
[GFEMgl˙two˙scale – July 1, 2009]

Analysis of Three-Dimensional Fracture Mechanics Problems:
A Two-Scale Approach Using Coarse Generalized FEM Meshes

D.-J. Kim, J.P.A. Pereira and C.A. Duarte

Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign

2122 Newmark Laboratory, 205 North Mathews Avenue

Urbana, Illinois 61801, USA

SUMMARY

This paper presents a Generalized Finite Element Method (GFEM) based on the solution of interdependent
global (structural) and local (crack) scale problems. The local problems focus on the resolution of fine-scale
features of the solution in the vicinity of 3-D cracks while the global problem addresses the macro-scale structural
behavior. The local solutions are embedded into the solution space for the global problem using the partition of
unity method. The local problems are accurately solved using an hp-GFEM and thus the proposed method does not
rely on analytical solutions. The proposed methodology enables accurate modeling of 3-D cracks on meshes with
elements that are orders of magnitude larger than the process zone along crack fronts. The boundary conditions for
the local problems are provided by the coarse global mesh solution and can be of Dirichlet, Neumann or Cauchy
type. The effect of the type of local boundary condition on the performance of the proposed GFEM is analyzed.
Several three-dimensional fracture mechanics problems aimed at investigating the accuracy of the method and its
computational performance, both in terms of problem size and CPU time are presented.

KEY WORDS: Generalized FEM; Extended FEM; Fracture; Multiscale; Small cracks; Global-Local
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1. Introduction

The Generalized or Extended FEM (G/XFEM) [3, 4, 8, 19, 50, 52, 63, 66] has been successfully

applied to the simulation of boundary layers [16], propagating fractures [20, 35, 51, 67], acoustic

problems [6, 48], polycrystalline microstructures [1, 62], etc. All of these applications have relied

on closed-form enrichment functions that are known to approximate well the physics of the problem.

However, analytical enrichment functions are in general not able to deliver accurate solutions on coarse

three-dimensional meshes. To overcome this limitation, local mesh refinement must be performed as

in the standard FEM [25, 57]. This creates several of the drawbacks of the FEM with remeshing and

offsets many of the advantages of the G/XFEM. In the case of crack propagation and multiple site

1Correspondence to: C.A. Duarte, Department of Civil and Environmental Eng., University of Illinois at Urbana-Champaign,
Newmark Laboratory, 205 North Mathews Avenue, Urbana, Illinois 61801, USA. Tel.: +1-217-244-2830; Fax: +1-217-333-
3821. e-mail: caduarte@illinois.edu.

⋆ Submitted to International Journal of Numerical Methods in Engineering (March 13, 2009)



2 of 33 D.-J. KIM, J.P.A. PEREIRA AND C.A. DUARTE

damage analysis [2], the problem must be solved from scratch after each crack propagation step or for

each crack configuration. Furthermore, the analysis of non-linear or time-dependent fracture problems

may require mapping of solutions between meshes, as in the standard FEM. This may lead to loss

of solution accuracy when the solution spaces are not nested. Even when analytical enrichments are

able to approximate well the solution, as is the case in many 2-D fracture mechanics problems, the

minimum crack size which can be modeled is controlled by the element size in the mesh [7].

In [17, 18, 21, 40] we demonstrate that accurate fracture mechanics solutions can be obtained in

coarse meshes enriched with the so-called global-local enrichment functions. These functions are the

solution of local boundary value problems defined in the neighborhood of cracks. Boundary conditions

for these problems are provided by the coarse-scale global solution. We denote this class of methods

as a GFEM with global-local enrichment functions (GFEMgl). Global-local enrichment functions also

enable the analysis of problems with sharp thermal gradients using coarse meshes, as demonstrated in

[53].

In this paper, we combine the concept of global-local enrichments with the hp-GFEM for the 3D

fractures presented in [57, 58]. As a result, local features like cracks need not be discretized in global

scale meshes. They are instead modeled by the solution of local problems. In addition, cracks that are

smaller than global mesh elements can be discretized using this method. In this paper, we consider

three types of boundary conditions applied to local problems: Dirichlet, Neumann and Cauchy. The

effect of the type of local boundary condition on the performance of the proposed GFEM is analyzed.

From the approximation theory point of view, the proposed method is based on a two-scale

decomposition of the solution—A smooth coarse-scale and a singular fine-scale component. The

smooth component is approximated by a coarse global discretization of the domain. The fine-scale

is locally approximated by the hp-GFEM proposed in [57, 58]. The partition of unity concept is used

to paste the local approximations in the global solution space while still rendering a C0 solution space.

Details are presented in Section 3. Numerical examples demonstrate that the proposed method provides

a two-way information transfer between coarse (structural) and fine (crack) scales while not requiring

mesh refinement in structural scale meshes We also demonstrate that the method does not require the

solution of the problem from scratch when analyzing several crack configurations in a mechanical

component. This, as shown in Section 4, leads to a very efficient method for the class of problems

considered here.

Several other two- or multi-scale approaches for the analysis of fracture mechanics problems have

been proposed in recent years. A key difference among the various methods lies in the approach used to

combine fine- and coarse-scale approximations, i.e., how to transfer information among scales. Among

the recent works, we can mention the method of Guidault et al. [36] based on the LATIN method and

domain decomposition concepts; the multigrid method proposed in [61]; the method of Cloirec et al.

[13] based on Lagrange multipliers; the multiscale projection method of Belytschko et al. [10, 44]; the

concurrent multiscale approach of Liu et al. [43, 46, 47]; the hp FEM method of Krause et al. [27, 41];

the concurrent multi-level method of Gosh et at. [33, 34] based on the Voronoi Cell Finite Element

Method; the multi-resolution approach proposed by Tsukanov and Shapiro [70] based on distance

fields. The proposed GFEMgl is also related to the refined global-local FEM proposed by Mao and Sun

[45] and based on linear combinations of global and local approximations. The main difference with

respect to the proposed GFEMgl is, again, how the fine- and coarse-scale approximations are combined.

The s-version of the FEM (s-method) proposed by Fish et al. [30–32], the overlay technique of

Belytschko et al. [9] and the combination of the s-method with the XFEM proposed by Lee et al.

[42] can also be used to solve the class of problems considered in this paper. The s-method consists

of overlaying a coarse finite element mesh with patches of fine meshes in regions where the solution
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exhibits high gradients or singularities [30]. A recent version of the s-method aimed at multiscale

failure simulations, is the reduced order s-method (rs-method) of Fish et al. [28, 54]. Further discussion

of some of these methods and their relations with the proposed GFEMgl are presented in Sections 3.3

and 3.4.

