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Abstract
In this work, we present a deep collocation method (DCM) for three-dimensional potential problems in non-homogeneous 
media. This approach utilizes a physics-informed neural network with material transfer learning reducing the solution of 
the non-homogeneous partial differential equations to an optimization problem. We tested different configurations of the 
physics-informed neural network including smooth activation functions, sampling methods for collocation points genera-
tion and combined optimizers. A material transfer learning technique is utilized for non-homogeneous media with differ-
ent material gradations and parameters, which enhance the generality and robustness of the proposed method. In order to 
identify the most influential parameters of the network configuration, we carried out a global sensitivity analysis. Finally, 
we provide a convergence proof of our DCM. The approach is validated through several benchmark problems, also testing 
different material variations.

Keywords Deep learning · Collocation method · Potential problem · PDEs · Sampling method · Activation function · Non-
homogeneous · Transfer learning · Sensitivity analysis · Physics-informed
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Nomenclature
k(x)  Position-oriented material function
�  Potential function
q  Flux of potential field
n  Unit normal vector to a surface
wl
jk

  Weight between neuron k in hidden layer l − 1 
and neuron j in hidden layer l

bl
j
  Bias of neuron j in layer l

�  Activation function

�  Hyperparameters including all weights and 
biases

Loss(�)  Loss function for training
x Ω  Collocation points to discretize the physical 

domain
x Γ  Collocation points to discretize the boundaries
MSE  Mean square error loss form
�h(x;�)  Potential function approximated by Neural 

networks

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-022-01633-6&domain=pdf
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G(x)  Governing equation
�̃�, q̃  Potential field and flux prescribed at boundaries
�i  Learning rate
EEi  Elementary effect for each input factor
�∗
i
  Mean of the distribution of the elementary 

effects of each input
�i  Standard deviation of the distribution of the 

elementary effects of each input
Λj  Spectral curve of the Fourier progression
SFAST
i

  First-order FAST sensitivity indices
STi  Total order FAST sensitivity indices
e  Relative error to measure the model accuracy
Ea  Analytical solution
Ea  Predicted solution
‖⋅‖  L2-norm

1 Introduction

Recent years have witnessed the vast growing application of 
neural networks in physics, this is partly due to the fact that 
by training the neural network, high-dimensional raw data 
can be converted to low-dimensional codes [1], and thus 
the high-dimensional PDEs can be directly solved using a 
‘meshfree’ deep learning algorithm, which improves com-
puting efficiency and reduces the complexity of problems. 
The deep learning method deploys a deep neural network 
architecture with nonlinear activation functions that intro-
duces the nonlinearity that the system as a whole needs for 
learning nonlinear patterns. This lends some credence to the 
application of a physics informed machine learning method 
in discovering the physics behind the potential problems in 
non-homogeneous media, which is a wide range of problems 
in physics and engineering.

The current wave of deep learning started around 2006, 
when Hinton et al. [2, 3] introduced deep belief nets and 
unsupervised learning procedures that could create layers of 
feature detectors without needs of labelled data. Equipped 
with deep learning model, information can be extracted from 
complicated raw input data with multiple levels of abstrac-
tion through a layer-by-layer process [4]. Various variants, 
such as multilayer perceptron (MLP), convolutional neural 
networks (CNN) and recurrent/recursive neural networks 
(RNN) [5], have been developed and applied to, e.g. image 
processing [6, 7], object detection [8, 9], speech recognition 
[10, 11], biology [12, 13] and even finance [14, 15]. Over 
the past decade, it has been widely used in applications due 
to high performance demonstrated. Deep learning can learn 
features from data automatically, and the features can be 
used to get the approximation of solutions to differential 
equations [16], which cast light on the possibility of using 
deep learning as functional approximators.

Artificial neural networks (ANN) stand at the center of 
the deep learning revolution, it can be traced back to the 
1940s [17], but they became especially popular in the past 
few decades due to the vast development in computational 
power and sophisticated machine learning algorithms, such 
as backpropagation technique and advances in deep neural 
networks. Due to the simplicity and feasibility of ANNs to 
deal with nonlinear and multi-dimensional problems, they 
were applied in inference and identification by data scientists 
[18]. They were also adopted to solve partial differential 
equations (PDEs) [19–21], but shallow ANNs are unable 
to learn the complex nonlinear patterns effectively. With 
improved theories incorporating unsupervised pre-training, 
stacks of auto-encoder variants, and deep belief nets, deep 
learning with enhanced learning abilities can also serve as 
an interesting alternative to classical methods such as FEM.

