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SUMMARY

The range of Thomsen’s anisotropy parameters ¢ and
§ for vertical transversely isotropic (VTI) media when
the anisotropy is due to fine layering of isotropic elas-
tic materials is considered. We show that ¢ lies in the
range —3/8 < € < + [(v3) (v;?) — 1], for finely lay-
ered media having constant density; smaller positive
and all negative values of € occur for media with large
fluctuations in the Lamé parameter A. We show that
sign($) = sign ((v;2> - <v,’2> (vf/vﬁ)) for constant
density media, so 6 can be either positive or negative.
Among all theoretically possible random media, posi-
tive and negative § are equally likely in finely layered
media limited to two types of constituent layers. Lay-
ered media having large fluctuations in Lamé X are the
ones most likely to have positive §. Since Gassmann’s
results for fluid-saturated porous media show that the
effects of fluids influence only the A Lamé constant,
not the shear modulus u, these results suggest that
positive § occurring together with positive but small ¢
may be indicative of changing fluid content in layered
earth.

INTRODUCTION

Two primary goals of seismic reflection processing are:
(1) to image geologic structure and (2) to provide in-
formation about lithology for interpretation. The pro-
cess used to achieve the second goal is made complex
by the fact that the same seismic velocity may result
from several different combinations/mixtures of mate-
rials in the earth, i.e., the possible causes of the ob-
served behavior are often nonunique. It is therefore
necessary to explore the possible range of seismic ve-
locities that car occur within the set of circumstances
deemed most likely to occur in the earth at the site of
interest.

Fine horizontal layering (i.e., layers with thickness
small compared to the wavelength of the seismic wave)
is known to result in vertical transverse isotropy (VTI)
- wherein wave speeds vary with angle in such media,
but are uniquely determined by the angle from the ver-
tical. There has continued to be some doubt about the
range of anisotropy parameters possible in such me-
dia. Here we will correct some common errors found
in the literature. We show that Thomsen’s parameter
¢ can be negative and actually has a greater negative
range than indicated in previous published work. We
also show that Thomsen’s parameter § can be positive
in finely layered media (contrary to some erroneous
claims that have appeared in the literature), and fur-
thermore that regions having both positive § and posi-

tive but small ¢ are likely to be regions of rapid spatial
variation in fluid content. We use Monte Carlo simula-
tions to establish the existence of both positive § and
negative ¢, and analysis of Backus averaging formulas
to clarify when such behavior occurs.

ANISOTROPIC ELASTIC MEDIA

For an isotropic elastic medium, the stiffness tensor
has the form

Cipkt = Abiy8it + u (6irbi0 + 8iid;i) (1)

depending on only two parameters (the Lamé con-
stants, A and u), this tensor can have up to 21 inde-
pendent constants for general anisotropic elastic me-
dia. The stiffness tensor has pairwise symmetry in its
indices such that ci;xi = ¢jixt and cijer = cijk, which
will be used later to simplify the resulting equations.

A commonly used simplification of the notation for
elastic analysis is given by introducing the strain ten-
sor, where e,; = %(u,—_, + u;,:) Then, using one version
of the Voigt convention, in which the pairwise sym-
metries of the stiffness tensor indices are used to re-
duce the number of indices from 4 to 2 using the rules
11 —-1,22-2,33 —-3,230r32 -4, 13 0r 31 — 5,
and 12 or 21 — 6, we replace oi; = cijuer by the
usual 6 x 6 system. For VTI materials, ¢j; = ¢22 = a,
Ci2 = b, 13 = €23 = f, €33 = C, C44 = Cs5 = l, and
ce¢ = m. There is also one further constraint on the
constants that a = b + 2m, following from rotational
symmetry in the z;zs-plane.

BACKUS AVERAGING

Backus [1962] presents an elegant method of produc-
ing the effective constants for a thinly layered medium
compased of either isotropic or anisotropic elastic lay-
ers. This method applies either to spatially periodic
layering or to random layering, by which we mean ei-
ther that the material constants change in a nonpe-
riodic (unpredictable) manner from layer to layer or
that the layer thicknesses may also be random. For
simplicity, we will assume that the layers are isotropic.
The results are
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m = (p). (6)

One very important fact that is known about these
equations is that they reduce to isotropic results with
a=oc b= f, and |l = m, if the shear modulus is a
constant, regardless of the behavior of A.

THOMSEN PARAMETER ~

The two shear moduli must satisfy

s (H)=T @

because the well-known Cauchy-Schwartz inequality
(aB) < <a2> (,@2> gives this result when o = u'/? and
8 = 1/p*/?. Equality applies in the Cauchy-Schwartz
inequalities only when a = const x 3, which implies in
the present circumstances that u must be constant for
! = m. But this is precisely the condition mentioned
earlier for the layer equations to be isotropic, so we
generally exclude this case from consideration. The
implication of (7) for Thomsen’s v is that
-1

= — > 0.
v 5T 20 (8)

and

THOMSEN PARAMETER ¢

An important anisotropy parameter for qP-waves is
Thomsen’s parameter ¢, defined by
a—c
2¢

)

Formula (2) for a may be rewritten to show that

2 = [<A+zu><“‘u>-1] _
() () () o

We find that the first bracket on the right hand side
is again in Cauchy-Schwartz form showing that it al-
ways makes a positive contribution unless A + 24 =
constant, in which case it vanishes. Similarly, the sec-
ond term always makes a negative contribution unless
A = constant, in which case it vanishes.

