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ABSTRACT In this paper, a novel soft computing algorithm is designed for the numerical solution

of third-order nonlinear multi-singular Emden–Fowler equation (TONMS-EFE) using the strength of

universal approximation capabilities of Legendre polynomials based Legendre neural networks supported

with optimization power of the Whale Optimization Algorithm (WOA) and Nelder-Mead (NM) algorithm.

Unsupervised error functions are constructed in terms of mean square error for governing TONMS-EF

equations of first and second order. Unknown designed parameters in LeNN structure are optimized initially

by WOA for global search while NM algorithm further enhances the rapid local search convergence. The

proposed algorithm’s objective is to show the accuracy and robustness in solving challenging problems

like TONMS-EFE. To study our designed scheme’s performance and effectiveness, LeNN-WOA-NM is

implemented on four cases of TONMS-EFE. The results obtained by the proposed algorithm are compared

with the Particle Swarm Optimization (PSO) algorithm, Cuckoo search algorithm (CSA), and WOA.

Extensive graphical and statistical analysis for fitness value, absolute errors, and performance indicators

in terms of mean, median, and standard deviations show the proposed algorithm’s efficiency and accuracy.

INDEX TERMS Singular Emden–Fowler equation, Soft computing algorithm, Weighted Legendre neural

networks, Nelder-Mead algorithm, Whale optimization algorithm.

I. INTRODUCTION

S
INGULAR differential equations models various phe-

nomenons occurring in daily life. Therefore, they gain an

immense importance specially in physics and applied mathe-

matics. Singular non-linear model of famous Lane–Emden

equations were introduced by astrophysicists Homer Lane

[1] and Robert Emden [2] while working on thermal perfor-

mance of gas and classical law’s of heat and thermodynamics

[3]. Singular systems of differential equations originates in

field of numerical sciences and physical sciences [4], electro-

magnetic [5], catalytic diffusion and reactions [6], isothermal

gas phenomenons [7], quantum mathematical model [8],

classical and quantum mechanics [9], gaseous density [10],

oscillating magnetic systems [11], isotropic mediums [12]

and fluid mechanical systems [13].

Few techniques in the existing literature are used to solve

non-linear singular models like TONMS-EFE. Shawagfeh

presents Adomain decomposition method (ADM) [14], in

2001 Wazwaz [15] uses ADM to get over the difficulty of sin-

gularity, an analytical scheme for the solution of non-linear

singular model was implemented by Liao [16], a numerical

technique was established by He and Ji [17] using Taylor

series and power series solutions are used by Nouh [18] along

with the transformation of Euler-Abel. Kalabas and Bellman

quasi-linearization scheme was developed by Mandelzweig,

and Tabakin [19]. Variational iteration method (VIM) [20] ,

Finite difference method (FDM) [21] and Optimal homotopy

perturbation method (OHAM) [22], [23] are used to solve va-
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riety of ordinary and partial differential equation models. In

terms of consistency, convergence, robustness, and applica-

bility, the techniques mentioned above have advantages and

limitations over each other. These techniques are based on

well established deterministic techniques. On the other hand,

stochastic techniques based on artificial neural networks are

less exploited and rapidly convergent.

In recent times, ANNs are used as universal function ap-

proximation procedures to develop stochastic numerical tech-

niques. Due to their strength and stability, they are widely

used for the solutions of variety of real world problems

including multi-phase flow through porous media for im-

bibition phenomena [24], longitudinal heat transformation

fins model [25], [26], Beam-Column designs [27], Optimal

Model Selection for Regression [28], fractional models of

damping material [26], nonlinear dusty plasma system [29],

corneal Model for Eye Surgery [30] and temperature profile

of porous fin model [31]. A plant propagation algorithm

(PPA) and its modified version were developed to solve de-

sign engineering problems [32]–[35]. The above mentioned

algorithms motivate authors to develop a soft computing

technique based on altricial neural networks. The main fea-

tures of this research work are summarized as

• This paper aims to establish a soft computing technique

known as the LeNN-WOA-NM algorithm to solve non-linear

multi-singular Emden-Folwer equations of a first and second

type.

• LeNN-WOA-NM algorithm suggests series solutions for

TONMS-EFE. Weighted Legendre polynomials are used for

the approximation of our solutions. A fitness function is used

to assess the unknown weights, and error is minimized by

using the Nelder-Mead Algorithm.

• Results obtained by LeNN-WOA-NM algorithms are com-

pared with exact solutions and other evolutionary algorithms,

including Particle swarm optimization, Cuckoo search algo-

rithm, and Whale optimization algorithm.

• Mean absolute deviation (MAD), Theil’s inequality coef-

ficient(TIC) and Nash Sutcliffe efficiency (NSE), and Nor-

mal probability graphs are the performance indications that

have been used for performance measurement of the pro-

posed technique in providing the best possible solution for

TONMS-EFE.

• The results for TONMS-EFE are shown through different

graphs and tables, which show the dominance and robustness

of the proposed (LeNN-WOA-NM) algorithm.

II. CONSTRUCTING EMDEN-FOWLER TYPE EQUATIONS

OF THIRD-ORDER

To derive Emden-Fowler equation of third order we consider

an equation of the form

x−β d
m

dξm

(

ξβ
dn

dξn

)

φ+ f(ξ)g(φ) = 0, (1)

where f(ξ) and g(φ) are some functions of ξ and φ respec-

tively. β is shape factor. Emden-Folwer equation given by

Eq (1) represents multiple phenomenons in fluid mechanics,

pattern formation, relativistic mechanics, pattern formation,

relativistic mechanics and population evolution.

To determine third order equations we select

m+ n = 3, and m,n ≥ 1 (2)

From Eq (2) we have following two choices

m = 2, n = 1, (3)

and

m = 1, n = 2, (4)

Substituting m = 2 and n = 1 in Eq (1). We get

ξ−β d
2

dξ2

(

ξβ
d

dξ

)

φ+ f(ξ)g(φ) = 0, (5)

with set of initial conditions given as

φ(0) = A, φ′(0) = 0 and φ′′(0) = 0,

Eq (5) in turn gives First Emden-Folwer type equation of

order three as shown by Eq (6) along with initial conditions

Eq (7).

d3φ

dξ3
+

2β

ξ

d2φ

dξ2
+
β(β − 1)

ξ2
dφ

dξ
+ f(ξ)g(φ) = 0, (6)

φ(0) = A, φ′(0) = 0 and φ′′(0) = 0, (7)

Equivalently, Eq (6) can be written as

φ′′′ +
2β

ξ
φ′′ +

β(β − 1)

ξ2
φ′ + f(ξ)g(φ) = 0, (8)

with

φ(0) = A, φ′(0) = 0 and φ′′(0) = 0,

It can be noticed that singularity lies at ξ = 0 and singular

point appears twice as ξ and ξ2 with shape factor β and

(β − 1) respectively.

Now considering the case when m = 1 and n = 2.

Substituting values of m and n in Eq (1). we have,

ξ−β d

dξ

(

ξβ
d2

dξ2

)

φ+ f(ξ)g(φ) = 0, (9)

Eq (9) in turn gives Second Emden-Folwer type equation of

order three as shown by Eq (10) along with initial conditions

Eq (11).
d3φ

dξ3
+
β

ξ

d2φ

dξ2
+ f(ξ)g(φ) = 0, (10)

φ(0) = A, φ′(0) = 0 and φ′′(0) = 0, (11)

Equivalently, Eq (10) can be written as

φ′′′ +
β

ξ
φ′′ + f(ξ)g(φ) = 0, (12)

with

φ(0) = A, φ′(0) = 0 and φ′′(0) = 0.