Following this introduction, Section 2 presents a short summary of the Generalized Finite Element

Method. Details on the proposed GFEMgl are presented in Section 3. Section 4 presents several three-

dimensional fracture mechanics problems aimed at investigating the accuracy of the GFEMgl and its

computational performance both in terms of problem size and CPU time.

2. Generalized FEM: A Summary

The generalized FEM [3, 4, 19, 52, 63] is an instance of the so-called partition of unity method which

has its origins in the works of Babuška et al. [4, 5, 49] and Duarte and Oden [15, 22–24, 52]. The

extended FEM [8, 50] and several other methods proposed in recent years can also be formulated as

special cases of the partition of unity method. In these methods, discretization spaces for a Galerkin

method are defined using the concept of a partition of unity and approximation spaces that are selected

based on a priori knowledge about the solution of a problem. A shape function, φα i, in the GFEM is

computed from the product of a linear finite element shape function, ϕα , and an enrichment function,

Lα i,

φα i(xxx) = ϕα (xxx)Lα i(xxx) (no summation on α ) (1)

where α is a node in the finite element mesh. Figure 1 illustrates the construction of GFEM shape

functions.

The Lagrangian finite element shape functions ϕα , α = 1, . . . ,N, in a finite element mesh with N

nodes constitute a partition of unity, i.e., ∑N
α=1 ϕα (xxx) = 1 for all xxx in a domain Ω covered by the finite

element mesh. This is a key property used in partition of unity methods. Linear combinations of the

GFEM shape functions φα i, α = 1, . . . ,N, can represent exactly any enrichment function Lα i [15, 23].

Several enrichment functions can be hierarchically added to any node α in a finite element mesh.

Thus, if DL is the number of enrichment functions at node α , the GFEM approximation, uuuhp, of a

vector field uuu can be written as

uuuhp(xxx) =
N

∑
α=1

DL

∑
i=1

uuuα iφα i(xxx) =
N

∑
α=1

DL

∑
i=1

uuuα iϕα (xxx)Lα i(xxx)

=
N

∑
α=1

ϕα (xxx)
DL

∑
i=1

uuuα iLα i(xxx) =
N

∑
α=1

ϕα (xxx)uuuhp
α (xxx)

where uuu α i, α = 1, . . . ,N, i = 1, . . . ,DL, are nodal degrees of freedom and uuu
hp
α (xxx) is an approximation

of uuu defined on ωα = {xxx ∈ Ω : ϕα (xxx) 6= 0}, the support of the partition of unity function ϕα . In the

case of a finite element partition of unity, the support ωα (often called cloud) is given by the union

of the finite elements sharing a vertex node xxxα [19]. The equation above shows that the global GFEM

approximation uuuhp(xxx) is built by pasting together cloud-wise approximations uuu
hp
α ,α = 1, . . . ,N, using

a partition of unity.

The cloud approximations uuu
hp
α , α = 1, . . . ,N, belong to spaces χα (ωα ) = span{Liα }DL

i=1 defined on

the supports ωα , α = 1, . . . ,N. A-priori knowledge about the behavior of the function uuu over the cloud

ωα is used when selecting enrichment or basis functions for a particular space χα (ωα ). We refer to
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(a) (b)

Figure 1: Construction of a generalized FEM shape function using a polynomial (a) and a non-polynomial
enrichment (b). Here, ϕα are the functions at the top, the enrichment functions, Lα i, are the functions in the
middle, and the generalized FE shape functions, φα i, are the resulting bottom functions.

[12, 19, 20, 35, 51, 57, 58, 66, 67] and the references therein, for details on the selection of these

functions for the case 3-D linear elastic fracture mechanics problems like those considered in this

paper.

In [57, 58], we show that available analytical enrichments for 3-D fracture problems enable

modeling of surface discontinuities arbitrarily located within a finite element mesh (across elements).

Nonetheless, a sufficiently fine mesh must be used around the crack front to achieve acceptable

accuracy. Even though the refinement does not have to be as strong as in the FEM, it still creates many

of the problems faced by the FEM when simulating, for example, propagating cracks or performing

a multi-site damage analysis. Mesh refinement around the cracks requires that the problem be solved

from scratch for each crack configuration, leading to high computational costs.

3. Solution of Two-Scale Problems Using Global-Local Enrichments

In [17, 18, 21] we present a procedure to build enrichment functions based on the solution of local

boundary value problems defined in the neighborhood of cracks. The boundary conditions for these

problems are provided by a GFEM solution computed on coarse global meshes. We denote this class

of methods as a GFEM with global-local enrichment functions (GFEMgl). In [17, 18, 21] cracks are

discretized in the global meshes which prevents, for example, the analysis of small cracks or other

fine-scale features while keeping the global mesh coarse. In this section, this limitation is removed

through a two-scale decomposition of the solution of the global problem. The key idea is to combine

the global-local procedure of the GFEMgl with the hp-GFEM presented in [57, 58]. The latter is used to

discretize the local boundary value problems used in the GFEMgl and thus the proposed methodology

enables modeling of small cracks on coarse, uncracked, global meshes. Details are presented next.
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3.1. Formulation of Coarse-Scale Global Problem

Consider a domain Ω̄G = ΩG ∪∂ΩG in ℜ 3. The boundary is decomposed as ∂ΩG = ∂Ωu
G ∪∂Ωσ

G with

∂Ωu
G ∩∂Ωσ

G = /0. The equilibrium equations are given by

∇ ·σσσ = 000 in ΩG, (2)

The constitutive relations are given by the generalized Hooke’s law, σσσ = CCC : εεε, where CCC is Hooke’s

tensor. The following boundary conditions are prescribed on ∂ΩG

uuu = ūuu on ∂Ωu
G σσσ ·nnn = t̄tt on ∂Ωσ

G, (3)

where nnn is the outward unit normal vector to ∂Ωσ
G and t̄tt and ūuu are prescribed tractions and

displacements, respectively.

Let uuu0
G denote the generalized or standard FEM solution of the problem defined by (2), (3). This is

hereafter denoted as the initial global problem. The approximation uuu0
G is the solution of the following

problem:

Find uuu0
G ∈ XXX0

G(ΩG) ⊂ H1(ΩG) such that, ∀ vvv0
G ∈ XXX0

G(ΩG)

∫

ΩG

σσσ(uuu0
G) : εεε(vvv0

G)dxxx+η
∫

∂Ωu
G

uuu0
G · vvv0

Gdsss =

∫

∂Ωσ
G

t̄tt · vvv0
Gdsss+η

∫

∂Ωu
G

ūuu · vvv0
Gdsss (4)

where, XXX0
G(ΩG) is a discretization of H1(ΩG), a Hilbert space defined on ΩG, built with generalized,

or standard, FEM shape functions. In this paper, the GFEM is used and the space XXX0
G(ΩG) is given by

XXX0
G(ΩG) =

{

uuuhp =
N

∑
α=1

ϕα (xxx)ûuuhp
α (xxx) : ûuu

hp
α (xxx) =

D̂L

∑
i=1

ûuu α iL̂α i(xxx)

}

(5)

where ûuu α i, α = 1, . . . ,N, i = 1, . . . ,D̂L, are nodal degrees of freedom and D̂L is the dimension of a set

of polynomial enrichment functions, L̂α i(xxx), of degree less than or equal to p−1. Details can be found,

for example, in Section 3.2 of [57]. Space XXX0
G(ΩG) can also be defined using standard polynomial FEM

shape functions since cracks are not discretized in the initial global problem.

