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Abstract: Conventional positioning techniques based on GPS receivers are not accurate enough to be used with autono-

mous guidance systems. High accuracy GPS receivers can be employed, but the cost of the system would be very high. 

The alternative solution presented in this article is to combine the data provided by different positioning sensors using a 

Kalman filter. The described procedure also uses an odometric estimation of the mobile position, based on the kinematic 

model of the agricultural vehicle. Three different implementations of the Kalman filter are described, using different sen-

sor combinations but based on the same vehicle model. 
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INTRODUCTION 

 Autonomous vehicle guidance includes positioning tech-
niques to determine vehicle position and speed, and control 
techniques which implement the required actions to move 
the vehicle through the desired trajectory. This article fo-
cuses only on positioning techniques. 

 Positioning systems may be classified into absolute posi-
tioning systems and relative positioning systems. The first 
group can be used to obtain the mobile position with respect 
to a global reference; on the other hand, the second group 
provides the mobile position with respect to its previous po-
sition [1]. Nowadays, the most widely used positioning sys-
tem for agricultural vehicles is the GPS system. However, 
there are many other different positioning techniques. Hague 
et al. describe several non GPS based positioning systems 
[2]. 

 Each positioning system has advantages and disadvan-
tages, and is more suitable for certain kind of applications. 
However, the best option is usually the fusion of data pro-
vided by different positioning sensors. This increases the 
accuracy of the system and it is useful to avoid positioning 
problems, for example, if the GPS reception fails [3-7]. 

 One of the most widely used methods for this fusion is 
the Kalman filter [8]. The Kalman filter combines measure-
ment data with estimations, minimizing the mean square 
error of the predictions. Also, this filter can be used only 
with a GPS receiver, in order to improve accuracy as it is 
described in [9]. 

 This paper shows the mathematical calculations related to 
the data fusion with Kalman filter, for three different  
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configurations of the system. All the configurations use a 
GPS receiver and the same kinematic model (more complex 
kinematic models can be found in [10,11]). The first con-
figuration combines the data from the GPS with a measure-
ment of the steering angle. The second configuration uses an 
electronic compass instead of the steering angle sensor. Fi-
nally the last configuration uses an IMU (Inertial Measure-
ment Unit) and a steering angle sensor. Note that the most 
complex and expensive configuration is the last one, because 
it uses more sensors and calculation requirements are higher. 

 Kalman filtering is a powerful tool that has many other 
applications in agriculture, not only sensor fusion. For ex-
ample, it can be used in topographic mapping or in obstacle 
detection algorithms [12, 13], but that is out of the scope of 
this article. 

TRICYCLE MODEL 

 Tricycle model (also known as Ackerman model) can be 
used to model the kinematic behavior of the most part of 
agricultural vehicles with three and four wheels. 

 As it is shown in Fig. (1), it consists of two main wheels 
which provide the vehicle speed, and a third wheel which 
controls the vehicle direction. 

 In Fig. (1) it is very easy to deduce that the turn radius RC 
is given by the following equation (1): 

RC =
L

tg
,            (1) 

where L is the length of the vehicle and  the steering angle. 

 Taking into account that the linear speed and the angular 
speed are related by the turn radius, the following expression 
can be obtained (2): 
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= =
v

RC
=
v tg

L
,           (2) 

where  is the angular speed of the mobile,  is the orienta-
tion of the vehicle in an external inertial reference system, 
and v is the longitudinal speed of the mobile. Usually v and  
are the control variables of the system, L is a known parame-
ter, and the other variables must be estimated or measured. 
The proposed equations have many simplifications, more 
complex models can be found in the literature, see [4, 5], but 
the proposed model is enough for the purposes of this study. 

KALMAN FILTER IN AN AGRICULTURAL VEHI-

CLE 

 Comparing the GPS with dead reckoning positioning 
signals, the GPS usually gives low frequency information 
position, and dead reckoning provides high frequency infor-
mation position. The GPS positioning signal is often noisy 
but bounded, while the dead reckoning signal is often 
smooth but unbounded. All the facts indicate that GPS posi-
tioning and dead reckoning positioning are complementary 
in nature, so that dead reckoning signals can be used to 
smooth out the short-term GPS error, and GPS signal can be 
used to recalibrate or align the dead reckoning drifting over a 
long period of time. 