Singular point is at ξ = 0 and appears with shape factor β

once in second case.
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III. SERIES SOLUTIONS USING WEIGHTED LEGENDRE

POLYNOMIALS

Legendre polynomials denoted by Ln are well known or-

thogonal polynomials that can be used to model approximate

solutions. Table 1 represents first eleven ledendre polynomi-

als.

Polynomials of higher order are formulated by using Eq (13)

Ln+1(t) =
1

n+ 1
[(2n+ 1)tLn(t)− nLn−1(t)] , (13)

trial solution or approximate series solution in term of

weighted legendre polynomials for non linear Emden fowler

is considered as

φappox(ξ) =
N
∑

n=0

ζnLn (ψnξ + θn) , (14)

where, ζn, ψn and θn are unknown parameters.

Since, nth order continuous derivatives of Eq (14) exist.

So first derivative φ′(ξ), second derivative φ′′(ξ) and third

derivative φ′′′(ξ) of Eq (14) are represented by the following

equations.

φ′appox(ξ) =
N
∑

n=1

ζnL
′

n (ψnξ + θn) , (15)

φ′′appox(ξ) =
N
∑

n=4

wnL
′′

n (ψnξ + θn) , (16)

φ′′′appox(ξ) =
N
∑

n=4

ζnL
′′′

n (ψnξ + θn) . (17)

where ζn, ψn and θn are real valued unknown parameters.

IV. FITNESS FUNCTION FORMULATION

In this section, we formulate fitness/objective functions for

first and second type non linear Emden-Fowler type equa-

tions. Fitness function is based on mean square error (MSE)

in candidate solution that is used to train neurons (parame-

ters) in LeNN. It is defined as

Minimize ǫ = ǫ1 + ǫ2, (18)

where ǫ1 is associated to first type nonlinear Emden-Fowler

equation Eq (8) and ǫ2 is associated to boundary conditions

for Eq (8). Mathematically, ǫ1 and ǫ2 are given as

ǫ1 =
1

N

N
∑

β=1

(

d3φ

dξ3
+

2β

ξ

d2φ

dξ2
+
β(β − 1)

ξ2
dφ

dξ
+ f(ξ)g(φ)

)2

,

(19)

ǫ2 =
1

3

(

(φ(0)−A)2 +

(

dφ

dξ
(0)

)2

+

(

d2φ

dξ2
(0)

)2
)

,

(20)

For non-linear multi singular Emden-Fowler differential

equation of type second, ǫ1 and ǫ2 can be mathematically

expressed as

ǫ1 =

(

d3φ

dξ3
+
β

ξ

d2φ

dξ2
+ f(ξ)g(φ)

)2

, (21)

and

ǫ2 =
1

3

(

(φ(0)−A)2 +

(

dφ

dξ
(0)

)2

+

(

d2φ

dξ2
(0)

)2
)

.

(22)

where N = 1
h

and h is a step size.

A. WHALE OPTIMIZATION ALGORITHM

Whale Optimization Algorithm (WOA) is nature inspired

technique given by Mirajlili and lewis [36] which imitate the

social behaviour of whales. The algorithm is inspired by the

bubble net hunting strategy.

Mathematical prescription for WOA is explained below:

1) Encircling prey

Humpback whales encircles the recognized location of prey

(small fishes). Initially, in candidate space the location of

optimal design is not known. Position of encircled prey is

modified by WOA towards the global optimal result with an

increase in iterations. The hunting of prey is mathematically

modeled as Eq (23) and Eq (24).

D = |C ·
−→
X∗(t)− ~X(t)|, (23)

~X(t+ 1) =
−→
X∗(t)− ~A.D, (24)

where ”t” represents the current iterations, ”X∗” indicates

the best value obtained so far, ”X” is a position vector, ”||”
gives the absolute value, ”r” is a vector in interval [0,1], "."

and "+"represents element wise multiplication and addition

respectively. ~A and ~C are coefficient vectors and given as

follows:
~A = 2~a · ~r − ~a, (25)

~C = 2 · ~r. (26)

2) Bubble net attacking method

To model mathematical equations for Bubble net attacking

method two approaches are designed as follows:

1. Shrinking encircling mechanism: ”a” is a randomly

selected value and In the course of iterations, it linearly

decreases from 2 to 0. Its value can be achieved by Eq (27).

a = 2− t
2

Maxlter
. (27)

2. Spiral updating position: This approach evaluates the dis-

tance between the prey and the humpback whale. To mimic

the helix-shaped movement a spiral equation is defined as

follows:

~X(t+ 1) = ~D′ · ebl · cos(2πl) +
−→
X∗(t), (28)
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TABLE 1. Legendre polynomials

n Ln(t)

0 1

1 t

2 1

2

(

3t2 − 1
)

3 1

2

(

5t3 − 3t
)

4 1

8

(

35t4 − 30t2 + 3
)

5 1

8

(

63t5 − 70t3 + 15t
)

6 1

16

(

231t6 − 315t4 + 105t2 − 5
)

7 1

16

(

429t7 − 693t5 + 315t3 − 35t
)

8 1

128

(

6435t8 − 12012t6 + 6930t4 − 1260t2 + 35
)

9 1

128

(

12155t9 − 25740t7 + 18018t5 − 4620t3 + 315t
)

10 1

256

(

46189t10 − 109395t8 + 90090t6 − 30030t4 + 3465t2 − 63
)

TABLE 2. Parameter setting for WOA, NM, PSO and CSA.

Algorithm Parameters Settings Parameters Settings

WOA Max. iterations 6,000 Limits [-1,1]

Selection of Candidate Uniform Search agents 50

NM Algorithm function evaluations 200,000 Initial weights Global best of WOA

X-Tolerance ‘TolX’ 1.00E-20 Max. iterations 2,000

Scaling Objective and constraints ‘TolFun’ 1.00E-20

CSA Max. iterations 8,000 Limits (lower, upper) [-1,1]

Search agents 50 Selection of Candidate Uniform

PSO Max. iterations 8,000 Limits (lower, upper) [-1,1]

Search agents 50 Selection of Candidate Uniform

where distance between the ”ith” whale and the prey (best

result attained so far) is represented by
−→
D′ = |

−→
X∗(t)− ~X(t)|,

shape of the logarithmic spiral is denoted by constant b and l

is a randomly selected number in [-1,1].

We know that the humpback whale follows the spiral-shaped

path and shrinking circle to hunt the prey. To model the

simultaneous behaviour the probability is chosen to be 50%

between the two paths so the position of the whales can be

calculated by Eq (29).

~X(t+ 1) =

{

~X∗(t)− ~A ·D, if p < 0.5
−→
D′ · ebl · cos(2πl) +

−→
X∗(t) if p ≥ 0.5,

(29)

where ”p” is a random value in interval [0,1].

3) Search for prey

A vector "A" with a random values less then 1 or greater then

-1 is used to move a reference whale away from a whale. The

mathematical model of this mechanism is given by Eq (30)

and Eq (31).
~D = | ~C ·

−−−→
Xrand − ~X|, (30)

~X(t+ 1) =
−−−→
Xrand − ~A · ~D. (31)

where
−−−→
Xrand is an arbitrary whale taken from the current

population.

When the process for optimization is started then WOA cre-

ates random population, initial population and calculate the

fitness function. Flow chart of Whale optimization algorithm

is given in Figure 1.