According to the universal approximation theorem [22, 
23], any continuous function can be approximated by a 
feedforward neural network with one single hidden layer. 
However, the number of neurons of the hidden layer tends 
to increase exponentially with increasing complexity and 
non-linearity of a model. Recent studies show that DNNs 
render better approximations for nonlinear functions [24]. 
Some researchers employed deep learning for the solution 
of PDEs. E et al. developed a deep learning-based numerical 
method for high-dimensional parabolic PDEs and back-for-
ward stochastic differential equations [25, 26]. Raissi et al. 
[27] introduced physics-informed neural networks for super-
vised learning of nonlinear partial differential equations. 
Beck et al. [28] employed deep learning to solve nonlinear 
stochastic differential equations and Kolmogorov equa-
tions. Sirignano and Spiliopoulos [29] provided a theoreti-
cal proof for deep neural networks as PDE approximators, 
and concluded that they converge as the number of hidden 
layers tend to infinity. Karniadakis et al. presented physics-
informed neural networks for various applications includ-
ing fluid mechanics [30]. For problems in solid mechanics, 
we presented a Deep Collocation Method (DCM) in [31, 
32], which has been the basis for a stochastic deep collo-
cation method with neural architecture search strategy for 
stochastic flow analysis in heterogeneous media. We found 
that physics-informed deep learning model can account for 
stochastic disturbance/uncertainties efficiently and stably in 
[33]. An alternative to physics informed neural networks 
based on the strong form, such as the DCM, the Deep 
Energy Method (DEM) [34–37] takes advantage of the total 
potential energy in the loss instead of a BVP.

The problems of potential represent a category of physical 
and engineering problems. For some physical parameters in 
potential problems, for example, heat conductivity, perme-
ability, permittivity, resistivity, magnetic permeability, tends 
to have a spatial distribution, and they can vary with respect 
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to one or more coordinates. To deal with these problems, the 
non-homogeneous problems are translated into homogene-
ous problems with some classes of material variations. The 
steady-state heat conduction analysis of FGMs analysis is 
a representative of potential problems. Due to the inherent 
mathematical difficulties, closed-form solutions exist in a 
few simple cases. Some traditional powerful methods, such 
as the finite element method (FEM), the boundary element 
method (BEM), and the method of fundamental solutions 
(MFS) and the dual reciprocity method (DRM) were used 
to solve the potential problems [38, 39]. The ‘meshfree’ 
physics-informed neural networks offered a novel and robust 
approach in discovering the nonlinear patterns behind the 
potential patterns, especially for higher dimensions.

The learning ability of deep neural networks strongly 
relies on the optimization algorithm and the neural network 
configurations, such as the activation function, number of 
neurons and layers, weight initialization methods, number 
of iterations, and so on. In this paper, we therefore compare 
different parameters to offer suggestions on the choice of 
a favourable configuration for the physics-informed neural 
network. Moreover, to increase the generality and robust-
ness of the physics-informed deep learning based colloca-
tion method, the material transfer learning technique is inte-
grated in the model, which will reduce the computation costs 
for different material variation types and help to improve 
the numerical results. Further, to unveil those influencing 
parameters for the proposed model, a global sensitive analy-
sis is supplemented in the paper, which will be instructive 
for setting up physics-informed neural networks.

The paper is organised as follows: First, the three-dimen-
sional potential problem with in-homogeneous media is 
presented. Then we introduce the physics-informed deep 
learning-based collocation method, which includes the 
neural network architecture, activation functions, sampling 
methods, a convergence proof, the material transfer learning 
and sensitivity analysis. Subsequently, a sufficient survey of 
numerical examples is presented, which investigated differ-
ent neural network configurations, material transfer learning 

and model sensitivity analysis. Finally, the effectiveness of 
the deep learning method is demonstrated for solving three-
dimensional potential problems in non-homogeneous media.

2  The governing equation for 3D problems 
of potential

The general partial differential equation for potential func-
tion � defined on a region Ω bounded by surface � , with an 
outward normal n , can be written as:

where k is a position-oriented material function. Equa-
tion (1) is the field equation for a wide range of problems 
in physics and engineering, such as heat transfer, incom-
pressible flow, gravity field, shaft torsion, electrostatics and 
magnetostatics, some of which are shown in Table 1 [40].

The Dirichlet �D and Neumann boundary �N conditions 
are given as:

where n is the unit outward normal to �N . The material 
properties of functionally graded materials (FGMs) vary 
gradually in space. Classical variations of k(x) take the form 
k(x) = k0f (x) , k0 denoting a reference value and f (x) is the 
material property variation function. Among the most com-
mon variation functions are the quadratic, exponential and 
trigonometric:

The governing equations for different material variations in 
the z−direction are summarized in Table 2:

(1)(k(x)�,i),i = k(x)�,ii + k,i(x)�,i = 0,

(2)
𝜙(x, t) = �̄�, x ∈ 𝜏D,

− k(x)
𝜕𝜙(x, t)

𝜕n
= q̄, x ∈ 𝜏N ,

(3)

Parabolic ∶ f (x) = (a1 + a2x)
2

Exponential ∶ f (x) = (a1e
�x + a2e

−�x)2

Trigonometric ∶ f (x) = (a1cos�x + a2sin�x)
2.

