. The fitting curves consist of two exponential terms.

FIG. 9. �Color online� Measured temperature differences between active
region and submount �	T1� and submount and package heat sink �	T2� of a
packaged GaInN LED as a function of the injection current. Also shown are
the associated thermal time constants, as extracted from the temperature
decay curves.
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=1�1�0.2 mm3, �=3.98 g cm−3, cth=0.760 J g−1 K−1�
and 2.66 mJ K−1 �submount: V=2�2�0.4 mm3, �

=2.33 g cm−3, cth=0.713 J g−1 K−1�, respectively. Compar-
ing the two calculated thermal capacitances to the two ther-
mal capacitances obtained from the fitting, it is straightfor-
ward to identify Cth,1 as the thermal capacitance of the LED
chip and Cth,2 as the thermal capacitance of the Si submount.
The gold bumps connecting the chip and the submount have
a high bulk thermal conductivity. However, the effective con-
tact area of the sandwiched gold bumps between the sub-
mount and the chip epilayer is determined by the pressure
during the coining process. This effective contact area could
be much smaller than the cross section of the LED chip.
Therefore the thermal resistance of the gold bumps cannot be
neglected. Rth,1 is then composed of the gold bumps as well
as the sapphire substrate. Rth,2 is caused by the thermal re-
sistance of the Si submount and the contact thermal resis-
tance between the submount and the package heat sink.

Based on the above discussions, we come to the conclu-
sion that the transient response of the junction temperature
can be expressed as a multiexponential function. Two ther-
mal time constants are determined and found to be on the
order of 2 and 20 ms, and they are associated with the LED
chip and the LED Si submount, respectively.

VI. CONCLUSIONS

We analyze the thermal properties, including the thermal
time constants, of unpackaged LEDs and unpackaged LDs at
the chip level. The thermal properties of LED chips are de-
scribed by a single thermal time constant, which is associ-
ated with the substrate. For LD chips, a heat spreading vol-
ume is introduced to determine the thermal time constant.
The thermal properties of LD chips are described by the
single thermal time constant associated with the heat spread-
ing volume in the substrate. The calculation shows that the
thermal time constant for LED chips is on the order of ms;
and for LD chips, it is on the order of microsecond. We
develop an RthCth network model for packaged LEDs. Using
this model, the transient junction temperature can be de-
scribed by a multiexponential function. Each time constant
of this function is approximately the product of the thermal
resistance, Rth, and the thermal capacitance, Cth, of each

stage. The transient response of a high-power flip-chip LED
is measured by the forward-voltage method. The fitting of
the experimental results reveals two thermal time constants,
which are 2.72 ms and 18.8 ms and associated with the LED
GaInN/sapphire chip and LED Si submount, respectively.
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APPENDIX

In this appendix, we derive the junction temperature de-
cay as a function of time after the power is switched off at
t=0. We first consider a single RthCth circuit. The time de-
pendent junction temperature after the current is switched off
is given by:

	T = 	T0 exp�−
t

�th
	 , �A1�

where 	T0 is the difference between junction temperature
and ambient temperature at t=0, and �th=RthCth. A two stage
RthCth network is shown in Fig. 7. By using Kirchoff’s cur-
rent law and Ohm’s law, we find that the governing equation
for 	T is a second order differential equation:

d2	T�t�

dt2 + � 1

Rth,2Cth,2
+

1

Rth,1Cth,2
+

1

Rth,1Cth,1
	d	T�t�

dt

+
1

Rth,1Cth,1Rth,2Cth,2
	T�t� = 0. �A2�

This differential equation is of the form: y�x��+Ay�x��
+By�x�=0. The characteristic equation of this homogeneous
differential equation is:

� 1

�th
	2

− � 1

Rth,2Cth,2
+

1

Rth,1Cth,2
+

1

Rth,1Cth,1
	 1

�th

+
1

Rth,1Cth,1Rth,2Cth,2
= 0. �A3�

This is a quadratic equation and the two solutions of �th must
satisfy the conditions:

1

�th,1
+

1

�th,2
=

1

Rth,2Cth,2
+

1

Rth,1Cth,2
+

1

Rth,1Cth,1
, �A4�

and

1

�th,1

1

�th,2
=

1

Rth,1Cth,1 Rth,2Cth,2
. �A5�

Using

Cth,2 � Cth,1, �A6�

and

FIG. 10. Measured junction temperature of a GaInN LED vs input power
using the forward-voltage method.
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Rth,2 � Rth,1, �A7�

we obtain:

� 1

�th,1
+

1

�th,2
	2

= � 1

Rth,2Cth,2
+

1

Rth,1Cth,2
+

1

Rth,1Cth,1
	2

� � 1

Rth,1Cth,1
	2

=
1

Rth,1Cth,1 Rth,1Cth,1

�
1

Rth,1Cth,1 Rth,2Cth,2
=

1

�th,1

1

�th.2
. �A8�

Therefore

� 1

�th,1
+

1

�th,2
	2

�
1

�th,1

1

�th,2
. �A9�

If the two capacitances are very different, we can write

� 1

�th,1
+

1

�th,2
	2

� 4
1

�th,1

1

�th,2
. �A10�

If the two time constants were the same, then both sides of
the equation would be identical. However, since the inequal-
ity mandates that the two sides are very different, it implies
that the two time constants are very different from each
other. Therefore we assume:

�th,2 � �th,1. �A11�

From Eq. �A4� and using Eq. �A6�, we obtain

1

�th,1
�

1

Rth,2Cth,2
+

1

Rth,1Cth,2
+

1

Rth,1Cth,1
�

1

Rth,1Cth,1
.

�A12�

Furthermore, by using Eq. �A5�, we obtain:

1

�th,2
�

1

Rth,2Cth,2
. �A13�

Using Eqs. �A12� and �A13�, the solution of Eq. �A2� can be
written as:

	T�t� = 	T1 exp�−
t

�th,1
	 + 	T2 exp�−

t

�th,2
	 , �A14�

where 	T1 and 	T2 are the steady-state temperature drops
across Rth,1 and Rth,2, respectively.

For an RthCth network with the number of stages greater
than 2, we can make the following approximation during the
cooling down �or heating up� of the ith stage: The impedance
of the jth capacitor �j
 i� is given by

Zth,j =
1

i�Cth,j
→ 0, when Cth,j � Cth,i. �A15�

Therefore, we approximate the capacitor after the ith stage,
i.e., the jth stage, as short-circuit connection to ground.
Therefore, the contribution of C j on the cooling of the ith
stage can be neglected. Then the time constant of the ith RC

cell is just

�th,i � Rth,iCth,i. �A16�

Furthermore, the temperature decay function can be written
as:

	T�t� = 

i=1

n

	Ti exp�−
t

�th,i
	 . �A17�

The heating transient response has the same characteristic
equation of the thermal time constant as Eq. �A3�. This indi-
cates that the heating response function is given by:

	T�t� = 

i=1

n

	Ti�1 − exp�−
t

�th,i
	� . �A18�
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