B. NELDER-MEAD ALGORITHM

The optimized weights obtained by WOA for solution for Eq

(8) and Eq (11) are used as an initial guess or initial weights

for Nelder-Mead algorithm. Hence, an effective local search

mechanism is applied to furnish the approximate solution for

the system. The detail procedure of Nelder-Mead algorithm

is explained below.
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Third Order Non-Linear Multi-Singular Emden-

Fowler Differential Equations 

Whale Optimization 
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Algorithm
Legendre Neural Networks

Start
WOA
 (Global 

search)

Input data from 

population space
Fitness Evaluation If p < 0.5

If A   1Else If p   0.5

No

Yes

Yes

Yes

Yes

No

No

Update the 

position of 

current search 

agent using Eq 

(25) and Eq (26).

Update the 

position of 

current search 

agent using Eq 

(30) and Eq (31).

Update the 

position of 

current search 

agent using Eq 

(23) and Eq (24).

Else If A < 1

No

Yes

Else If t < itmax

t = t+1

Yes

No

Population of n 

best solution

NM-

Algorithm

 (Local 

search)

A new simplex is 

generated

using best 

solution obtain in

global search

Fitness Evaluation

Significant progress? Substitute one point 
Minimum value 

attained

Display best resultShrink

No

No

Yes

End

Yes

LeNN-WOA-NM

FIGURE 1. Flowchart for WOA-NM Algorithm

The Nelder–Mead (NM) simplex search method is a direct

search method proposed by Nelder and Mead in 1965 [37]. It

is a non-derivative search method that has widely been used

to solve multidimensional constrained/unconstrained opti-

mization problems [38], [39]. NM algorithm rescales the sim-

plex of n+1 points based on the local behavior of the function

using four basic operations named as reflection, expansion,

contraction and shrink [24]. The structure of Nelder-Mead

algorithm described in flow chart given by Figure 1. Some

recent application of NM algorithm includes numerical sim-

ulation of dynamical modeling of Li-ion batteries for electric

vehicle [40], nonlinear Muskingum models [41], application

to bankruptcy prediction in banks [42] and optimization of

TIG welding parameters [43]. Parameter setting for Nelder-

Mead Algorithm is given in Table 38.

V. LENN-WOA-NM ALGORITHM

The steps for the proposed hybridized algorithm are summa-

rized as:

Initialization: Approximate/trial solution is considered see

Eq (14) and neurons in weighted Legendre polynomials are

initialized with randomly generated real number form the

candidate space.

Fitness Calculation: Whale optimization algorithm is used

to evaluate objective or fitness functions Eq (8) and Eq (11)

for first and second type non-linear Emden-Fowler equation

to update the unknown neurons in LeNN structure until

termination criteria is achieved.

Storage: Weights obtained by WOA for minimum value of

fitness function are stored.

Initialize NM: Nelder-Mead algorithm starts the process of
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optimization by considering values of ζn, ψn and θn obtained

by WOA as its initial guess.

Fitness Calculation: Fitness functions are evaluated with

updated weights of WOA. The process stops when termina-

tion criteria is achieved.

Storage: Save the optimal weights or variables of the LeNN.

Flowchart of the proposed soft computing technique is shown

in Figure 1.

VI. PERFORMANCE INDICES

To check the efficiency of the designed technique in obtaining

solution to non-linear Emden-Fowler differential equation

of first and second order the statistical operators namely,

mean absolute deviation (MAD), Theil’s inequality coeffi-

cient (TIC) and Error in Nash Sutcliffe efficiency (ENSE) are

defined [44]. The mathematical formulation of the operators

is given as:

MAD =
1

n

n
∑

m=1

|φ(ξ)− φapprox(ξ)| , (32)

TIC =

√

1
n

∑n

n=1 (φ(ξ)− φapprox(ξ))
2

(
√

1
n

∑n

n=1(φ(ξ))
2 +

√

1
n

∑n

n=1(φapprox(ξ))
2)
,

(33)

NSE =

{

1−

∑n

n=1
((φ(ξ)− φapprox(ξ))

2

∑n

n=1

(

(φ(ξ)− φ̄(ξ)
)

2
, φ̄(ξ) =

1

n

n
∑

m=1

φ(ξ)

(34)

ENSE = 1−NSE, (35)

where n denotes the number of grid points.

VII. NUMERICAL EXPERIMENTATION

In this section, different problems are considered of first and

second type multi singular non-linear third order Emden-

Fowler differential equations. The detail explanation about

problem is given below

Problem I: Considering Non-Linear Emden-Fowler first

type equation with shape factor β = 4, f(ξ) = 1 and

g(φ) = φm where m = 0.

d3φ

dξ3
+

8

ξ

d2φ

dξ2
+

12

ξ2
dφ

dξ
+ 1 = 0, (36)

subjecting to initial conditions given as

φ(0) = 1, φ′(0) = 0 and φ′′(0) = 0,

exact solution for Eq (36) is given as φ(ξ) = 1− 1
90 (ξ)

3 [45].

Fitness function for Eq (36) is formulated as

ǫ = ǫ1 + ǫ2, (37)

equivalently,

ǫ =
1

N

N
∑

m=1

(

ξ2m
d3φ

dξ3m
+ 8ξm

d2φ

dξ2m
+ 12

dφ

dξm
+ ξ2m

)2

+
1

3

(

(φ0 − 1)
2
+

(

dφ(0)

dξ

)2

+

(

d2φ(0)

dξ2

)2
)

.

(38)

Problem II: Let shape factor β = 3, f(ξ) = −6(10 + 2ξ3 +
6ξ6) and g(φ) = e−3φ

d3φ

dξ3
+

6

ξ

d2φ

dξ2
+

6

ξ2
dφ

dξ
−6(10+2ξ3+6ξ6)e−3φ = 0, (39)

with

φ(0) = 0, φ′(0) = 0 and φ′′(0) = 0,

exact solution for Eq (39) is given as log(1+ξ3) [45]. Fitness

function for Eq (39) can be written as

ǫ = ǫ1 + ǫ2, (40)

ǫ =
1

N

N
∑

m=1

(

d3φ

dξ3m
+

6

ξ

d2φ

dξ2
+

6

ξ2m

dφ

dξm
− 6(10 + 2ξ3m + 6ξ6m)e−3φ

)2

+
1

3

(

(φ0)
2 +

(

dφ(0)

dξ

)

2

+

(

d2φ(0)

dξ2

)2
)

.

(41)

Problem III Consider non liner Emden-Fowler second type

equation with β = 2 and f(ξ) = 6eξ−6ξeξ−7ξ2eξ+ξ6e2ξ.

d3φ

dξ3
−

2

ξ

d2φ

dξ2
− φ(ξ)− φ2(ξ)

+ 6eξ − 6ξeξ − 7ξ2eξ + ξ6e2ξ = 0,

(42)

with

φ(0) = 0, φ(1) = e and φ′(0) = 0,

exact solution for Eq (42) is given as ξ3eξ [46]. Fitness based

error function for Eq (42) can be written as

ǫ = ǫ1 + ǫ2, (43)

ǫ = 1
N

∑N

m=1

(

ξm
d3φ
dξ3m

− 2 d2φ
dξ2m

− ξmφ(ξ)

−ξmφ
2(ξ) + 6ξme

ξ − 6ξeξ − 7ξ3me
ξ + ξ7me

2ξ + 1
2

)2

+ 1
3

(

(φ0)
2
+ (ξ(1)− e)

2
+
(

dφ(0)
dξ

)2
)

.