The parameter η in (4) is a penalty parameter. We use the penalty method due to its simplicity and

generality. Other methods to impose Dirichlet boundary conditions can be used as well.

The mesh used to solve problem (4) is typically a coarse quasi-uniform mesh like the one illustrated

in Figure 2. This mesh and the solution uuu0
G are usually available from the design phase of the structure

or mechanical component.

3.2. Formulation of Fine-Scale Problem

The proposed approach involves the solution of a local boundary value problem defined in a

neighborhood ΩL of a crack and subjected to boundary conditions provided by the global solution uuu0
G

(Cf. Figure 2). In this paper, we generalize the formulation introduced in [17, 18, 21] by considering

the cases of Dirichlet, Neumann and Cauchy boundary conditions provided by the global solution uuu0
G.

In each case, a local problem is solved on ΩL after the global solution uuu0
G is computed as described

above.

The statement of the principle of virtual work for the local problem is given by
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Pressure

Fixed

Fixed

Global problem
Local problem

Crack
(Shown for illustration only)

Boundary

conditions

Figure 2: Model problem used to illustrate the main ideas of the GFEMgl. The figure shows a crack in a 3-
D bracket. The solution computed on the coarse global mesh provides boundary conditions for the extracted
local domain in a neighborhood of the crack. The crack is shown in the global domain for illustration purposes
only. In the proposed GFEMgl, fine-scale features are not discretized in the global problem. Instead, global-local
enrichment functions are used.

Find uuuL ∈ XXX
hp
L (ΩL) ⊂ H1(ΩL) such that, ∀ vvvL ∈ XXX

hp
L (ΩL)

∫

ΩL

σσσ(uuuL) : εεε(vvvL)dxxx+η
∫

∂ΩL∩∂Ωu
G

uuuL · vvvLdsss+κ
∫

∂ΩL\(∂ΩL∩∂ΩG)
uuuL · vvvLdsss =

∫

∂ΩL∩∂Ωσ
G

t̄tt · vvvLdsss+η
∫

∂ΩL∩∂Ωu
G

ūuu · vvvLdsss+

∫

∂ΩL\(∂ΩL∩∂ΩG)
(ttt(uuu0

G)+κ uuu0
G) · vvvLdsss (6)

where XXX
hp
L (ΩL) is a discretization of H1(ΩL) using the GFEM shape functions presented in [57, 58]

XXX
hp
L (ΩL) =

{

uuuhp =
NL

∑
α=1

ϕα (xxx)
[

ûuu
hp
α (xxx)+H ũuu

hp
α (xxx)+ ŭuu

hp
α (xxx)

]
}

(7)

The partition of unity functions, ϕα , α = 1, . . . ,NL, are linear Lagrangian shape functions defined

by a finite element discretization of ΩL. The summation limit, NL, is the number of nodes in this

mesh. The cloud-wise functions ûuu
hp
α (xxx), H ũuu

hp
α (xxx) and ŭuu

hp
α (xxx) are approximations of the continuous,

discontinuous and singular components of the solution, respectively. The mesh used in ΩL does not fit

the crack surface. The crack is modeled instead by these functions. Details can be found in Section 3.2

of [57].

The traction vector, ttt(uuu0
G), that appears in the integral over ∂ΩL\(∂ΩL ∩ ∂ΩG) is computed from

the coarse-scale solution using Cauchy’s relation, i.e.,

ttt(uuu0
G) = n̂nn ·σσσ(uuu0

G) = n̂nn · (CCC : εεε(uuu0
G)) (8)
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with n̂nn the outward unit normal vector to ∂ΩL. The parameters η and κ are a penalty parameter and a

spring stiffness defined on ∂ΩL ∩∂Ωu
G and ∂ΩL\(∂ΩL ∩∂ΩG), respectively.

We can select the type of boundary conditions provided by uuu0
G depending on the choice of spring

stiffness κ as follows:

(i) Neumann boundary condition: Set κ = 0. Tractions defined in (8) are prescribed on ∂ΩL\(∂ΩL∩
∂ΩG).
Note that problem (6) may be not well-posed if ∂ΩL ∩ ∂Ωu

G = /0, since, in this case, it is a

pure Neumann problem. The tractions applied on ∂ΩL are in general not equilibrated since they

are computed from the coarse-scale GFEM solution. However, when solving simple uncracked

global domains subjected to uniaxial loads like in the problem of Section 4.2, the coarse-

scale solution uuu0
G is exact. Thus, the local Neumann problems are well-posed1. An example

is presented in Section 4.2.

(ii) Dirichlet boundary condition: Set κ = η ≫ 1. In this case, the solution uuu0
G of the initial global

problem is used as Dirichlet boundary condition on ∂ΩL\(∂ΩL∩∂ΩG). The performance of this

choice of boundary condition is analyzed in [18].

(iii) Cauchy or spring boundary condition: Set 0 < κ < η . Cauchy boundary conditions are given by

[68]

ttt(uuu) = κ (δδδ −uuu)

where ttt is the prescribed traction, κ is the stiffness of the springs, δδδ is displacement imposed at

the base of the spring system and uuu is the displacement at the boundary of the body [68]. From

the above we have that

κδδδ = ttt +κ uuu

Since ttt and uuu are not known, we use instead values provided by the coarse-scale solution uuu0
G and

set

κδδδ := ttt(uuu0
G)+κ uuu0

G (9)

With this choice, the tractions on ∂ΩL\(∂ΩL ∩∂ΩG) are given by

ttt(uuu) = ttt(uuu0
G)+κ uuu0

G −κ uuu

Thus, the prescribed tractions will be close to the case of Neumann boundary condition discussed

above if uuu0
G is close to uuu. However, in this case, the local problem is well-posed even if the

tractions ttt(uuu0
G) are not equilibrated.

There is a great freedom in selecting the spring constant κ as shown in Section 4. If κ is taken as

a large value (compared with the stiffness of the body), the boundary condition degenerates to a

Dirichlet boundary condition. Our numerical experiments show that any value of κ comparable

to, or larger than the stiffness of the body is acceptable and provides global-local enrichment

functions with good approximation properties.