 GPS signals arrive at fixed intervals, typically 1 second, 
and 0.2 seconds in the case of some more expensive models. 
Steering information from a steering sensor or from an elec-
tronic compass is virtually continuous, so an odometry 
model can be run at a much greater repetition rate. When a 

GPS reading arrives, it can be compared against the com-
puted odometry estimation to correct drift and slip. This is 
basically the function of the Kalman filter. 

 A Kalman filter can be used to integrate the observations 
from absolute positioning and relative positioning. A very 
“friendly” introduction to the general idea of the Kalman 
filter can be found in Chapter 1 of [14], while a more com-
plete introductory discussion can be found in [8], which also 
contains an interesting historical review. More extensive 
references include [13, 15-17]. 

Kalman Filter Using Steering Angle Sensor Information 

 One of the simplest Kalman filter implementation uses 
the positioning information of a GPS, with information of 
the mobile steering angle, as it is shown in Fig. (2). This 
information is provided by a sensor attached to the steering 
axis. 

 In this case, the state vector of the system can be defined 
in the following way: 

Xk =

xk

yk

k

vk

,            (3) 

where xk , yk( )  is the position of the vehicle in the instant tk 

in the local coordinate system, fixed to the earth. 
k

, v
k
 are 

respectively the heading (angle between the movement direc-

 

Fig. (1). Tricycle model. 

 

Fig. (2). Block diagram for the described implementation. 
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tion of the vehicle and the north), and the vehicle speed at 

time instant tk . 

 The system state equation can be expressed in the follow-
ing way [11]: 

X
k+1

= F
k
X
k
+

k
,           (4) 

where the state transition matrix (system matrix) F
k

 is de-

scribed as: 

Fk =

1 0 0 T sen k

0 1 0 T cos k

0 0 1 T
tg

L

0 0 0 1

.            (5) 

 In equation (4) k  is white noise, and T is the update 

period of the Kalman filter. This means that the Kalman fil-

ter algorithm is executed each T seconds. The  parameter 

corresponds to the direction angle of the wheels. 

 The observations of the system are defined in the follow-
ing way: 

Zk =

xGPS

yGPS

GPS

VGPS k

,            (6) 

where x
GPS

, yGPS , 
GPS

 and V
GPS

 are the position, heading 

and speed signals of the GPS respectively. Note that the up-

date rate of these measurements is very small, whereas the 

update period of the filter is greater. The filter uses the 

odometric estimations based on the system model to interpo-

late the intermediate system state values. 

 The observation equation can be written in the following 
way [11]: 

Z
k
= H

k
X
k
+ v

k
             (7) 

 The matrix that defines the observation model is: 

H
k
=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

           (8) 

 It is the identity matrix because the measurements are 

directly related with the system state variables. As in the 

system state equation, here a white noise component vk is 

introduced. Note that the system and observation white noise 

variables v
k

 and 
k

are considered gaussian sequences of 

zero mean and incorrelated. The initial value X
0

 of the sys-

tem state is a gaussian variable of known mean X
0

, and co-

variance matrix P
0

 also known. This means that the follow-

ing conditions are met: 

E
k( ) = 0 ,            (9) 

E v
k( ) = 0 ,          (10) 

E
k i

T( ) = k i( ) Qk ,        (11) 

E v
k
v
i

T( ) = k i( ) R
k

,         (12) 

where n( ) =
1, n = 0

0, n 0
 is the Kronecker delta function, 

Q
k

is the covariance matrix of the system noise, and R
k

 is 

the covariance matrix of the observation noise. All of them 

are defined and positive. 

 The adjustment of Q
k

 and R
k

 is critical in the develop-

ment of the Kalman filter [11]. In this research, R
k

is de-

fined in the following way: 

R
k
=

X(GPS)

2
0 0 0

0
Y(GPS)

2
0 0

0 0
(GPS)

2
0

0 0 0
V(GPS)

2

,       (13) 

where 
X(GPS)

2
, 

Y(GPS)

2
, 

(GPS)

2
, 

V(GPS)

2
 are the covariances 

of the GPS observations. Qk usually has the following shape: 

Qk = q·

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

,         (14) 

where q is a parameter which measures the quality of the 
estimation. A small value means that the filter will give more 
importance to the estimation and less importance to the 
measurements. The value of this parameter must be chosen 
carefully, and there are several methods to determine the 
most convenient value for a specific application, see for ex-
ample [8]. 

 The equations for the estate estimation, update and gain 
matrix for this Kalman filter are listed in the following lines. 
See [11, 15, 16] for a more detailed explanation of these 
equations. 