Fluctuations in A in the earth have important im-
plications for oil and gas exploration. Gassmann’s
well-known results [Gassmann, 1951) show that, when
isotropic porous elastic media are saturated with any
fluid, the fluid has no mechanical effect on the shear
modulus g, but can have a significant effect on the
bulk modulus K = A + %u, and therefore on A. Thus,
observed variations in p have no direct information

about fluid content, while observed variations in A,
especially if they are large variations, may contain im-
porant clues about variations in fluid content. So the
observed structure of ¢ in (10) strongly suggests that
small positive and all negative values of ¢ may be im-
portant indicators of significant fluctuations in fluid
content.

If the finely layered medium is composed of only two
distinct types of isotropic elastic materials and they
appear in the layering sequence with equal spatial fre-
quency, then we find that

(A2 = A1) + (p2 — 1)
(A1 +2m ) (A2 4 2p2)

2e = (p2 — p1) (11)
This result agrees with Postma [1955] except for an
obvious typographical error in the denominator of his
published formula. This formula shows clearly that if
#1 = p2 then Thomsen parameter ¢ is identically equal
to zero as expected. Also, if 41 # u2 but A; = Az, then
(11) implies € > 0, as we inferred from (10).

Now, we can use this formula to deduce the smallest
possible value of the right hand side of (11). The shear
moduli must not be equal, so without loss of general-
ity we suppose that u; > u;. Then, the numerator
is seen to become negative by taking A; towards neg-
ative values and Ay — +o0o. The smallest value A
can take is determined by the bulk modulus bound
A2 + 242 > 0. So we may set \; = —~2y, in both the
numerator and denominator. This choice also makes
the factor Az + 2u2 = %42 as small as possible in the
denominator, thus helping to magnify the effect of the
negative numerator as much as possible. The result so
far is that

26:_{(#2*#1) (—/\1 +#2/3—I$1) (12)
4 2 AL +2m

The parameter A; may vary from — % u1 to plus infinity.
At )\ = —%pl, the second expression in parentheses
is positive; but, this expression is also a monotonically
decreasing function of A\, and approaches —1 as Ay —

+00. Thus, the smallest value of Thomsen’s parameter
¢ is given by

3 puz — 3
=3z, 3 13
€ 8 7 23 (13)

This result differs by a factor of 2 from the corre-
sponding result of Postma [1955}, which was obtained
improperly by allowing three of the four elastic con-
stants to vanish and also using a physically motivated
but unnecessary restriction that both A; and A; must
be nonnegative.

THOMSEN PARAMETER §
Thomsen’s parameter § is defined by

_ Y - (=P
b= (14)
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This parameter is considerably more difficult to an-
alyze than either v or ¢ for various reasons, some of
which we will enumerate shortly.

Because of the controversy surrounding the sign of 6
for finely layered media, we have performed a series
of Monte Carlo simulations with the purpose of estab-
lishing the existence or nonexistence of layered mod-
els having positive 8. The simulations to be presented
here were performed on models limited to two types of
layers. Another set of simulations was performed hav-
ing three types of layers, since it is known [Backus,
1962] that this is the most general case that needs to
be considered, but we will not present that work here.
The set of constant density models were chosen ran-
domly by specifying the possible values of v, to lie
in some range v,’,""" < vp < vp"®*. The values cho-
sen for the limiting wave speeds in the example shown
in Figure 1 were v;,"‘" = 2.5 km/sec and v;** = 5.5
km/sec. The range of the shear wave velocity was
similarly specified by constraining the ratio v,/vp to
lie within a range rmin < vs/%p < T'maz, Where for the
case being presented rmin = 0.35 and rmas = 0.65.
The density was chosen to be p = 2670 kg/m®, but any
choice of constant density would have resulted in the
same dimensionless Thomsen parameters. For com-
parison, note that the density of quartz is about 2650
kg/m® and the density of calcite is about 2720 kg/m*
(e.g., Wilkens et al., 1984).

Figure 1 shows the Monte Carlo results for § plotted
versus 1 from 500 random models, where

€e—34

"= 1728 (13)

The parameter n has been shown to be useful in seis-
mic processing by Tsvankin and Thomsen [1994] and
Alkhalifah and Tsvankin [1995]. It is particularly use-
ful in the present context because it is known that for
layered media this parameter will always be positive
because € — & will always be positive [Postma, 1955;
Backus, 1962; Berryman, 1979]. We see that most
models are clustered around the origin (7, 8) = (0,0),
but there is no question that a large fraction of the
models have positive §. For this particular method of
generating the models, we find that about 25% of the
two-layer models have positive §.