1Even when uuu0
G is the exact solution of (4), a Neumann local problem may be not equilibrated due to roundoff or integration

errors [11]. Our main goal in considering the case κ = 0 is to compare the performance of different types of boundary conditions
prescribed on ∂ΩL\(∂ΩL ∩∂ΩG).
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3.3. Global-Local Enrichment Functions and Enriched Global Problem

The solution uuuL of the local problem defined above can be used to build generalized FEM shape

functions for the coarse global mesh. Equation (1) is used with the partition of unity function, ϕα ,

provided by the global, coarse, FE mesh and the enrichment function given by uuuL, i.e.,

φφφα (xxx) = ϕα (xxx)uuuL(xxx) (10)

Hereafter, uuuL is denoted a global-local enrichment function and the global problem enriched with these

functions is denoted an enriched global problem. The formulation of this problem is given by

Find uuuE
G ∈ XXXE

G(ΩG) ⊂ H1(ΩG) such that, ∀ vvvE
G ∈ XXXE

G(ΩG)

∫

ΩG

σσσ(uuuE
G) : εεε(vvvE

G)dxxx+η
∫

∂Ωu
G

uuuE
G · vvvE

Gdsss =

∫

∂Ωσ
G

t̄tt · vvvE
Gdsss+η

∫

∂Ωu
G

ūuu · vvvE
Gdsss (11)

where, XXXE
G(ΩG) is the space XXX0

G(ΩG) augmented with GFEM functions (10), i.e.,

XXXE
G(ΩG) =







uuuhp =
N

∑
α=1

ϕα (xxx)ûuuhp
α (xxx)

︸ ︷︷ ︸

coarse-scale approx.

+ ∑
β∈Igl

ϕβ (xxx)uuugl

β (xxx)

︸ ︷︷ ︸

fine-scale approx.







(12)

where Igl is the index set of nodes enriched with function uuuL, ûuu
hp
α is defined in (5) and

uuu
gl

β (xxx) =





uβ1 uL1(xxx)
uβ2 uL2(xxx)
uβ3 uL3(xxx)





where uβ j, β ∈ Igl , j = 1,2,3, are nodal degrees of freedom and uL j(xxx), j = 1,2,3, are Cartesian

components of displacement vector uuuL. The coarse-scale approximation may also include the cloud-

wise discontinuous functions H ũuu
hp
α (xxx) discussed in Section 3.2. These functions are hierarchically

added to the global solution space if the local domain ΩL does not contain the entire crack surface, as

in the example of Section 4.2.

The enriched global problem is solved on the same coarse global mesh used in the computation

of the initial global problem (4). Global-local enrichments add only three degrees of freedom to each

node β ∈ Igl of the global mesh when solving a 3-D elasticity problem, regardless of the number

of degrees of freedom of the local problem (several thousands in general). Thus, highly adapted local

discretizations able to capture fine-scale features of the solution can be used at the local problem, since

the level of local mesh refinement/enrichment does not impact the size of the global problem. This

contrasts with the FEM, which requires very fine global discretizations in order to capture small-scale

behavior in the global domain. Figure 3 illustrates the enrichment of the global coarse mesh with the

solution of a local problem defined in a neighborhood of a crack.

As mentioned in Section 3.1, the coarse-scale global problem can be solved using the standard FEM

since no cracks or fine-scale features are modeled in that problem. In this case, the enriched global
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Global−local

enrichments

Figure 3: Enrichment of the coarse global mesh with a local solution. Only three degrees of freedom are added to
nodes with yellow glyphs. The crack is shown in the global domain for illustration purposes only.

space XXXE
G(ΩG) is given by

XXXE
G(ΩG) =







uuuhp =
N

∑
α=1

ϕα (xxx) ûuuα

︸ ︷︷ ︸

standard FEM approx.

+ ∑
β∈Igl

ϕβ (xxx)uuugl

β (xxx)

︸ ︷︷ ︸

fine-scale approx.







(13)

where ûuu α , α = 1, . . . ,N, are (standard) nodal degrees of freedom. The finite element partition of unity

functions, ϕα , α = 1, . . . ,N, can be linear, quadratic or high-order Lagrangian shape functions. Thus, if

a GFEM code is available for the computation of the global-local enrichment function uuuL, the proposed

GFEMgl can be implemented in existing FEM codes. The numerical integration of global-local shape

functions (10) must, of course, be properly handled. This is discussed in Section 3.5.

Related Methods In addition to the various methods discussed in Section 1, the proposed GFEMgl

is also related to the so-called mesh-based handbook approach of Strouboulis et al. [63–65] and the

upscaling technique proposed by Hou and Xu [39]. We refer the reader to Section 3.3 of reference [18]

for a discussion on the relations among these methods.

3.4. Solution of enriched global problem

It is clear from the definition of the enriched global space XXXE
G(ΩG) given in (12), that the global-

local GFEM shape functions are hierarchically added to the coarse-scale space XXX0
G(ΩG). As a result,

the global stiffness matrix of the initial global problem (4), KKK0
G, is nested in the global matrix of the

enriched problem (11), KKKE
G. Matrix KKKE

G can be partitioned as follows (see also Section A.2 of [18])
[

KKK0
G KKK

0,gl
G

KKK
gl,0
G KKK

gl
G

][
ũuu 0

G

uuu
gl
G

]

=

[
FFF0

G

FFF
gl
G

]

(14)
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where KKK
gl
G and uuu

gl
G are the global entries and degrees of freedom, respectively, associated with

hierarchical global-local enrichments. Vector uuu
gl
G contains the degrees of freedom uβ j, β ∈ Igl , j =

1,2,3, defined in Section 3.3. As such, its dimension is small compared with that of vector ũuu 0
G. In

the example of Section 4.3 (crack case 1 or 2), dim(uuu
gl
G) = 27 while dim( ũuu0

G) = 115,470. This is in

contrast with the s-method proposed in, e.g., [42] where the number of hierarchical degrees of freedom

is equal to the dimension of the local problem. In the case of the example of Section 4.3 (crack case 1),

the dimension of the local problem is equal to 23,268.

The hierarchical nature and the small size of uuu
gl
G can be explored to efficiently solve the enriched

global system of equations (14). In this paper, the algorithm proposed in Section A.2 of [18] is

employed. In this approach, the global-local degrees of freedom uβ j, β ∈ Igl , j = 1,2,3, are

condensed out using the available factorization of the initial global problem. A similar approach is

used by Hirai et al. [37, 38] in the framework of the global-local FEM [29]. Here, however, the number

of degrees of freedom to be condensed out is much smaller than in the cases considered by Hirai et al.