 Extrapolation of the estimated estate: 

X̂
k

= F
k 1

X̂
k 1

+
.         (15) 

 Extrapolation of the error covariance: 

P
k

= F
k 1

P
k 1

+
F
k 1

T
+Q

k 1
.        (16) 

 Update of the estimated estate using the observations: 

X̂
k

+
= X̂

k
+ K

k
Z
k
H
k
X̂
k( ) .        (17) 

 Update of the estimation error covariance: 

P
k

+
= I K

k
H
k( ) Pk .         (18) 

 Gain matrix of the filter: 

K
k
= P

k
H
k

T
H
k
P
k
H
k

T
+ R

k( )
1

.       (19) 
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 In the equations presented here, the (-) sign represents the 
a priori values of the covariance and the system state estima-
tions, and the (+) sign represents the a posteriori values. Fig. 
(3) shows the sequence of operations for Kalman filtering, 
summarizing the previous equations. 

Kalman Filter for GPS-Compass Data Fusion 

 Another possible configuration of a Kalman filter applied 
to an agricultural vehicle uses an electronic compass instead 
of a steering angle sensor. The main advantage of this con-
figuration is that the electronic compass does not require any 
special configuration to be installed in the vehicle. One dis-
advantage is that it is affected by the presence of external 
metallic objects, particularly if they are big. The solution is 
to put the compass far enough of these objects and perform a 
compensation of their effect. There are several algorithms to 
do this, see [5], but they are out of scope of this paper. The 
system configuration in this implementation is shown in Fig. 
(4). 

 In this case, the state vector of the system can be defined 
in the following way: 

Xk =

xk

yk

k

vk

,          (20) 

where xk , yk( )  is the position of the vehicle in the instant tk 

in the local coordinate system, fixed to the earth. 
k

, v
k

 are 

respectively the heading (angle between the movement direc-

tion of the vehicle and the north), and the vehicle speed in 

the time instant t
k

. 

 The state transition matrix (system matrix) F
k

is de-

scribed as: 

F
k
=

1 0 0 T sen
k

0 1 0 T cos
k

0 0 1 0

0 0 0 1

.        (21) 

 If the angle of the wheels ( ) is additionally considered, 
the Fk matrix could be described as: 

Fk =

1 0 0 T sen k

0 1 0 T cos k

0 0 1 T
tg

L

0 0 0 1

        (22) 

 This is the same that has been previously obtained in the 
first method. Note that the measurement of the wheels angle 
( ) improves the accuracy of the estimation and therefore the 

 

Fig. (3). Sequence of operations for Kalman filtering. 

 

Fig. (4). Block diagram for the described implementation. 



Analysis of Three Different Kalman Filter Implementations for Agricultural Vehicle Positioning The Open Agriculture Journal, 2009, Volume 3    17 

performance of the Kalman filter. However, it requires an 
additional sensor. 

 The observations of the system are defined in the follow-
ing way: 

Zk =

xGPS

yGPS

GPS

VGPS

COM k

,          (23) 

where x
GPS

, yGPS , 
GPS

 and V
GPS

 are the position, heading 

and speed signals of the GPS respectively, and 
COM

 is the 

heading provided by the compass. 

 The matrix that defines the observation model is: 

H
k
=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 0

.         (24) 

 As in the first method, it is necessary to define the co-

variances of the different observations: 
X(GPS)

2
, 

Y(GPS)

2
, 

(GPS)

2
, 

V(GPS)

2
, 

(COM)

2
and the parameter q that defines the 

quality of the estimation. The value of these parameters must 

be chosen carefully. There are several methods to determine 

the most convenient values for a specific application, see [8] 

for more information. 

 The equations for the estate estimation, update and gain 
matrix for this Kalman filter are the same that for the first 
filter. See equations (15), (16), (17), (18) and (19). 

Kalman Filter Using IMU Information 

 It is very common to use Kalman filters to combine data 
from a GPS receiver with data from an inertial system 
(IMU). Fig. (5) shows the block diagram of this system, 
where information provided by a heading angle sensor is 
also used. 

 In this case, the state vector of the system can be defined 
in the following way: 

 

Xk =

xk

yk

k

xk

yk

k

xk

yk

vk

,          (25) 

where: 

� xk , yk( ) : Position of the vehicle in the instant tk in the 

local coordinate system fixed to the earth. 

� 
k

: Heading (angle between the movement direction 

of the vehicle and the north). 