Encouraged by the Monte Carlo simulation results, we
have analyzed § in light of the Backus formulas in order
to determine whether it was possible to understand
those circumstances in which § > 0 are most likely to
occur. Using the formulas (2)-(6) derived by Backus
[1962], it is not hard to show that one natural form of
the expression for § is

-1
§ =2 z\+u> A+ p x
A+2u0/ \ p(A+2p)
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Figure 1: Crossplot of § versus n for 500 random
examples of layered media according to the algo-
rithm in the text.
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It is easy to show that the prefactors are all always
positive. So the sign of § is determined by the ex-
pression in brackets. Using simple algebraic manipu-
lations, this expression can be rewritten in a number
of different but useful forms, including

<%> <;:z';> B <u(;:‘2‘n)> B
(vime) - (3) () -0

The manipulations required to arrive at such results
will be described in more detail elsewhere. The impor-
tant point about this sequence of inequalities is that
each successive one can be used to prove something
general about the sign of § for layered media. In each
case, we note that if some multiplicative factor is con-
stant in all layers of the finely layered medium, then
that factor may be removed from the averages. The
second line shows that if A + 2u = constant, then
again § is nonpositive. The very first expression may
also be used in a slightly different way to arrive at
a general result, § = 0 if Poisson’s ratio is constant,
for in that case the ratio A/u is also constant and so
(A + #)/(X + 2p) is constant.

It is straightforward to show for layered media having
only two constituents that the last expression in (17)
implies that § will be positive if

A om
—_—>—=>1, 18
Az T pa (18)
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or if %L < £ <« 1, showing that the fluctuations in
the Lamé constant A must be greater than those in
the shear modulus g to observe positive §.

As discussed earlier, v,/vp ratios are decreased by the
presence of pores, flat cracks, or the addition of clay,
dolomite, feldspar, or calcite to silicic rocks. Any
of these factors can cause fluctuations in A without
greatly changing u.

For layered media with constant density, the final ex-
pression in (17) shows that

sign(8) = sign (('v;2> - (v:2> <v§/v§>) . (19)

THOMSEN PARAMETER BEHAVIOR

The results concerning the signs of the Thomsen pa-
rameters obtained in the preceding sections are sum-
marized in Table 1.

TABLE 1. Behavior of anisotropy parameters as the
layer material elastic parameters vary.

Thomsen | A = const | XA+ 2u = const v = const
e, u # const 4 # const A, p # const
€ >0 <o >0
] <0 <o 0

The nonnegativity of v and ¢ — § for layered models
are well-known. The fact that ¢ can be either positive
or negative, and the circumstances leading to nega-
tive values has been little appreciated before. A quick
glance at the Table seems to indicate that § is either
zero or negative and this is perhaps why there has
been so much confusion about the possibility of § > 0
for layered models. We have shown that the correct
inference about positive § follows rather simply from
the the result expressed in the last column of the Ta-
ble. Since § = 0 when Poisson’s ratio is constant or
when u = constant, it is clear that we must have
(for example) py1/pz > 1 and Ai/p1 # X2/p2 if § is
to be positive. The second expression can be rear-
ranged to A1/A2 # p1/p2 > 1. Now we see that there
are two possible cases, either Ad1/A2 > m1/pu2 > 1 or
A1/X2 < p1/p2. The first case results in positive §,
while the second case does not when uy/u2 > 1. This
also shows that in perfectly random layered media one
expects § > 0 to account for 50% of the models. In our
simulation we found § > 0 accounted for only about
25% of the models produced, but this apparent dis-
crepancy has been traced to a bias in the particular
algorithm we used to generate the models. In any
case, the earth does not have to obey perfectly ran-
dom statistics and there is no reason to suppose that
real layered earth will conform to these statistical con-
siderations. Our main point is merely that § > 0 is
entirely possible and quite understandable for layered

earth models, and so it is not at all surprising that
6 > 0 is often observed in real data examples.

DISCUSSION

The results obtained here show that Thomsen’s pa-
rameter ¢ is smallest when the variation in the layer
A Lamé parameter is large, independent of the varia-
tion in the shear modulus g. This result is therefore
important for applications to porous layers contain-
ing pore fluids for which Gassmann’s [1951] equation
shows that the effects of fluids influence only the A
Lamé constants, not yx. Similarly, we find that & is
positive in finely layered media having large variations
in A. Thus, the regions of positive but small ¢ when
occurring together with positive § may be useful indi-
cators of rapid spatial changes in fluid content in the
layers. This result cannot, however, be considered in
isolation, as there may be other effects in nonlayered
media that produce similar values of the Thomsen pa-
rameters, and these should be explored and enumer-
ated before any definitive statement can be made.
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