[37, 38]. Other approaches that could be used to efficiently solve the enriched global problem include

the iterative methods of Rank et al. [27, 41], Düster [26], and of Whitcomb [72].

Substructuring [29] can also be used to solve the class of problems considered in this paper and this

approach was combined with the XFEM in [73, 74]. Like in the GFEMgl, the condensed substructure

adds only a few degrees of freedom (dofs) to the global system of equations. However, those dofs are

not hierarchical with respect to the global, uncracked, discretization. Therefore, the problem must, in

general, be solved from scratch for each crack location/configuration. It has also been reported in the

literature that substructuring may lead to ill-conditioned systems when the difference in element sizes

in the global and local meshes is large [36].

3.5. Numerical integration

In the proposed GFEMgl, the elements enriched with global-local enrichment functions can be

integrated efficiently and accurately. This is possible since the local meshes are nested in the global

mesh. Figure 4 illustrates the numerical integration procedure adopted in this paper. It is basically a

combination of the approaches proposed in Section A.3 of [18] and Section 4.2 of [57]. The orange line

in the figure represents a crack surface cutting elements in the mesh. A yellow square indicates a node of

the global mesh enriched with global-local enrichment functions. The numerical integration over global

computational elements connected to these nodes is performed with the aid of local problem elements

nested in the global elements. These elements are denoted as local computational elements. They are

used to define quadrature points and weights as illustrated in Figure 4(b). Standard quadrature rules

are used at local elements not cut by the crack surface or enriched with singular functions. Otherwise,

the local elements are subdivided in the so-called integration elements as discussed, for example, in

Section 4.2 of [57]. Special quadrature rules, such as those proposed in [55], may be used at local

elements enriched with singular functions.

The implementation of the above scheme involves the following mappings:

• from master coordinates of a local computational element to master coordinates of a global

computational element;

• from master coordinates of a local integration element to master coordinates of a global

computational element;

• from master coordinates of a local integration element to master coordinates of a local

computational element.
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The master coordinates in the first two cases are used in the computation of the global partition of

unity ϕα in (10), while the third mapping is required to retrieve the local solution uuuL. In all cases,

the mapping is performed by first computing the global physical coordinates xxx of an integration point

in the original element followed by the mapping of xxx to the master coordinates of a global or local

computational element. No search of the element containing xxx is required thanks to the nesting of

meshes as described above. The inverse mapping of xxx to the master coordinates of a global or local

computational element can be done in a closed-form in the case of tetrahedral and triangular elements.

Thus, the numerical overhead involved is small as demonstrated in [18].

The integration order of local computational or integration elements nested in global computational

elements is taken as the maximum of the integration orders of its polynomial enrichment functions L̂α i

in (5) and global-local enrichment functions uuuL in (10) plus one. The integration order is increased by

one since the global partition of unity is a linear finite element shape function. This strategy provides

a systematic way of accurately and efficiently integrating GFEM shape functions with global-local

enrichments. Further details on the procedure can be found in [18] and [57].

Figure 4: Numerical integration scheme in the global elements enriched with local solutions. Red crosses
represent quadrature points. Elements without crosses use their descendants to define quadrature points. (a) Global
computational elements and nodes enriched with global-local functions. (b) Local computational elements used
for computation of global-local functions and numerical integration over global elements. (c) Integration elements
used in elements cut by crack surface or enriched with singular functions. They are indicated with dashed lines in
the figure.

4. Numerical Examples

In this section, we investigate the accuracy, robustness and computational efficiency of the proposed

GFEMgl. The GFEMgl solutions of three-dimensional fracture mechanics problems are compared with

those available in the literature and with solutions provided by the hp-GFEM presented in [57, 58]. We

also present results for the global-local FEM (GL-FEM)–the solution of the local problem defined in
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(6). Strictly speaking, problem (6) is a global-local generalized FEM since uuuL is computed with the hp-

GFEM and not a standard FEM. However, both global-local methods suffer from the same limitations,

and it is reasonable to assume that the conclusions drawn here are also valid for the global-local FEM.

In all examples, coarse, uncracked, global meshes are used–no cracks are defined in the initial global

problems.

A single local problem is defined for each crack in the domain. The local problem meshes are

automatically constructed from the union of global clouds that intersect the crack fronts. Details are

presented in Section A.1 of [18].

The accuracy of GFEMgl solutions are evaluated in terms of the strain energy norm and stress

intensity factor extracted using the Cut-off Function Method (CFM) [56, 69]. In order to quantify

the error of the stress intensity factor (SIF) extracted along a crack front, we use a normalized discrete

L2-norm of the difference between the computed SIF and the reference solution defined by

er(Ki) :=
‖ei‖L2

‖K̂i‖L2

=

√
√
√
√

Next

∑
j=1

(

K
j

i − K̂
j

i

)2

√
√
√
√

Next

∑
j=1

(

K̂
j

i

)2

(15)

where Next is the number of extraction points along the crack front, K̂
j

i and K
j

i are the reference and

computed stress intensity factor values for mode i at the crack front point j, respectively.

4.1. Small Surface Crack

As a first example to demonstrate the effectiveness of the proposed GFEMgl, we analyze a small half-

penny surface-breaking crack as illustrated in Figure 5. This problem has been analyzed by several

researchers [59, 60, 71] using the finite element method, and thus reliable reference solutions for the

mode I stress intensity factor, KI , along the crack front are available. The following geometrical and

material parameters are adopted: In-plane dimensions 2b = 2.0, 2h = 2.0; domain thickness t = 1.0;

crack radius r = 0.2; Young’s modulus E = 1.0, Poisson’s ratio ν = 0.25. The domain is loaded by a

unity bending moment M as illustrated in Figure 5.

The global domain is discretized with a uniform coarse mesh of 6 × (10 × 11 × 4) tetrahedral

elements as shown in Figure 6. This is quite a coarse mesh with element sizes almost equal to the crack

radius. The coarse global problem is solved to provide boundary conditions to the local problem. A

local problem is created by extracting elements from the coarse global mesh around the surface crack.

The elements intersecting the crack front are bisected until an acceptable level of mesh refinement is

achieved. Figure 7(a) shows the local mesh. The ratio of element size to characteristic crack length

(Le/r) along the crack front is 0.0295. Discontinuous and singular analytical enrichment functions

presented in [57] are automatically assigned to local nodes in order to model the crack. The von Mises

stress in the local domain is shown in Figure 7(b). The local solution is next used as enrichment

functions in the coarse global problem as illustrated in Figure 8. Cubic polynomial shape functions

are used in both global and local problems.