Table 1  Problems belong to the category of problems of potential

Problems Scalar function � k(x) Boundary condition

Dirichlet Neumann

Heat transfer Temperature T Thermal conductivity (k) T = T̄ Heat flow q = −k
�T

�n

Ground water flow Hydraulic head H Permeability (k) H = H̄ Velocity flow q = −k
�H

�n

Electrostatic Electrostatic potential V Permittivity ( �) V = V̄ Electric flow q = −k
�V

�n

Electric conduction Electropotential E Resistivity (k) E = Ē Electric current q = −k
�E

�n

Magnetostatic Magnetic potential M Magnetic permeability ( �) M = M̄ Magnetic flux density q = −k
�M

�n
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3  Physics‑informed deep learning‑based 
collocation method

3.1  Feed forward neural network

The basic architecture of a fully connected feedforward neu-
ral network is shown in Fig. 1. It comprises multiple layers: 
an input layer, one or more hidden layers and an output layer. 
Each layer consists of one or more nodes called neurons, 
shown in Fig. 1 by the small colored circles. For an intercon-
nected structure, every two neurons in neighboring layers 
have a connection, where the weights between neuron k in 
hidden layer l − 1 and neuron j in hidden layer l is denoted 
by wl

jk
 , see Fig. 1. No connection exists among neurons in 

the same layer as well as in the non-neighboring layers. 
Input data, defined from x1 to xN , flow through this neural 
network via connections between neurons, starting from the 
input layer, through the hidden layers l − 1 , l, to the output 
layer, which eventually outputs data from y1 to yM.

The activation function is defined for an output of each 
neuron in order to introduce a non-linearity into the neural 
network and make the back-propagation possible, where gra-
dients are supplied along with an error to update weights and 
biases. The activation function in layer l will be denoted by 
� here.

There are many activation functions � proposed for 
inference and identification with neural networks, such as 

sigmoids function [41], hyperbolic tangent function (Tanh) 
[41], Rectified linear units (Relu) , to name a few. And some 
recent smooth activation functions, such as Swish [42], 
LeCuns Tanh [41], Bipolar sigmoid [41], Mish [42], Arctan 
[43], listed in Appendix B Table 9 have been studied and 
compared in the numerical example section. All selected 
activation functions must be smooth enough to avoid gradi-
ent vanishing during backpropagation, since the governing 
equation is introduced in the loss which includes the second-
order derivatives of the field variable. Afterward, the value 
on each neuron in the hidden layers and output layer can 
be yielded by adding the weighted sum of values of output 
values from previous layer to basis. An intermediate quantity 
for neuron j on hidden layer l is defined as

and its output is given by the activation of the above 
weighted input

where yl−1
k

 is the output from previous layer.
Based on the previous derivation and description, we can 

draw a definition which will be used in Section 3.3:

Definition 3.1 (Feedforward Neural Network) A generalized 
neural network with activation function can be written in 
a tuple form 

(
(f1, �1),… , (fn, �n)

)
 , fi referring to an affine-

line function (fi = Wix + bi) that mapps Ri−1
→ Ri . The tuple 

formed neural network in all defines a continuous bounded 
function mapping Rd to Rn:

where d indicates the dimension of the inputs, n the number 
of field variables, � = {W;b} consisting of hyperparameters 
such as weights and biases and ◦ denotes the element-wise 
operator.

The universal approximation theorem [22, 23] states that 
this continuous bounded function F with nonlinear activa-
tion � can be adopted to capture the nonlinear property of the 

(4)al
j
=
∑

k

wl
jk
yl−1
k

+ bl
j
,

(5)yl
j
= �

(
al
j

)
= �

(
∑

k

wl
jk
yl−1
k

+ bl
j

)
,

(6)FNN ∶ ℝ
d
→ ℝ

n, with Fn(x;�) = �n◦fn◦⋯◦�1◦f1

Table 2  Governing equation 
deduced by considering various 
forms of k(x)

k(x) Differential equation

k0(a1 + a2z)
2 (a1 + a2z)∇

2� + 2a2�z = 0

k0(a1e
�z + a2e

−�z)2 (a1e
�z + a2e

−�z)2∇2� + 2�(a2
1
e2�z + a2

2
e−2�z)�z = 0

k0(a1cos�z + a2sin�z)
2 (a1cos�z + a2sin�z)

2∇2� + 2�(0.5(a2
2
− a

1

1
)

sin2�z + a1a2cos2�z)�z
= 0

Fig. 1  Architecture of a fully connected feedforward back-propaga-
tion neural network
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system, in our case the potential problem. With this defini-
tion, we can define [44]:

Theorem 1 If �i ∈ Cm(Ri) is non-constant and bounded, then 
Fn is uniformly m-dense in Cm(Rn).