(44)

Problem IV Let β = 4 ,f(ξ) = −(10 + 10ξ3 + ξ6) and

g(φ) = φ then third order non-linear Emden-Folwer second

type differential equation can be written as

d3φ

dξ3
+

4

ξ

d2φ

dξ2
− (10 + 10ξ3 + ξ6)φ = 0, (45)

subjected to initial conditions

φ(0) = 1, φ′(0) = 0 and φ′′(0) = 0,
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FIGURE 2. Graphical overview of third order non-linear multi singular Emden-fowler differential equation with different cases depending on shape factor.

analytical solution obtained by [45] for Eq (45) is e
ξ3

3 .

Fitness based error function for Eq (45) can be formulated

as

ǫ = ǫ1 + ǫ2, (46)

equivalently,

ǫ =
1

N

N
∑

m=1

(

d3φ

dξ3m
+

4

ξm

d2φ

dξ2m
− (10 + 10ξ3m + ξ6m)φ

)2

+
1

3

(

(φ0 − 1)
2
+

(

dφ(0)

dξ

)2

+

(

d2φ(0)

dξ2

)2
)

,

(47)

VIII. RESULTS AND DISCUSSION

This paper has presented the mathematical formulation

and analysis of first and second-type third-order nonlin-

ear multi singular Emden-Fowler equations (TONMS-EFE).

Four problems are considered with different shape factor β,

f(ξ) and g(φ). Furthermore, an evolutionary soft computing

technique is designed to solve the TONMS-EFE see Eq

(8) and Eq (11). Approximate series solutions for different

problems obtained by the LeNN-WOA-NM algorithm are

compared with PSO, CSA, WOA, and exact solutions [45].

The optimization performance of the proposed technique for

Eq (8) and Eq (11) is perform for 80 independent executions.

The graphical performance of the design scheme for all

four problems is illustrated in Figures 3-10. Approximate

solutions obtained by the LeNN-WOA-NM algorithm for

problem I, II, III, and IV are demonstrated through Figures

3(a), 3(b), 3(c) and 3(d) respectively. The unknown weights

in LeNN for calculation of best solutions are visualized in

Figure 4. The absolute error graphs from the exact solution

are demonstrated in Figure 5 for each problem. Figure 6 de-

picts the comparison of the minimum, mean, median, mode,

standard deviation, and variance of fitness, MAD, TIC, and

ENSE obtained by LeNN-WOA-NM algorithm with CSA,

PSO, and WOA for the four problems.

Tables 3 and 4 represents the comparison of solutions at

each step size. The values of absolute errors (AE) in Tables

5 and 6 lie around −10−12 to −10−14, −10−5 to −10−8,

−10−8 to −10−10 and −10−7 to −10−9 for problem I, II, III

and IV respectively. Unknown weights obtained by proposed

algorithm for optimization of fitness function Eqs (38), (41),

(44) and (47) are dictated in Tables 7 and 8. It is clear from

Tables 9, 13, 17 and 21 the objective values (fitness values)

lie round 10−12, 10−6, 10−8 and 10−7 for problem I to IV

respectively. It is clear from Tables 10, 14, 18 and 22 that

values of mean absolute deviation (MAD) lie round 10−9,

10−3, 10−3 and 10−6 for problem I to IV respectively. It is

VOLUME 4, 2016 7
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FIGURE 3. Solutions obtained by LeNN-WOA-NM approach for first and second type nonlinear singular Emden-Fowler differential equation.

clear from Tables 11, 16, 19 and 23 that values of Theil’s

inequality coefficient (TIC) lie round 10−9, 10−3, 10−4 and

10−6 for problem I to IV respectively. It is clear from Tables

12, 17, 20 and 24 that values of Error in Nash Sutcliffe

efficiency (ENSE) lie round 10−12, 10−4, 10−6 and 10−9 for

problem I to IV respectively.

Bar graphs given in Figure 6 demonstrates the comparison

of values of fitness, MAD, TIC, and ENSE obtained by the

LeNN-WOA-NM algorithm with PSO, CSA, and WOA for

each problem. The convergence of fitness value, MAD, TIC,

and ENSE during 80 independent runs are shown through

Figure 7-10. Normal probability curves and boxplots for per-

formance indicators are shown in Figures 11-18. Extensive

statistical and graphical analysis illustrates the effectiveness

of the proposed algorithm in solving nonlinear-multi singular

differential equations.
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FIGURE 4. Weights achieved by LeNN-WOA-NM algorithm for best solutions of Problem I, II, III and IV.
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FIGURE 5. Absolute errors in best solutions obtained by proposed algorithm for different problems.
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FIGURE 6. Bar graphs of statistics representing attained values of LeNN-WOA-NM algorithm, PSO, CSA and WOA for performance indicators.
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FIGURE 7. Fitness analysis for Problem I,II,III and IV during 80 independent runs
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TABLE 3. Comparison of approximate solutions obtained by proposed algorithm with PSO, CSA , WOA and exact solution for Problem I and II.

Problem I Problem II

ξ WOA PSO CSA LeNN-WOA-NM Exact WOA PSO CSA LeNN-WOA-NM Exact

0 0.99939 1.000003 1.000287 1 1 0.048647 0.011755 0.032020 -3.06E-05 0

0.1 0.999393 0.999986 1.000293 0.999989 0.999989 0.050482 0.012868 0.025783 0.001000 0.001014

0.2 0.999259 0.999901 1.000226 0.999911 0.999911 0.057086 0.019442 0.026243 0.007968 0.007981

0.3 0.998965 0.999686 1.000022 0.999700 0.999700 0.073187 0.037255 0.039205 0.026642 0.026466

0.4 0.998473 0.999274 0.999618 0.999289 0.999289 0.103322 0.071394 0.069505 0.062035 0.061759

0.5 0.997736 0.998600 0.998947 0.998611 0.998611 0.151133 0.125451 0.120620 0.117783 0.117543

0.6 0.996693 0.997594 0.997940 0.997600 0.997600 0.218874 0.201158 0.194401 0.195567 0.195544

0.7 0.995279 0.996189 0.996531 0.996189 0.996189 0.307194 0.298401 0.290966 0.294906 0.295495

0.8 0.993421 0.994316 0.99465 0.994311 0.994311 0.415211 0.415537 0.408791 0.413433 0.413428

0.9 0.991043 0.991907 0.992231 0.991900 0.991900 0.540871 0.549907 0.545039 0.547543 0.547543

1 0.988066 0.988897 0.989207 0.988889 0.988889 0.681539 0.698434 0.696177 0.693147 0.693147

TABLE 4. Comparison of solutions obtained by proposed algorithm with WOA, PSO , CSA and exact solution for Problem III and Problem IV.

Problem III Problem IV

ξ WOA PSO CSA Exact LeNN-WOA-NM WOA PSO CSA Exact LeNN-WOA-NM

0 -0.0291173 -5.580E-05 0.0064096 0 0 0.9909846 0.99863168 0.9312504 1 1

0.1 -0.0226260 0.0010363 0.0082296 0.0011051 0.0011051 0.9862820 0.9988289 0.9390017 1.0003333 1.0003333

0.2 -0.0086600 0.0097481 0.0175671 0.0097712 0.0097712 0.9835390 1.0009450 0.9489395 1.0026702 1.0026702

0.3 0.0233276 0.0366362 0.0448939 0.0364461 0.0364461 0.9847364 1.0070216 0.9632169 1.0090406 1.0090406

0.4 0.0876768 0.0961489 0.1046747 0.0954767 0.0954767 0.9919561 1.0192389 0.9838128 1.0215625 1.0215625

0.5 0.2034812 0.2075992 0.2162740 0.2060901 0.2060901 1.0074553 1.0399569 1.0127269 1.0425469 1.0425469

0.6 0.3957166 0.3962925 0.4050488 0.3935776 0.3935776 1.0337935 1.0718354 1.0522549 1.0746553 1.0746553

0.7 0.6965685 0.6948370 0.7036532 0.6907171 0.6907171 1.0740361 1.1180597 1.1053439 1.1211255 1.1211257

0.8 1.1469895 1.1446760 1.1535852 1.1394769 1.1394769 1.1320709 1.1826982 1.1760312 1.1860953 1.1860953

0.9 1.7985215 1.7978922 1.8070017 1.7930506 1.7930506 1.2130807 1.2712236 1.2699650 1.2750687 1.2750686

1 2.7154180 2.7193238 2.7288324 2.7182818 2.7182818 1.3242277 1.3912298 1.3950075 1.3956124 1.3956124

TABLE 5. Comparison between the absolute errors attained by proposed algorithm with WOA, PSO and CSA for Problem I and Problem II.