As discussed in Section 3.2, we can use Dirichlet, Cauchy/Spring or Neumann boundary conditions

at the local boundary ∂ΩL\(∂ΩL ∩ ∂ΩG). In fact, Dirichlet and Neumann boundary conditions are

special cases of Cauchy boundary conditions, depending on the choice of the spring stiffness. Thus,

we perform a sensitivity analysis to investigate the effect of the spring stiffness on the quality of the
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Figure 5: Domain with a small surface crack and loaded by a moment M. The resultant moment is applied using
linearly varying tractions prescribed at faces of elements as shown in Figure 6.

Figure 6: Coarse global mesh used to provide boundary conditions for local problem. The crack is not discretized
in the global domain. The distributed tractions used to apply a bending moment at the top and bottom surfaces of
the domain are also shown.

solution of the enriched global problem (11). Figure 9 plots the relative errors of the enriched global

solution in energy norm for several spring stiffness values. The reference strain energy value is provided

by the hp-GFEM presented in [57]. The hp-GFEM discretization is obtained by locally refining the
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(a) Hp-adapted local problem. (b) Contour of von Mises stress of the local
problem.

Figure 7: Local problem used to compute a global-local enrichment function.

Figure 8: Hierarchical enrichment of the coarse global mesh with global-local functions. Yellow glyphs represent
global nodes enriched with local solutions.

global mesh and enriching the global nodes with high-order shape functions as described in [57]. The

crack is, in this case, discretized in the global domain. The relative errors of the GFEMgl with Dirichlet

and Neumann boundary conditions at ∂ΩL\(∂ΩL∩∂ΩG) are also shown in the plot. It can be observed

that the relative error of the spring boundary condition case is smaller than in the cases of Dirichlet and

Neumann boundary conditions over the range of spring stiffness used in the plot. The figure shows a

very smooth behavior and a low sensitivity of the global error with respect to the spring stiffness κ .

Selection of Spring Stiffness In this example, Neumann boundary conditions (κ = 0) can be used

in the local problem since the solution of the uncracked global domain is exact and the tractions

[GFEMgl˙two˙scale – July 1, 2009]



TWO-SCALE GENERALIZED FEM FOR 3-D FRACTURES 15 of 33

0 4 8 12 16 20

Spring stiffness

0

0.002

0.004

0.006

0.008

0.010

0.012

R
el

at
iv

e 
er

ro
r 

in
 e

n
er

g
y

 n
o

rm

Spring BCs

Dirichlet BCs

Neumann BCs

Figure 9: Sensitivity analysis to the stiffness of spring boundary conditions.

computed from it can equilibrate any local domain. However, this is not the case in general. Very

small spring stiffness should also be avoided since this may be numerically equivalent to Neumann

boundary conditions. Based on our numerical experience, the spring stiffness κ is selected using the

following expression

κ =
E

n
√

V0J
(16)

where E is the Young’s modulus, n is the number of spacial dimensions of the problem, V0 is the

volume of the master element used (tetrahedrons in this example), and J is the Jacobian of the global

element across the local boundary where the spring boundary condition is imposed. The quantity n
√

V0J

represents the characteristic length of the global finite element across the local boundary where the

spring boundary condition is imposed. In this problem, the Jacobian and material properties of all

global elements are constant and the spring stiffness given by (16) is κ = 8.7358. From Figure 9, we

can observe that much smaller values could also be used. This spring stiffness leads to a relative error in

energy norm equal to 0.007807, while for the Dirichlet boundary condition case the error is 0.010246.

Quality of Extracted Stress Intensity factors Mode I stress intensity factor, KI , extracted along the

crack front is normalized using

K̄I =
KI

ty

√
πr

Q

(17)

where Q is equal to 2.464 for a circular crack, ty = 3M/bt2 is the maximum bending stress and r is the

radius of the crack. Dimensions b and t are indicated in Figure 5. The reference values for K̄I are taken

from Walters et al. [71] and used to compute er(K̄I) in (15).

Figure 10 shows K̄I computed with three methods–the GL-FEM, the GFEMgl and the hp-GFEM.

The global-local FEM (GL-FEM) corresponds to SIF computed from the solution of the local problem

shown in Figure 7 and subjected to spring boundary conditions provided by the initial global problem.
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The spring stiffness is given by (16). This approach provides a poor approximation of K̄I along the

crack front and the relative error er(K̄I) is 0.18531. The GFEM with global-local enrichment functions

(GFEMgl) corresponds to the case in which the local solution computed with the GL-FEM is used as

enrichment function for the coarse global mesh shown in Figure 6. The relative error er(K̄I) of the

GFEMgl SIF is 0.01233, which is about 15 times smaller than the one obtained by the GL-FEM. We

also show hp-GFEM results in the figure. The relative error er(K̄I) of the hp-GFEM SIF is 0.00395.

While this result is quite accurate, the hp-GFEM requires refinement of the global mesh. The reference

solution provided by Walters et al. [71] is also shown in the plot.
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Figure 10: Normalized mode I stress intensity factor for the GL-FEM and the GFEMgl with spring boundary
condition in local problems and the hp-GFEM.
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4.2. Inclined Penny Shaped Crack

The second problem is an inclined circular crack in a cube as illustrated Figure 11. The slope of the

crack with respect to the global y-axis is γ = π/4. A tensile traction of magnitude σ is applied in the

y-direction at the top and bottom surfaces of the domain. The following parameters are assumed in this

problem: Cube dimension 2L = 4.0; crack radius a = 1.0; vertical traction σ = 1.0; Young’s modulus

E = 1.0; Poisson’s ratio ν = 0.3.

Y

X

γ

σ

Right view

2L

X

Y

Top view

a

Z

X

Z

Figure 11: Inclined circular crack in a cube subjected to uniform tensile tractions. The crack is shown for
illustration purposes only. It is not discretized in the initial global problem. The triangulation of the crack surface
is also shown.

In this example, the stress intensity factors for all three modes are non-zero. We analyze the

performance of the proposed GFEMgl for this class of problems. The performance of the three types

of boundary conditions applied at the local boundary ∂ΩL\(∂ΩL ∩∂ΩG) is also investigated.

The GFEMgl solution is computed following the same steps described in the previous section. The

global domain is discretized with a uniform coarse mesh of 6× (10×10×10) tetrahedral elements as

shown in Figure 12. The crack is not discretized in the initial global domain. A single local problem

is created along the circular crack front as shown in Figures 12 and 13. We can observe that the local

domain does not contain the entire crack surface. The mesh and crack sizes were selected such that

this would be the case. The mesh is locally refined around the crack front as shown in Figure 13(a).