3.2  Backpropagation

Backpropagation (backward propagation) can be used to 
train multilayer feed-forward networks by calculating the 
gradient of a loss function and finding the minimum value 
of the loss function. The backward (output-to-input) flow 
determines how to adjust each weight as shown in Fig. 2.

Backpropagation is based on the chain rule, which is used 
to calculate the derivative of loss function with regard to the 
weight in the network. The governing equation in our prob-
lem requires the second partial derivatives of the potential 
function �(x) . To find the weights and biases, a loss func-
tion Loss(f, �) is defined. The backpropagation algorithm for 
computing the gradient of this loss function Loss(f , �) , the 
weight coefficients w and thresholds of neurons b can be 
written as follow: 

Fig. 2  The ‘compute graph’ for the feedforward neural network
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3.3  Physics‑informed deep collocation method

To train the network, we place collocation points in 
the physical domain and at the boundaries denoted by 
x Ω = (x1,… , xNΩ

)T and x Γ(x1,… , xNΓ
)T , respectively. Then 

the potential function � is approximated with the aforemen-
tioned deep feedforward neural network �h(x;�) . Thus, a 
loss function related to the underlying BVP is constructed. 
Substituting �h

(
x Ω;�

)
 into governing equation, we obtain

which results in a physics-informed deep neural network 
G
(
x Ω;�

)
 . The boundary conditions illustrated in Section 2 

can also be expressed by the neural network approximation 
�h

(
x Γ;�

)
 as: On ΓD , we have

On ΓN,

where qh
(
x ΓN

;�
)
 can be obtained from Eq. (2) by combing 

�h
(
x ΓN

;�
)
 . Note the induced physics-informed neural net-

work G(x;�) , q(x;�) share the same parameters as �h(x;�) . 
Considering the generated collocation points in domain and 
on boundaries, they can all be learned by minimizing the 
mean square error loss function [45]:

with

where x Ω ∈ RN , � ∈ RK are the neural network param-
eters. Loss(�) = 0 , �h(x;�) is then a solution to potential 
function. Here, the defined loss function measures how 
well the approximation satisfies the physical law (govern-
ing equation), boundaries conditions. Our goal is to find a 

(7)G
(
x Ω;�

)
= k(x)�h

,ii

(
x Ω;�

)
+ k,i(x)�

h
,i

(
x Ω;�

)
,

(8)𝜙h
(
x ΓD

;�
)
= �̃�,

(9)qh
(
x ΓN

;�
)
= q̃.

(10)Loss(�) = MSE = MSEG +MSEΓD
+MSEΓN

,

(11)

MSEG =
1

Nd

Nd∑

i=1

‖‖‖G
(
x Ω;�

)‖‖‖
2

=
1

NΩ

NΩ∑

i=1

‖‖‖k(xΩ)𝜙
h
,ii

(
x Ω;�

)
+ k,i(xΩ)𝜙

h
,i

(
x Ω;�

)‖‖‖
2

,

MSEΓD
=

1

NΓD

NΓD∑

i=1

‖‖‖𝜙
h
(
x ΓD

;�
)
− �̄�

‖‖‖
2

,

MSEΓN
=

1

NΓN

NΓN∑

i=1

‖‖‖‖
q
(
x ΓN

;�
)
− q̄

‖‖‖‖

2

=
1

NΓN

NΓN∑

i=1

‖‖‖‖−k(xΓN
)
𝜕𝜙

(
xΓN

;�
)

𝜕n
− q̄

‖‖‖‖

2

.

set of parameters � that the approximated potential �h(x;�) 
minimizes the loss Loss. If Loss is a very small value, the 
approximation �h(x;�) is very closely satisfying governing 
equations and boundary conditions, namely

The solution of heat conduction problems by deep colloca-
tion method can be reduced to an optimization problem. In 
the deep learning Tensorflow framework, a variety of opti-
mizers are available. One of the most widely used optimiza-
tion methods is the Adam optimization algorithm, which is 
also adopted in the numerical study. The idea is to take a 
descent step at collocation point xi with Adam-based learn-
ing rate �i,

and then the process in Eq. (13) is repeated until a conver-
gence criterion is satisfied.

3.4  Convergence of deep collocation method 
for non‑homogeneous PDEs

With the universal approximation theorem of neural net-
works, a feedforward neural network is used to approxi-
mate the potential function as �h(x;�) . The approximation 
power of neural networks for a quasilinear parabolic PDEs 
is shown by Sirignano et al. [29]. For non-homogeneous 
elliptic PDEs, the convergence study can be boiled down to:

The non-homogeneous PDEs has a unique solution, s.t. 
� ∈ C2(Ω) with its derivatives uniformly bounded. Also, 
the conductivity function k(x) is assumed to be C1,1 ( C1 with 
Lipschitz continuous derivative).