Problem I Problem II

ξ WOA PSO CSA LeNN-WOA-NM WOA PSO CSA LeNN-WOA-NM

0 6.61E-05 1.56E-08 7.17E-06 1.09E-14 0.003023 0.000224 0.004520 2.37E-05

0.1 7.33E-05 7.93E-07 1.16E-06 5.31E-13 0.000432 0.000431 0.006961 2.62E-05

0.2 0.000139 1.37E-07 5.54E-07 8.97E-14 0.003286 7.86E-05 0.004862 2.09E-05

0.3 5.30E-05 1.97E-07 6.02E-07 7.28E-13 0.008848 0.000497 0.003172 4.13E-05

0.4 3.56E-08 8.68E-07 3.05E-07 1.96E-12 0.006998 8.08E-06 0.003228 4.15E-06

0.5 4.88E-05 7.18E-07 5.95E-08 2.98E-13 0.000396 0.000999 0.003410 5.33E-05

0.6 0.000113 7.17E-08 2.58E-06 1.34E-12 0.005977 0.000161 0.001481 4.59E-07

0.7 9.69E-05 2.31E-07 1.01E-05 3.80E-12 0.013264 0.001392 4.41E-06 3.48E-05

0.8 2.20E-05 8.67E-07 1.79E-05 3.12E-14 9.32E-07 0.000610 0.000490 1.86E-05

0.9 1.15E-05 3.68E-07 1.32E-05 8.51E-12 0.028319 0.002989 0.000446 8.11E-07

1 0.000131 6.91E-07 2.13E-08 1.68E-12 0.005991 0.000438 0.003826 1.05E-08
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FIGURE 8. Convergence analysis of MAD during 80 independent runs for first and second type Emden-Fowler differential equations.

TABLE 6. Comparison between the absolute errors attained by proposed algorithm with WOA, PSO and CSA for Problem III and Problem IV.

Problem III Problem IV

ξ WOA PSO CSA LeNN-WOA-NM WOA PSO CSA LeNN-WOA-NM

0 0.00251685 7.63E-05 0.00597363 1.94E-08 0.01390989 3.8100E-05 0.01144378 1.51E-08

0.1 0.00085218 9.73E-06 0.00016169 9.45E-08 0.00120851 0.00159428 0.00048074 3.18E-07

0.2 0.00014335 7.56E-05 0.00011854 2.45E-09 0.01035894 0.00026557 0.00194073 2.36E-07

0.3 0.00033636 3.21E-05 0.00014458 6.56E-08 0.00834433 0.00054039 0.00133826 1.08E-07

0.4 6.7800E-05 4.37E-06 0.00031391 9.61E-12 0.00059786 0.00147871 0.00150487 2.20E-07

0.5 0.00020100 5.67E-05 0.00020351 4.67E-08 0.00377830 0.00022670 0.00257252 1.61E-07

0.6 0.00036575 3.27E-05 0.00064464 5.92E-10 0.01339039 0.00085392 0.00179844 2.40E-07

0.7 0.00045345 3.69E-06 0.00014164 3.34E-08 0.00797716 0.00256672 0.00049265 2.03E-07

0.8 0.00024218 5.25E-05 0.00040872 3.41E-09 0.00089101 5.0800E-05 0.01962942 7.14E-07

0.9 2.4800E-06 4.29E-06 0.00013671 6.96E-10 0.02146690 0.00572957 0.03667775 1.91E-07

1 0.00017719 1.46E-05 0.00098814 1.50E-10 0.00559450 0.00098650 0.03621831 6.27E-09
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FIGURE 9. Convergence analysis of TIC during 80 independent runs for first and second type Emden-Fowler differential equations.

TABLE 7. Best weight achieved for optimization of Eq (38) and Eq (41) by proposed algorithm.

Problem I Problem II

index ζn ψn θn ζn ψn θn

1 0.408826 0.057564 -0.044000 0.254318 0.114530 0.320272

2 -0.753480 -0.002450 0.295031 1.050468 0.041362 0.906695

3 -1.214790 0.454315 -0.167660 0.823686 1.375421 -0.080910

4 -0.041070 0.152337 -0.064490 0.041510 0.049329 0.169590

5 0.044146 -0.115580 -0.297110 -0.493580 0.571303 0.128204

6 -0.214880 -0.178810 -0.099960 -0.146110 -0.102080 -0.001930

7 0.088679 -0.016690 -0.300590 3.659748 0.467711 -0.253020

8 0.282416 -0.049280 -0.741580 0.659495 -0.054140 0.361584

9 -0.011820 -0.100280 -0.259620 -0.273810 0.061146 0.000882

10 -0.198010 -0.062350 0.204680 0.366455 -0.339450 0.058533

11 -0.198020 -0.029490 -0.866680 0.557791 0.340865 0.349444
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FIGURE 10. Convergence analysis of ENSE during 80 independent runs for first and second type Emden-Fowler differential equations.

TABLE 8. Best weight achieved for optimization of Eq (44) and Eq (47) by proposed algorithm.

Problem III Problem IV

index ζn ψn θn ζn ψn θn

1 -0.00025520 -0.07916260 -0.5659983 0.73308615 0.49157556 0.34432282

2 0.54710110 -0.09156670 -0.7318864 0.51580967 0.70179544 0.54020410

3 0.90428437 0.88504030 -0.0911262 0.44315273 0.20778173 0.46296807

4 -0.16085360 -0.20762780 0.7573477 0.23240265 0.48175825 0.22761992

5 -0.31751990 0.81663781 -0.2951611 0.69645753 0.19380327 0.47697631

6 -0.03909820 0.67666348 -0.0707813 0.60684850 0.57723262 0.16011539

7 0.46593053 0.28887830 0.7811133 0.19411520 0.31740822 0.39211912

8 0.65746316 0.43559105 -0.0846667 0.35456570 0.21980521 0.46826468

9 0.86795474 0.64078844 0.0057115 0.20798017 0.17682492 0.28322033

10 -0.00824190 -0.41933870 -0.1662330 0.53476583 0.41144797 0.21299134

11 0.02639607 0.00074241 0.5335582 0.13224697 0.31148234 0.00013506
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FIGURE 11. Analysis on normal probability curves for Fitness value attained by LeNN-WOA-NM algorithm in comparison with PSO, CSA and WOA for third order

singular non-linear Emden-Fowler differential equation of type first (Problem I,II) and second (Problem III,IV).
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FIGURE 12. Analysis on normal probability curves for MAD attained by LeNN-WOA-NM algorithm in comparison with PSO, CSA and WOA for third order singular

non-linear Emden-Fowler differential equation of type first (Problem I,II) and second (Problem III,IV).
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FIGURE 13. Analysis on normal probability curves for TIC attained by LeNN-WOA-NM algorithm in comparison with PSO, CSA and WOA for third order singular

non-linear Emden-Fowler differential equation of type first (Problem I,II) and second (Problem III,IV).
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FIGURE 14. Analysis on normal probability curves for ENSE attained by LeNN-WOA-NM algorithm in comparison with PSO, CSA and WOA for third order singular

non-linear Emden-Fowler differential equation of type first (Problem I,II) and second (Problem III,IV).
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FIGURE 15. Analysis of Boxplot for fitness value of Problem I,II,III and IV attained by LeNN-WOA-NM algorithm in comparison with PSO, CSA and WOA.
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TABLE 9. Statistical analysis on Fitness Analysis for Problem I during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

Fitness Analysis

Min. Mean Median Mod. Std. Var.