The ratio of element size to characteristic crack length (Le/a) along the crack front is 0.0280. The von

Mises stress in the local domain is shown in Figure 13(b). Figure 14 illustrates the enrichment of the

coarse global mesh with the solution of the local problem. Cubic polynomial shape functions are used

in both global and local problems.

In contrast with the problem of Section 4.1, the boundary of the local domain intersects the crack

surface. While we could, of course, have used a larger local domain and avoid this situation, we are

interested in the performance of the three types of boundary conditions applied at ∂ΩL\(∂ΩL ∩∂ΩG)
under this situation. Note also that in this example ∂ΩL ∩ ∂ΩG = /0. Figure 15 shows the local
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Figure 12: Coarse global mesh used to provide boundary conditions for the local problem. No crack is discretized
in the global domain.

(a) Hp-adapted local problem. (b) Contour of von Mises stress of the local
problem.

Figure 13: Local problem created along the circular crack front. The solution of the local problem is used as
enrichment functions for the coarse global mesh.

deformed configurations for each type of boundary condition. We can observe in Figure 15(a) that

the crack closes at the boundary of the local problem when Dirichlet boundary conditions are applied

at ∂ΩL\(∂ΩL ∩ ∂ΩG). This is expected since the crack was not defined in the initial global problem

and thus the Dirichlet boundary condition used at ∂ΩL\(∂ΩL ∩ ∂ΩG) is a continuous function. This

behavior is not observed in Figures 15(b) and 15(c) which correspond to spring and Neumann boundary

conditions, respectively. Since Neumann boundary conditions provided by the initial global problem

are in general not equilibrated, spring boundary condition is the most robust option. A quantitative
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Figure 14: Enrichment of the global mesh with global-local functions. Yellow glyphs represent the global nodes
enriched with these functions.

comparison among the three types of boundary conditions is presented below.

Selection of Spring Stiffness Figure 16 plots the relative error in energy norm of the enriched global

solution for several spring stiffness values. The reference value for the strain energy is provided by

using the hp-GFEM. Like in the problem analyzed in Section 4.1, the relative error of the spring

boundary condition case is smaller than in the cases of Dirichlet and Neumann boundary conditions

over a large range of spring stiffness values. The spring stiffness computed using (16) is κ = 7.2112.

While this is not the optimal value and much smaller values could also be used, it delivers more accurate

results than Dirichlet and Neumann boundary conditions. We can also observe that in spite of the crack

closing behavior caused by the Dirichlet boundary condition (Cf. Figure 15(a)), it is able to deliver

accurate results.

Quality of Extracted Stress Intensity factors Figure 17 shows the mode I, II and III stress intensity

factor distributions extracted along the crack front. The SIFs are extracted from solutions computed

by three methods–the GL-FEM, GFEMgl and hp-GFEM. Spring boundary conditions with stiffness

given by (16) are used in the global-local FEM. The local domain is shown in Figure 13. This GL-FEM

solution is used as enrichment for the GFEMgl. The SIFs extracted from the hp-GFEM solution are

taken as reference values. The relative differences er(KI), er(KII) and er(KIII) between the GFEMgl and

hp-GFEM SIFs are 0.01420, 0.01748 and 0.02435, while those between the GL-FEM and hp-GFEM

SIFs are 0.47515, 0.43925 and 0.33831, respectively. The errors in all three mode SIFs computed with

the GFEMgl are one order of magnitude smaller than those with the GL-FEM. This, again, demonstrates

the accuracy and robustness of the proposed GFEMgl.
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(a) Dirichlet boundary condition. (b) Spring boundary condition.

(c) Neumann boundary condition.

Figure 15: Section of local domain showing deformed shapes corresponding to three types of boundary conditions
on ∂ΩL\(∂ΩL ∩∂ΩG). All the figures are drawn to the same scale.

[GFEMgl˙two˙scale – July 1, 2009]



TWO-SCALE GENERALIZED FEM FOR 3-D FRACTURES 21 of 33

0 4 8 12 16 20

Spring stiffness

00.0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

R
el

at
iv

e 
er

ro
r 

in
 e

n
er

g
y

 n
o

rm

Spring BCs

Dirichlet BCs

Neumann BCs

Figure 16: Sensitivity analysis to the stiffness of spring boundary conditions.

-180 -90 0 90 180

θ

-1.2

-0.8

-0.4

0.0

0.4

0.8

S
tr

es
s 

In
te

n
si

ty
 F

ac
to

r

K
I   

 hp-GFEM

K
II

K
III 

K
I  

  GFEM
gl

K
II 

K
III

K
I  

  GL-FEM

K
II

K
III

Figure 17: Stress intensity factors extracted from GL-FEM, GFEMgl and hp-GFEM solutions. Spring boundary
conditions are used in the local problem.
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4.3. Complex Domain with Multiple Crack Configurations

In this section, we analyze the three-dimensional bracket shown in Figure 18 with the goal of

demonstrating the computational efficiency of the proposed GFEMgl. The geometry of the domain

and loads create several regions with stress singularities where cracks are likely to nucleate and grow.

Three crack cases are considered as illustrated in the figure. In the proposed GFEMgl, the initial global

problem needs to be solved only once and the same global coarse mesh can be used for any crack

location. This feature of the method leads to substantial computational savings as demonstrated below.

In contrast, the problem must be solved from scratch for each crack case when using, e.g., the finite

element method. This type of analysis is frequently performed in the industry in order to find the critical

crack location in a complex component [14]. The geometry and location of the cracks considered here

are defined in Figure 21. The Young’s modulus and Poisson’s ratio used in this example are E = 105

and ν = 0.33, respectively. The bracket is loaded by a unity pressure applied at the horizontal opening

and it is fixed at the vertical openings.

Figure 18: Boundary conditions and mesh for a three dimensional bracket. The three crack cases considered are
shown in the figure but only one crack is analyzed at a time.

The coarse global problem is solved only once without any crack discretization and local problems

are created around each crack as shown in Figure 19. The local meshes are refined around the crack

fronts as in the previous sections. Spring boundary conditions provided by the global problem are used

in all cases. The spring stiffness is, again, selected using (16). The von Mises stress distribution for the

local problems are displayed in Figure 20. The coarse global mesh is enriched with one local solution

at a time, as illustrated in Figure 21. The enriched global problems are then solved using the scheme

discussed in Section 3.4. The GFEMgl solution for each crack location considered is shown in Figure
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22.

Figure 19: The solution of the initial global problem provides boundary conditions for local problems created
around each crack surface. No crack is discretized in the global domain and thus it needs to be solved only once.

(a) Crack 1 (Quarter circle). (b) Crack 2 (Quarter circle). (c) Crack 3 (Half circle).