Theorem 2 Assume that Ω is compact with measures �1 , �2 , 
and �3 whose supports are constrained in Ω , ΓD , and ΓN . 
Furthermore, the governing Eq. (1) subject to 2 has a unique 
classical solution and material function k(x) being C1,1 
( C1 with Lipschitz continuous derivative). Then, ∀ 𝜀 > 0 , 
∃ K > 0 , which may dependent on supΩ‖‖�ii

‖‖ and supΩ‖‖�i
‖‖ , 

s.t. ∃ �h ∈ Fn , satisfies Loss(�) ≤ K�

Proof For governing Eq. (1) subject to 2, according to Theo-
rem 1, ∀ 𝜀 > 0 , ∃ �h ∈ Fn , s.t.

Recalling that the loss is constructed by Eq. (10), for MSEG 
and applying triangle inequality, we obtain:

(12)�h = argmin
�∈RKLoss(�)

(13)�i+1 = �i + �i▽�
Loss

(
xi;�i

)

(14)
∃ �h ∈ Fn, s.t. as n → ∞, Loss(�) → 0, �h

→ �.

(15)

sup
x∈Ω

‖‖‖𝜙,i

(
x Ω

)
− 𝜙h

,i

(
x Ω

)‖‖‖
2

+ sup
x∈Ω

‖‖‖𝜙,ii

(
x Ω

)
− 𝜙h

,ii

(
x Ω

)‖‖‖
2

< 𝜀
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Let us consider the C1,1 conductivity function k(x) , 
∃ M1 > 0, M2 > 0 , ∃ x ∈ Ω , ‖k(x)‖ ⩽ M1 , ‖‖k,i(x)‖‖ ⩽ M2 . 
From Eq. (15), we can then obtain:

On boundaries ΓD and ΓN , we can obtain:

Therefore, using Eqs. 17 and 18, as n → ∞ , we obtain

  ◻

With Theorem 2 and the condition that Ω is a bounded 
open subset of R, ∀n ∈ N+ , �h ∈ Fn ∈ L2(Ω) , it can be con-
cluded from Sirignano et al. [29] that:

Theorem 3 ∀ p < 2 , �h ∈ Fn converges to � strongly in 
Lp(Ω) as n → ∞ with � being the unique solution to the 
potential problems.

(16)

‖‖‖G
(
x Ω;�

)‖‖‖
2

⩽
‖‖‖k(xΩ)�

h
,ii

(
x Ω;�

)‖‖‖
2

+
‖‖‖k,i(xΩ)�

h
,i

(
x Ω;�

)‖‖‖
2

(17)
∫Ω

k
2

,i
(xΩ)

(
�h

,i
− �,i

)2

d�1 ⩽ M
2

2
�2�1(Ω)

∫Ω

k
2(xΩ)

(
�h

,ii
− �,ii

)2

d�1 ⩽ M
2

1
�2�1(Ω)

(18)

∫ΓD

(
�h

(
x ΓD

;�
)
− �

(
x ΓD

;�
))2

d�2 ⩽ �2�2(ΓD)

∫ΓN

k2(xΓN
)
(
�h
,n

(
x ΓN

;�
)
− �,n

(
x ΓN

;�
))2

d�3 ⩽ M2
1
�2�3(ΓN)

(19)

Loss(�) =
1

NΩ

NΩ∑

i=1

‖‖‖k(xΩ)𝜙
h
,ii

(
x Ω;�

)
+ k,i(xΩ)𝜙

h
,i

(
x Ω;�

)‖‖‖
2

+
1

NΓD

NΓD∑

i=1

‖‖‖𝜙
h
(
x ΓD

;�
)
− �̄�

‖‖‖
2

+
1

NΓN

NΓN∑

i=1

‖‖‖‖−k(xΓN
)
𝜕𝜙

(
xΓN

;�
)

𝜕n
− q̄

‖‖‖‖

2

⩽
1

NΩ

NΩ∑

i=1

‖‖‖k(xΩ)𝜙
h
,ii

(
x Ω;�

)‖‖‖
2

+
1

NΩ

NΩ∑

i=1

‖‖‖k,i(xΩ)𝜙
h
,i

(
x Ω;�

)‖‖‖
2

1

NΓD

NΓD∑

i=1

‖‖‖𝜙
h
(
x ΓD

;�
)
− �̄�
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In summary, for feedforward neural networks Fn ∈ Lp 
space ( p < 2 ), the approximated solution �h ∈ Fn will con-
verge to the solution to the non-homogeneous PDE.