� 
 
xk , yk( ) : Linear speed in each axis. 

� 
 k

: Angular speed. 

� 
 
xk , yk( ) : Linear accelerations in each axis. 

� v
k

: Speed of the vehicle in the instant t
k

. 

 In this implementation the state transition matrix (system 

matrix) F
k

 is described as: 

Fk =

1 0 0 T 0 0
T
2

2
0 0

0 1 0 0 T 0 0
T
2

2
0

0 0 1 0 0 T 0 0 0

0 0 0 0 0 0 0 0 cos k

0 0 0 0 0 0 0 0 sen k

0 0 0 0 0 0 0 0
tg

L

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

. (26) 

 

 

Fig. (5). Block diagram for the described implementation. 
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 In the previous matrix T is the update period of the Kal-
man filter and  corresponds to the direction angle of the 
wheels. L is a parameter related to the tricycle model (length 
of the vehicle). 

 The observations of the system are defined in the follow-
ing way: 

 

Zk =

xGPS

yGPS

GPS

VGPS

IMU

IMU

xIMU

yIMU k

,          (27) 

where x
GPS

, yGPS , 
GPS

 and V
GPS

 are the position, heading 

and speed signals of the GPS respectively. 

 IMU , IMU , xIMU , yIMU are respectively the heading, angular 

speed and linear accelerations provided by the IMU. 

 The matrix that defines the observation model is: 

H
k
=

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 cos
k

sen
k

0

0 0 0 0 0 0 sen
k

cos
k
0

.      (28) 

 The last two rows of the previous matrix have implicit 
the relation between the system accelerations and the accel-
erations provided by the inertial sensor (Fig. 6). In this case, 
it is necessary that the X axis of the inertial sensor is aligned 
with longitudinal axis of the mobile. 

 As in the previous methods, it is necessary to define the 

covariances of the different observations: 
X(GPS)

2
, 

Y(GPS)

2
, 

(GPS)

2
 and 

V(GPS)

2
 for GPS related observations and 

(IMU)

2
, 

 
(IMU)

2
, 

 
X(IMU)

2
 and 

 
Y(IMU)

2
 for IMU related ob-

servations. It is also necessary to set the value of the parame-

ter q that defines the quality of the estimation. The value of 

all these parameters must be chosen carefully, there are sev-

eral methods to determine the most convenient values for a 

specific application, see [8] for more information. 

 The equations for the estate estimation, update and gain 
matrix for this Kalman filter are the same that for the previ-
ous filters. See equations (15), (16), (17), (18) and (19). 

CONCLUSIONS 

 The aim of this article is to apply the Kalman filter theory 
to improve the accuracy of positioning techniques used in 
autonomous guidance systems of agricultural vehicles. Dif-

ferent positioning techniques are possible for this kind of 
applications depending on the required accuracy. 

 

Fig. (6). Relation between the accelerations in the global reference 

system and the accelerations in the mobile reference system. 

 Conventional systems use a GPS as a positioning ele-
ment, but the cost of the system is very high when good ac-
curacy is required. Moreover, there are many other problems 
related to the use of a GPS as a positioning element in a ve-
hicle, for example the absence of heading information when 
the vehicle is not moving or the temporary errors due to a 
bad signal reception [9]. 

 These problems can be solved by combining the GPS 
information with complementary data provided by other kind 
of sensors like electronic compasses or IMU (Inertial Meas-
urement Units). This study applies the Kalman filter to com-
bine the data of these sensors. The first proposed system uses 
an external steering sensor, the second an electronic compass 
and the last one a IMU. 

 For each sensor combination, the equations of the system 
have been developed using an Ackermann kinematic model. 
The article only gives a brief overview of the Kalman filter 
theory and equations, as they can be consulted in the related 
literature [11, 15-17]. 

 Note also that although GPS noise will have a Gaussian 
component, there are aspects of the errors that have very 
different statistical properties, such as multipath and change 
of constellation. Kalman filtering theory supposes that the 
noise that affects the system is Gaussian, therefore the appli-
cation to a GPS has some limitations that must be considered 
[9] but they are out of scope of this paper. 

 The practical application of a Kalman filter to a specific 
problem requires correct configuration of its parameters, 
specially the determination of the values of the system noise 
variance and the measurement noise variance. There are sev-
eral techniques to determine the optimal values of these pa-
rameters. Literature about this subject can be found in [8, 
14]. 
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