Figure 20: The von Mises stress distribution for the local problems. Spring boundary conditions provided by the
same initial global solution are used in all cases.
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(a)

(b)

(c)

Figure 21: Enrichment of the coarse global mesh with the local solution of each crack case considered.
The geometry of each crack is as follows: (a) Crack 1 (Quarter circle): Radius r = 4, center = (80,50,50);
(φ = 0, r = 4) = (80,50,46); (φ = π/2, r = 4) = (76,50,50); (b) Crack 2 (Quarter circle): Radius r = 4, center
= (80,50,−50); (φ = 0, r = 4) = (76,50,−50); (φ = π/2, r = 4) = (80,50,−46); (c) Crack 3 (Half circle): Radius
r = 8, center =(80,50,0); (φ = 0, r = 8) = (80,50,−8); (φ = π/2, r = 8)= (72,50,0) (φ = π, r = 8) = (80,50,8).
Where (φ, r) are polar coordinates along the crack front and (φ, r) = (X ,Y,Z) means the Cartesian coordinates of
point (φ, r) located along the crack front.
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(a) Crack 1. (b) Crack 2. (c) Crack 3.

Figure 22: GFEMgl solution for each crack location considered.

Computational Performance To evaluate the computational efficiency of the proposed GFEMgl, we

compare its computational cost with that of the hp-GFEM. In the latter, like in the classical FEM, the

problem must be solved from scratch for each crack configuration. This leads to high computational

costs when a large number of crack configurations must be analyzed as is the case of crack growth

simulations or multiple site damage (MSD) analysis. In contrast, in the GFEMgl, the factorized stiffness

matrix of the uncracked global problem can be used to compute the solution of enriched global

problems at a low computational cost.

Tables I and II list the CPU time required to solve the three crack cases using the hp-GFEM and the

GFEMgl, respectively. The number of degrees of freedom used by each method is also listed. Several

observations can be made from the result in the tables.

First, the size of the enriched global problem in the GFEMgl does not depend on that of the local

problem. Furthermore, only a small number of degrees of freedom are added to the enriched global

problem: 27, 27 and 39 for the first, second and third crack case, respectively. In contrast, the crack

discretization and mesh refinement required by the hp-GFEM increase the size of the global problem

substantially.

Second, the cost to compute the enriched global solutions corresponds to only between 4 and 6%

of the CPU time spent in the initial global problem (298.7s). As a results, the total CPU time for

the GFEMgl is much smaller than that required by the hp-GFEM. The difference in performance

between the two methods grows with the number of crack configurations considered. This is clearly

demonstrated in Figure 23, which shows the total CPU time versus the number of crack configurations

for the GFEMgl and hp-GFEM. If the solution of the uncracked global problem is available from the

design phase of the component, the total CPU time for the GFEMgl is 152.7s since it involves only the

solution of the local and enriched global problems. Otherwise, the CPU time for the GFEMgl is 451.4s.

In either case, the GFEMgl is considerably more efficient than the hp-GFEM.

Quality of Extracted Stress Intensity factors Figure 24 shows mode I, II and III stress intensity

factors extracted along the front of Crack 3. Both the hp-GFEM and GFEMgl solutions are shown.

The SIFs extracted from the GFEMgl solution are in good agreement with those from the hp-GFEM

solution. The relative differences er(KI), er(KII) and er(KIII) between the GFEMgl and hp-GFEM

SIFs are 0.02454, 0.04902 and 0.03275, respectively. This demonstrates that the GFEMgl can deliver
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Table I: CPU time spent on the factorization of the stiffness matrix of each crack case using the hp-GFEM.

Crack Number of degrees of freedom CPU time (sec) Strain energy

1 139,098 346.7 2.3638

2 136,698 335.6 2.3634

3 157,626 459.9 2.3752

Total 1,142.2

Table II: CPU time spent on the factorization of the initial and local problems and on the solution of the enriched
global problems. If the solution of the initial (uncracked) global problem is not available, the total CPU time of
the GFEMgl to solve the three crack cases is 451.4 instead of 152.7.

Number of degrees of freedom CPU time (sec)

Crack ID Initial Local Enriched Initial Local Enriched Total Strain energy

1 23,268 115,497 24.1 12.6 36.6 2.3633

2 115,470 21,108 115,497 298.7 17.3 12.6 29.9 2.3631

3 39,426 115,509 69.3 16.9 86.2 2.3735

Total 298.7 110.7 42.0 152.7
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Figure 23: Total CPU time required for a different number of crack configurations in the GFEMgl and hp-GFEM
analyses. The cost of solving the uncracked global problem was included in the the CPU time of the GFEMgl.

accurate stress intensity factors at a lower computational cost than the hp-GFEM.
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Figure 24: Mode I, II and III stress intensity factors extracted from hp-GFEM and GFEMgl solutions for Crack 3.
Spring boundary conditions are used in the local problem.

5. Conclusions

The examples presented in Section 4 show that stress intensity factors extracted from the proposed

GFEMgl solutions are up to one order of magnitude more accurate than those extracted from the local

solutions. The latter case is equivalent to the global-local FEM (GL-FEM), broadly used in the industry.

The numerical examples also demonstrate that the accuracy of the GFEMgl is comparable with that of

the hp-GFEM proposed in [57] while not requiring the refinement of global meshes. This enables, for

example, the use of meshes available from the design phase of a structure to perform fracture mechanics

analyses.

The computational cost in terms of CPU time of the proposed GFEMgl is comparable with that of

the GL-FEM. The only additional cost of the former is the solution of the enriched global problem.

This, as demonstrated in Section 4.3, is small when compared with the solution of the initial global

problem.

In the proposed GFEMgl, the initial global problem needs to be solved only once and the same global

coarse mesh can be used for any crack configuration. This feature of the method leads to substantial

computational savings when several crack configurations are considered in the same structure. In

contrast, the global problem must be solved from scratch for each crack configuration when using,

e.g., the finite element method. Similar conclusions are expected in the case of crack propagation

simulations. We are currently investigating this case.

The hp-GFEM is as accurate and computationally efficient as the standard FEM due to the use of

singular crack front enrichment functions. Thus, it is reasonable to assume that the above conclusions

regarding accuracy and computational efficiency of the GFEMgl and hp-GFEM also applies to the

standard FEM.

Another contribution of this paper is a study of the accuracy of the GFEMgl when Dirichlet,
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Cauchy/spring or Neumann boundary conditions provided by the initial global problem are used at

the local boundary ∂ΩL\(∂ΩL ∩ ∂ΩG). Our numerical experiments show that any value of the spring

stiffness comparable to, or larger than the stiffness of the body is acceptable and provides global-local

enrichment functions with good approximation properties. This type of boundary condition leads, in

general, to more accurate enriched global solutions than Dirichlet boundary conditions while being

more robust than Neumann boundary conditions.
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