WOA 4.92E-06 1.60E-03 2.07E-04 4.92E-06 3.60E-03 1.29E-05

PSO 2.98E-08 3.33E-05 1.02E-05 2.98E-08 5.95E-05 3.54E-09

CSA 5.79E-06 1.95E-04 1.17E-04 5.79E-06 2.47E-04 6.08E-08

LeNN-WOA-NM 1.77E-12 6.20E-07 5.53E-08 1.77E-12 1.14E-06 1.29E-12

TABLE 10. Statistical analysis on Mean Absolute Deviation for Problem I during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

Mean Absolute Deviation

Min. Mean Median Mod. Std. Var.

WOA 1.69E-05 0.0129 9.27E-04 1.69E-05 0.0305 9.28E-04

PSO 2.64E-06 7.98E-05 7.98E-05 4.31E-05 1.02E-04 1.04E-08

CSA 1.60E-04 0.0043 0.0033 1.60E-04 0.0043 1.81E-05

LeNN-WOA-NM 4.65E-09 5.15E-06 1.80E-06 4.65E-09 8.39E-06 7.04E-11

TABLE 11. Statistical analysis on Theil’s inequality coefficient for Problem I during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

Theil’s inequality coefficient

Min. Mean Median Mod. Std. Var.

WOA 4.48E-06 0.0032 2.43E-04 4.48E-06 0.0079 6.22E-05

PSO 6.99E-07 1.99E-05 1.12E-05 6.99E-07 2.42E-05 5.86E-10

CSA 4.34E-05 0.001 7.78E-04 4.34E-05 0.001 1.00E-06

LeNN-WOA-NM 1.51E-09 1.37E-06 4.67E-07 1.51E-09 2.13E-06 4.53E-12

TABLE 12. Statistical analysis on Error in Nash Sutcliffe Efficiency for Problem I during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

Error in Nash Sutcliffe Efficiency

Min. Mean Median Mod. Std. Var.

WOA 2.89E-05 0.0691 0.012 2.89E-05 0.179 0.0321

PSO 7.03E-07 0.0014 1.83E-04 7.03E-07 0.0038 1.44E-05

CSA 4.54E-04 0.0057 0.0057 4.54E-04 0.0023 5.20E-06

LeNN-WOA-NM 3.26E-12 9.13E-06 3.14E-07 3.26E-12 3.04E-05 9.22E-10

TABLE 13. Statistical analysis on Fitness Analysis for Problem I during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

Fitness Analysis

Min. Mean Median Mod. Std. Var.

WOA 0.00958519 0.10911432 0.06223133 0.00958519 0.1179656 0.01391588

PSO 0.000407 0.01272245 0.00629448 0.000407 0.01650894 0.000273

CSA 0.00720688 0.05682838 0.05390004 0.00720688 0.02003173 0.000401

LeNN-WOA-NM 1.18E-06 0.00134607 0.000524 1.18E-06 0.00212836 4.53E-06
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FIGURE 16. Analysis of Boxplot for MAD of Problem I,II,III and IV attained by LeNN-WOA-NM algorithm in comparison with PSO, CSA and WOA.
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FIGURE 17. Analysis of Boxplot for TIC of Problem I,II,III and IV attained by LeNN-WOA-NM algorithm in comparison with PSO, CSA and WOA.
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FIGURE 18. Analysis of Boxplot for ENSE of Problem I,II,III and IV attained by LeNN-WOA-NM algorithm in comparison with PSO, CSA and WOA.
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TABLE 14. Statistical analysis on Mean Absolute Deviation for Problem II during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

Mean Absolute Deviation

Min. Mean Median Mod. Std. Var.

WOA 0.02946183 0.21032193 0.16364798 0.02946183 0.14350405 0.02059341

PSO 0.00266543 0.04903535 0.03593484 0.00266543 0.03983714 0.001587

CSA 0.01029353 0.14872052 0.15369413 0.01029353 0.07368662 0.00542972

LeNN-WOA-NM 0.00173657 0.01047509 0.00403578 0.00173657 0.01370237 1.88E-04

TABLE 15. Statistical analysis on Theil’s inequality coefficient for Problem II during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

Theil’s inequality coefficient

Min. Mean Median Mod. Std. Var.

WOA 0.03449301 0.23357385 0.18643734 0.03449301 0.14972866 0.02241867

PSO 0.0041522 0.0563613 0.04151384 0.0041522 0.00204901 0.00204901

CSA 0.01429876 0.16863342 0.17561954 0.01429876 0.08270124 0.0068395

LeNN-WOA-NM 0.00348245 0.01258072 0.00438835 0.00348245 0.01559042 2.43E-04

TABLE 16. Statistical analysis on Error in Nash Sutcliffe Efficiency for Problem II during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

Error in Nash Sutcliffe Efficiency

Min. Mean Median Mod. Std. Var.

WOA 0.022236 0.195314 0.173722 0.022236 0.085727 0.007349

PSO 3.22E-04 0.097186 0.032272 3.22E-04 0.164064 0.026917

CSA 0.003821 0.369791 0.388987 0.003821 0.294405 0.086674

LeNN-WOA-NM 2.27E-04 0.00744408 3.60E-04 2.27E-04 0.02785565 7.76E-04

TABLE 17. Statistical analysis on Fitness Analysis for Problem II during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

Fitness Analysis

Min. Mean Median Mod. Std. Var.

WOA 1.50E-03 0.107 1.50E-03 1.50E-03 0.1263 1.60E-02

PSO 1.05E-06 4.83E-02 1.50E-03 1.05E-06 1.70E-01 2.89E-02

CSA 1.05E-06 4.83E-02 1.50E-03 1.05E-06 1.70E-01 2.89E-02

LeNN-WOA-NM 2.43E-08 1.12E-04 8.58E-06 2.43E-08 2.12E-04 4.49E-08

TABLE 18. Statistical analysis on Mean Absolute Deviation for Problem II during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

Mean Absolute Deviation

Min. Mean Median Mod. Std. Var.

WOA 1.08E-02 0.1978 1.38E-01 1.08E-02 0.1706 2.91E-02

PSO 1.50E-03 4.94E-02 7.90E-03 1.50E-03 1.35E-01 1.82E-02

CSA 7.70E-03 0.0674 0.0594 7.70E-03 0.049 2.40E-03

LeNN-WOA-NM 1.50E-03 2.60E-03 1.70E-03 1.50E-03 2.10E-03 4.28E-06
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TABLE 19. Statistical analysis on Theil’s inequality coefficient for Problem II during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

Theil’s inequality coefficient

Min. Mean Median Mod. Std. Var.