3.5  Collocation points generation

Model training is an important process in machine learning 
and the quality of training datasets determines the reliability 
of the machine learning model to a large extent. The deep 
collocation method (DCM) utilizes physics-informed neural 
networks for solving PDEs with randomly generated train-
ing points in the physical domain. To test the influence of 
training points on the stability and accuracy, different sam-
pling methods are compared. The Halton and Hammersley 
sequences generate random points by a constructing the radi-
cal inverse [46]. They are both low discrepancy sequences. 
The method of Korobov Lattice creates samples from 
Korobov lattice point sets [47]. Sobol Sequence is a quasi-
random low-discrepancy sequence to generate sampling 
points [48]. Latin hypercube sampling (LHS) is a statistical 
method, where a near-random sample of parameter values is 
generated from a multidimensional distribution [49]. Monte 
Carlo methods can create points by repeated random sam-
pling [50]. The distribution plots of different sampling points 
inside a cube is listed in Appendix B Table 10 (Fig. 3).

3.6  Material transfer learning

To improve the generality and robustness of the DCM, trans-
fer learning is exploited, which makes use of the information 
from an already trained model yielding to training with less 
data and a reduced training time. The basic idea can be found 
in Fig. 4. For different material variations in nonhomogene-
ous media, the ‘knowledge’ of one material model can be 
exploited as the pretrained model resulting in a two-stage 
paradigm. The material transfer learning model is divided 

Fig. 3  Schematic diagram of physics-informed neural networks
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into two parts, i.e. pretraining, where the network is trained 
on a large dataset and longer iterations for one material vari-
ation type. The remaining part is the fine-tuning, where the 
pretrained model is trained on other material variations with 
few data and number of epochs. Consequently, the weights 
and biases and network configurations from a trained model 
are passed to other relevant models.

There are still some unresolved limitations in the lit-
erature. Most importantly, physics-informed deep learning 
algorithms lack a more systematic procedure to prevent over-
fitting and finding global minima.

4  Sensitivity analysis

Algorithm-specific parameters, such as the neural archi-
tecture configurations, parameters related to optimizers 
and number of collocation points significantly influence 
the model’s accuracy. To quantify their influence on the 
accuracy, a global sensitivity analysis (GSA) is performed. 
Classical GSA including regression methods, screening 
approaches, such as Morris method [51], the variance-
based measures, such as Sobol’s method [52], and the Fou-
rier amplitude sensitivity test (FAST) [53], or the extended 
FAST (EFAST) [54].

Variance-based methods are usually more computation-
ally expensive than the derivative-based methods as well 
as the regression methods. If the model or the parameters 
in analysis is large, the use of variance-based method can 
be costly. The method of Morris is generally robust to cor-
rectly screen the most and least sensitive parameters for a 
highly parameterized model with 300 times fewer model 
evaluations than the Sobol’ method [55]. Therefore, the 

computational cost of a sensitivity analysis can potentially 
be reduced by first performing parameter screening using the 
Morris method to identify non-influential parameters, reduc-
ing the dimension of the parameter space to be studied in 
further analysis, then filter them again, but with the eFAST 
method. In this way, we can quantifying the effects of inputs 
more accurately with a relatively small amount of time.

4.1  Method of Morris

The method of Morris [56] is a screening technique used 
to rank the importance of parameters by averaging coarse 
difference relations termed elementary effects. Given a 
model with n parameters, X = X1,X2,…Xn denoting a vec-
tor of parameter values, we can specify an objective function 
y(x) = f (X1,X2,…Xn) , change the variables Xi by specific 
ranges and then calculate the distribution of elementary 
effects (EE) of each input factor with respect to the model 
outputs, i.e.

where f(x) represents the prior point in the trajectory. Using 
the single trajectory shown in Eq.  (20), the elementary 
effects of each parameter can be calculated with p + 1 model 
evaluations. After sampling the trajectories, the resulting 
sets of elementary effects are then averaged to obtain the 
total-order sensitivity of the i-th parameter �∗

i
:

(20)EEi =
f (x1,… , xi + Δi,… , xn) − f (x)

Δi

(21)�∗
i
=

1

n

n∑

j=1

|||EE
j

i

|||

Fig. 4  Transfer learning
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Similarly, the variance of the set of EEs can be calculated as

The mean value �∗ quantifies the individual effect of the 
parameters on an output while the variance �2 indicates the 
influence of parameter interactions. We rank the parameters 
according to 

√
�2 + �∗2.

4.2  eFAST method

The eFAST method [54] is based on Fourier transformations. 
The spectrum is obtained by each parameter and the output 
variance of model results due to interactions. Employing a 
suitable search function, the model y(x) = f (X1,X2,…Xn) 
can be transformed by the Fourier transform into y = f (s)

with

The spectral curve of the Fourier progression is defined as 
Λj = A2

j
+ B2

j
 . The variance of the model results due to the 

uncertainty in the parameter Xi is given by

with the parametric frequency �1 , the spectrum of the Fou-
rier transform Λ , and the non-zero integers Z0 . The total 
variance can be obtained by cumulatively summing the spec-
tra at all frequencies

(22)�2
i
=

1

n − 1

n∑

j=1

(EE
j

i
− �i)

2

(23)y = f (s) =

+∞∑

j=−∞

(
Ajcos(js) + Bjsin(js)

)
,

(24)Aj =
�

2 ∫

−
�

2

�

2

f (s)cos(js)ds,

(25)Bj =
�

2 ∫

−
�

2

�

2

f (s)sin(js)ds.