WOA 4.40E-03 0.0688 4.61E-02 4.40E-03 0.0955 9.10E-03

PSO 6.45E-04 1.28E-02 2.60E-03 6.45E-04 3.08E-02 9.50E-04

CSA 2.90E-03 0.021 1.88E-02 2.90E-03 0.0132 1.75E-04

LeNN-WOA-NM 6.81E-04 9.83E-04 7.49E-04 6.81E-04 5.96E-04 3.56E-07

TABLE 20. Statistical analysis on Error in Nash Sutcliffe Efficiency for Problem II during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

Error in Nash Sutcliffe Efficiency

Min. Mean Median Mod. Std. Var.

WOA 2.65E-04 0.1052 0.03 2.65E-04 0.1546 0.0239

PSO 5.87E-06 0.0311 9.35E-05 5.87E-06 0.1318 1.74E-02

CSA 1.14E-04 0.0108 0.0055 1.14E-04 0.0201 4.03E-04

LeNN-WOA-NM 6.54E-06 1.88E-05 7.93E-06 6.54E-06 3.80E-05 1.44E-09

TABLE 21. Statistical analysis on Fitness Analysis for Problem IV during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

Fitness Analysis

Min. Mean Median Mod. Std. Var.

WOA 1.70E-03 0.1425 1.49E-01 1.70E-03 0.0811 6.60E-03

PSO 1.30E-03 1.18E-01 1.14E-01 1.30E-03 8.27E-02 6.80E-03

CSA 4.16E-02 9.90E-02 9.75E-02 4.16E-02 3.12E-02 9.73E-04

LeNN-WOA-NM 2.20E-07 8.90E-03 2.10E-03 2.20E-07 1.75E-02 3.08E-04

TABLE 22. Statistical analysis on Mean Absolute Deviation for Problem IV during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

Mean Absolute Deviation

Min. Mean Median Mod. Std. Var.

WOA 8.50E-03 0.5099 5.26E-01 8.50E-03 0.2423 5.87E-02

PSO 2.60E-03 4.39E-01 4.25E-01 2.60E-03 2.53E-01 6.42E-02

CSA 3.12E-02 0.4072 0.4456 3.12E-02 0.1522 2.32E-02

LeNN-WOA-NM 7.43E-06 3.68E-02 4.70E-03 7.43E-06 8.37E-02 7.00E-03

TABLE 23. Statistical analysis on Theil’s inequality coefficient for Problem IV during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

Theil’s inequality coefficient

Min. Mean Median Mod. Std. Var.

WOA 2.00E-03 0.1821 2.06E-01 2.00E-03 0.1352 1.83E-02

PSO 5.88E-04 1.70E-01 1.32E-01 5.88E-04 1.32E-01 1.75E-02

CSA 7.50E-03 0.1317 1.38E-01 7.50E-03 0.0625 3.90E-03

LeNN-WOA-NM 1.89E-06 9.70E-03 1.20E-03 1.89E-06 2.40E-02 5.78E-04
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TABLE 24. Statistical analysis on Error in Nash Sutcliffe Efficiency for Problem IV during 80 independent runs by proposed algorithm, PSO, CSA and WOA.

Error in Nash Sutcliffe Efficiency

Min. Mean Median Mod. Std. Var.

WOA 8.50E-03 0.4649 0.4815 8.50E-03 0.2252 0.0507

PSO 3.34E-02 0.2512 2.47E-01 3.34E-02 0.1264 1.60E-02

CSA 2.86E-02 0.1216 0.1321 2.86E-02 0.0498 2.50E-03

LeNN-WOA-NM 5.12E-09 4.19E-02 2.00E-03 5.50E-03 1.22E-01 1.49E-02

Nomenclature:

Abreviation Discriptions

LeNN Legendre Neural Networks

NM Nelder-Mead

MAD Mean Absolute Diviation

TIC Theil’s inequality coefficient

NSE Nash Sutcliffe efficiency

ENSE Error in Nash Sutcliffe efficiency

PSO Particle Swarm Optimization

CSA Cuckoo search Algorithm

WOA Whale Optimization Algorithm

β Shape factor

α Reflection Coefficient

δ Shrink

γ Contraction

t Current iteration in WOA

X∗ Best value obtained so far

~A, ~C Coefficient Vectors

~Xrand Random whale

IX. CONCLUSION

In this work, we have formulated third-order nonlinear multi

singular Emden-Fowler equations. Furthermore, we have de-

signed novel soft computing that hybridized global search

exploitation of WOA with local search exploration of the

NM algorithm. The combination is named as LeNN-WOA-

NM algorithm. Weighted Legendre polynomials are used to

model approximate series solutions for third-order nonlinear

multi-singular Emden-Fowler differential equations, and fit-

ness functions are constructed to evaluate the candidate solu-

tions. Some significant findings of the study are summarized

below as:

• The design of a soft computing paradigm, the LeNN-WOA-

NM algorithm, is effectively applied to solve nonlinear multi-

singular third-order Emden–Fowler models of the first and

second type.

• The accuracy and robustness of the present scheme are

proven by comparing the proposed results with the exact

solutions, PSO, CSA, and WOA for different Emden–Fowler

equation problems.

• The statistical analysis and assessments based on 80 inde-

pendent executions of the LeNN-WOA-NM algorithm estab-

lish the accuracy and convergence of the proposed algorithm

for solving real-world problems.

Approximate solution for Eq (36) is given as

φapprox = 0.408826 + (−0.75348ξ − 0.00245)(0.295031)

+





3(−1.21479ξ + 0.454315)2 − 1

2



 (−0.16766)

+





5(−0.04107ξ + 0.152337)3 − 3(−0.04107ξ + 0.152337)

2



 (−0.06449)

+





35(0.044146ξ − 0.11558)4 − 30(0.044146ξ − 0.11558)2

8
+

3

8

)

(−0.29711)

+





63(−0.21488ξ − 0.17881)5 − 70(−0.21488ξ − 0.17881)3

8

+
15(−0.21488ξ − 0.17881)

8

)

(−0.09996)

+





231(0.088679ξ − 0.01669)6 − 315(0.088679ξ − 0.01669)4

16

+
105(0.088679ξ − 0.01669)2 − 5

16



 (−0.30059)

+





429(0.282416ξ − 0.04928)7 − 693(0.282416ξ − 0.04928)5

16

+
315(0.282416ξ − 0.04928)2 − 35(0.282416ξ − 0.04928)

16



 (−0.74158)

+





6435(−0.01182ξ − 0.10028)8 − 12012(−0.01182ξ − 0.10028)6

128

+
6930(−0.01182ξ − 0.10028)4 − 1260(−0.01182ξ − 0.10028)2 + 35

128



 (−0.25962)

+





12155(−0.19801ξ − 0.06235)9 − 25740(−0.19801ξ − 0.06235)7

128

+
18018(−0.19801ξ − 0.06235)5 − 4620(−0.19801ξ − 0.06235)3

128

+
315(−0.19801ξ − 0.06235)

128

)

(0.20468)

+





46189(−0.19802ξ − 0.02949)10 − 109395(−0.19802ξ − 0.02949)8

256

+
90090(−0.19802ξ − 0.02949)6 − 30030(−0.19802ξ − 0.02949)4

256

+
3465(−0.19802ξ − 0.02949)2 − 63

256



 (−0.86668)

(48)

Approximate solution for Eq (39) is given as
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φapprox = 0.254318 + (1.050468ξ + 0.041362)(0.906695)

+





3(0.823686ξ + 1.375421)2 − 1

2



 (−0.08091)

+





5(0.04151ξ + 0.049329)3 − 3(0.04151ξ + 0.049329)

2



 (0.16959)

+





35(−0.49358ξ + 0.571303)4 − 30(−0.49358ξ + 0.571303)2

8
+

3

8

)

(0.128204)