(26)Di =
∑

p∈Z0

Λp�i,

(27)D = 2

∞∑

j=1

Λj.

The fraction of the total output variance caused by each 
parameter apart from interactions with other parameters is 
measured by the first-order index

To find the total sensitivity of Xi , the frequency of Xi is 
set to �i , while a different frequency �′ is set for all other 
parameters. By calculating the frequency �i and its higher 
harmonics p�i spectra, the output variance D−i due to the 
influence of all parameters except Xi and their interrelation-
ships can be obtained. Thus, the total-order sensitivity indi-
ces can be obtained:

5  Numerical examples

In this section, several cases are considered testing the 
accuracy and efficiency of our DCM including the influ-
ence of suitable NN configurations, sampling methods and 
optimizers taking advantage of GSA. Also, different mate-
rial variations using material transfer learning are studied. 

(28)SFAST
i

=
Di

D
.

(29)STi =
D − D−i

D
.

Table 3  Hyper-parameters 
settings in training

Model Hyper-parameters Values

Adam optimizer Learning rate 0.001
L-BFGS-B optimizer Maximum number of iterations to perform 50,000

Maximum number of function evaluations 50,000
Maximum number of variable metric corrections 50
Maximum number of line search steps (per iteration) 50

Fig. 5  Horizontal barplot of the mean absolute elementary effects �∗
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The accuracy is measured in the relative error between the 
predicted solution and the analytical solution:

where Ea is the analytical solution and Epred is the predicted 
solution while ‖⋅‖ refers to the L2-norm. All simulations are 
done on a 64-bit macOS Catalina computer with Intel(R) 
Core(TM) i7-8850H CPU, 32GB memory. The parametric 
settings for training are summarised in Table 3.

5.1  Case 1: Sensitivity analysis

First, we perform a SA to determine the key parameters of 
the deep collocation method.

5.1.1  Parameters screening with Morris method

The sensitivity indices computed by the Morris screening 
method with 30 trajectories and 4 grid levels are listed in 

(30)e =

‖‖‖Epred − Ea
‖‖‖

‖‖Ea
‖‖

Figs. 5 and 6, showing the effect of the numbers of neu-
rons, layers, iterations and collocation points on the loss 
values. Figure 5 depicts the horizontal barplot of the GSA 
measure �∗ . The highest �∗ value is found for the numbers 
of layers and neurons. The numbers of collocation points 
barely have an effect on the loss value. According to a clas-
sification scheme proposed by Garcia Sanchez et al. [57], 
the ratio �∕�∗ allows the characterisation of the model 
parameters in terms of (non-)linearity (𝜎∕𝜇∗ < 0.1) , (non-) 
monotony (0.1 < 𝜎∕𝜇∗ < 0.5) or possible parameter inter-
actions (1 < 𝜎∕𝜇∗) , see also Fig. 6. For our test models, all 
parameters are in the range 𝜎∕𝜇∗ > 1 suggesting that most 
parameters exhibit either non-linear behaviour, interac-
tion effects with each other or both. The plot of the mean 
value and standard deviation (�,�∗) in Fig. 6 reveals that 
the most influential parameter with largest 

√
�2 + �∗2 is the 

numbers of layers. The number of neurons and iterations is 
less important. The collocation points inside the physical 
domain and on the surface do not have a significant impact 
neither. Thus, while tuning the parameters of the model, 

Fig. 6  � versus �∗ for parameter screening with Morris method

Fig. 7  Scatter plot of loss value 
against parameter values with 
3000 runs

Fig. 8  Results for first-order and total indices with eFAST method
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more attention should be paid on the numbers of layers, neu-
rons and iterations.

5.1.2  Variance‑based sensitivity indices

We now take advantage of the variance-based eFAST 
method to compute sensitivity indices. The independent 
first-order sensitivity indices Si and dependent total order 
sensitivity indices STi can be found in Fig. 8. Due to the high 
computational costs, with 3000 simulations run and 1000 
generated samples, no analyses concerning the variation of 
in Si and STi with different sample sizes were performed.

The associated scatter plots are shown in Fig. 7. The more 
randomly the loss values are distributed, the less sensitive 
the parameters is. According to Fig. 7, the number of layers 
is the most influential parameter, followed by the number of 
neurons and number of iterations.