+





63(−0.14611ξ − 0.10208)5 − 70(−0.14611ξ − 0.10208)3

8

+
15(−0.14611ξ − 0.10208)

8

)

(−0.00193)

+





231(3.659748ξ + 0.467711)6 − 315(3.659748ξ + 0.467711)4

16

+
105(3.659748ξ + 0.467711)2 − 5

16



 (−0.25302)

+





429(0.659495ξ − 0.05414)7 − 693(0.659495ξ − 0.05414)5

16

+
315(0.659495ξ − 0.05414)2 − 35(0.659495ξ − 0.05414)

16



 (0.361584)

+





6435(−0.27381ξ + 0.061146)8 − 12012(−0.27381ξ + 0.061146)6

128

+
6930(−0.27381ξ + 0.061146)4 − 1260(−0.27381ξ + 0.061146)2 + 35

128



 (0.000882)

+





12155(0.366455ξ − 0.33945)9 − 25740(0.366455ξ − 0.33945)7

128

+
18018(0.366455ξ − 0.33945)5 − 4620(0.366455ξ − 0.33945)3

128

+
315(0.366455ξ − 0.33945)

128

)

(0.058533)

+





46189(0.557791ξ + 0.340865)10 − 109395(0.557791ξ + 0.340865)8

256

+
90090(0.557791ξ + 0.340865)6 − 30030(0.557791ξ + 0.340865)4

256

+
3465(0.557791ξ + 0.340865)2 − 63

256



 (0.349444)

(49)

Approximate solution for Eq (42) is given as

φapprox = −0.0002552 + (0.5471011ξ − 0.0915667)(−0.7318864)

+





3(0.90428437ξ + 0.8850403)2 − 1

2



 (−0.0911262)

+





5(−0.1608536ξ − 0.2076278)3 − 3(−0.1608536ξ − 0.2076278)

2



 (0.75734771)

+





35(−0.31751ξ + 0.816637)4 − 30(−0.31751ξ + 0.816637)2

8
+

3

8

)

(−0.295161)

+





63(−0.0390982ξ + 0.67666348)5 − 70(−0.0390982ξ + 0.67666348)3

8

+
15(−0.0390982ξ + 0.67666348)

8

)

(−0.0707813)

+





231(0.4659305ξ + 0.2888783)6 − 315(0.4659305ξ + 0.2888783)4

16

+
105(0.4659305ξ + 0.2888783)2 − 5

16



 (0.78111333)

+





429(0.65746316ξ + 0.43559105)7 − 693(0.65746316ξ + 0.43559105)5

16

+
315(0.65746316ξ + 0.43559105)2 − 35(0.65746316ξ + 0.43559105)

16



 (−0.084667)

+





6435(0.867974ξ + 0.640784)8 − 12012(0.867974ξ + 0.640784)6

128

+
6930(0.867974ξ + 0.640784)4 − 1260(0.867974ξ + 0.640784)2 + 35

128



 (0.00571)

+





12155(−0.0082419ξ − 0.4193387)9 − 25740(−0.0082419ξ − 0.4193387)7

128

+
18018(−0.0082419ξ − 0.4193387)5 − 4620(−0.0082419ξ − 0.4193387)3

128

+
315(−0.0082419ξ − 0.4193387)

128

)

(−0.1662331)

+





46189(0.02639607ξ + 0.00074241)10 − 109395(0.02639607ξ + 0.00074241)8

256

+
90090(0.02639607ξ + 0.00074241)6 − 30030(0.02639607ξ + 0.00074241)4

256

+
3465(0.02639607ξ + 0.00074241)2 − 63

256



 (0.5335582)

(50)
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Approximate solution for Eq (45) is given as

φapprox = 0.73308615 + (0.51580967ξ + 0.70179544)(0.5402041)

+





3(0.44315273ξ + 0.20778173)2 − 1

2



 (0.46296807)

+





5(0.23240265ξ + 0.48175825)3 − 3(0.23240265ξ + 0.48175825)

2



 (0.22761992)

+





35(0.696457ξ + 0.193803)4 − 30(0.696457ξ + 0.193803)2

8
+

3

8

)

(0.476976)

+





63(0.6068485ξ + 0.57723262)5 − 70(0.6068485ξ + 0.57723262)3

8

+
15(0.6068485ξ + 0.57723262)

8

)

(0.16011539)

+





231(0.1941152ξ + 0.31740822)6 − 315(0.1941152ξ + 0.31740822)4

16

+
105(0.1941152ξ + 0.31740822)2 − 5

16



 (0.39211912)

+





429(0.3545657ξ + 0.21980521)7 − 693(0.3545657ξ + 0.21980521)5

16

+
315(0.3545657ξ + 0.21980521)2 − 35(0.3545657ξ + 0.21980521)

16



 (0.46826468)

+





6435(0.20798017ξ + 0.17682492)8 − 12012(0.20798017ξ + 0.17682492)6

128

+
6930(0.20798017ξ + 0.17682492)4 − 1260(0.20798017ξ + 0.17682492)2 + 35

128



 (0.28322033)

+





12155(0.53476583ξ + 0.41144797)9 − 25740(0.53476583ξ + 0.41144797)7

128

+
18018(0.53476583ξ + 0.41144797)5 − 4620(0.53476583ξ + 0.41144797)3

128

+
315(0.53476583ξ + 0.41144797)

128

)

(0.21299134)

+





46189(0.13224697ξ + 0.31148234)10 − 109395(0.13224697ξ + 0.31148234)8

256

+
90090(0.13224697ξ + 0.31148234)6 − 30030(0.13224697ξ + 0.31148234)4

256

+
3465(0.13224697ξ + 0.31148234)2 − 63

256



 (0.00013506)

(51)
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[12] Vicenţiu Rădulescu and Dušan Repovš. Combined effects in nonlinear

problems arising in the study of anisotropic continuous media. Nonlinear

Analysis: Theory, Methods & Applications, 75(3):1524–1530, 2012.

[13] Dietrich Flockerzi and Kai Sundmacher. On coupled lane-emden equa-

tions arising in dusty fluid models. In Journal of Physics: Conference

Series, volume 268, page 012006. IOP Publishing, 2011.

[14] NT Shawagfeh. Nonperturbative approximate solution for lane–emden

equation. Journal of Mathematical Physics, 34(9):4364–4369, 1993.

[15] Abdul-Majid Wazwaz. A new algorithm for solving differential equations

of lane–emden type. Applied Mathematics and Computation, 118(2-

3):287–310, 2001.

[16] Shijun Liao. A new analytic algorithm of lane–emden type equations.

Applied Mathematics and Computation, 142(1):1–16, 2003.

[17] Ji-Huan He and Fei-Yu Ji. Taylor series solution for lane–emden equation.

Journal of Mathematical Chemistry, 57(8):1932–1934, 2019.

[18] MI Nouh. Accelerated power series solution of polytropic and isothermal

gas spheres. New Astronomy, 9(6):467–473, 2004.

[19] VB Mandelzweig and F Tabakin. Quasilinearization approach to nonlinear

problems in physics with application to nonlinear odes. Computer Physics

Communications, 141(2):268–281, 2001.

[20] Abdul-Majid Wazwaz. The variational iteration method for solving linear

and nonlinear odes and scientific models with variable coefficients. Central

European Journal of Engineering, 4(1):64–71, 2014.

[21] Olivier Marsden, Christophe Bogey, and Christophe Bailly. A study of

infrasound propagation based on high-order finite difference solutions of

the navier-stokes equations. The Journal of the Acoustical Society of

America, 135(3):1083–1095, 2014.
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