The first-order sensitivity index Si represents the param-
eter importance. The number of layers affects the model 
most, followed by the numbers of neurons and the least 
influential parameter is the number of iterations, which 
agrees well with the results of Morris Method. However, 
the first-order indices are all beyond 0.01, which manifest 
that those algorithm-specific parameters individually do not 
have too much influence on the loss value of the model. 
The total effects index STi greater than 0.8 can be regarded 
very important parameters. Again, the number of layers and 
neurons is greater than 0.8. For the number of iterations, 
it is between 0.5 to 0.8. However, there is a big difference 
between the value of total and first-order sensitivity indices, 
which quantifies the effects of the parameter’s interactions. It 
can be concluded that the output variance can be attributed 
to their interactions with other parameters rather than their 
nonlinear effects and all interactions between these three 
parameters are noteworthy.

5.2  Case 2. Cube with material gradation 
along the z‑axis

Let us consider a unit cube (L = 1) with prescribed constant 
temperature on two sides. The top surface of the cube at z = 
1 is maintained at a temperature of T = 100 while the bottom 

Fig. 9  Thermal conductivity variation along the z direction Fig. 10  The boundary conditons of the unit cube

Table 4  Analytical solutions for various forms of thermal conductiv-
ity k(x)

k(x) Analytical solution 
for potential func-
tion

5(1 + 2z)2 � =
300z

1+2z

5e2z � = 100
1−e−2z

1−e−2L

5(cosz + 2sinz)2 � = 100
(cot(L)+2)∗sinz

(cosz+2sinz)

Fig. 11  Comparison of results predicted by DCM with different acti-
vation functions
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temperature at z = 0 is zero. The remaining four faces are 
insulated (zero normal flux). Three different classes of vari-
ations shown in Table 4 are considered [58]. The profiles of 
the thermal conductivity k(z) of the three material variation 
cases are illustrated in Fig. 9, and the boundary conditions 
of the unit cube can be found in Fig. 10. For each nonho-
mogeneous thermal conductivity, the analytical solution is 
summarized in Table 4.

5.2.1  Deep collocation method configurations

First, different NN configurations are investigated. Figure 11 
shows the relative error for various activation functions and 
layers. The arctan function yields the most stable and accu-
rate results. Both arctan and Tanh function outperform the 

other activation functions. Figure 12 depicts the influence 
of different sampling methods on the relative error. Random 
sampling method obtained most stable and accurate poten-
tials with increasing layers. Korobov, Hammersley, LatinHy-
percube sampling methods also provide reasonable results.

Next, we focus on various material variations, see Fig. 13. 
All material variations can be predicted accurately, but the 
most accurate results are obtained for the exponential con-
ductivity. The results from Figs. 11, 12 and 13 suggest that 2 
hidden layers are a good choice for the underlying problem.

We study now different numbers of collocation points 
(inside the cube and on its surface). The relative error in 
the temperature is depicted in Figs. 14 and 16. We also 
compared our results to results from FEM in Fig. 15. The 
temperature profiles along the z-axis for three material 

Fig. 12  Comparison of results predicted by DCM with different sam-
pling methods

Fig. 13  Comparison of predicted results for different material varia-
tions

Fig. 14  Comparison of predicted results for different collocation 
points in the cube

Fig. 15  Comparison of predicted results with FEM versus numbers of 
points
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variations are plotted with the corresponding analytical 
solutions in Fig. 17.

The predicted temperature and flux distributions for three 
material variations inside the cube are shown in Figs. 18, 19 
and 20. The heat distribution varies with graded variation 
in the z coordinates which is consistent with the material 
property of the FGMs.

Let us now test the influence of the optimizer on the 
results. First-order methods minimize the function using 
its gradient, while second-order methods minimize the loss 
function using the second-order derivatives (Hessian infor-
mation). In this application, a combination of these two 
optimizers is employed. The used first-order method is the 
Adam algorithm while L-BFGS is the tested second-order 
method. The convergence history for different optimizers is 
illustrated in Fig. 21. Although the first-order optimizer can 
be faster, they require more iterations. The L-BFGS opti-
mizer needs less iterations, but there is the risk in being 
trapped in local minima. Using the combined optimizers, 
the loss reaches a significant smaller value with acceptable 
number of iterations and simultaneously ensures the solution 
being close to the global minima. The results for different 
number of layers are illustrated in Fig. 22.

5.2.2  Material transfer learning

The loss vs number of iterations is shown in Fig. 23. After 
funetuning, the loss decreases to a smaller value in less 
iterations for all three material variations. The numerical 
results are summarized in Table 5 demonstrating that the 
computational effort can be drastically reduced with transfer 
learning.

Figure 24 shows the loss vs iteration using transfer learn-
ing for different material parameters while Tables 6 and 7 
list the accuracy and CPU time with and without transfer 
learning.

Fig. 16  Comparison of predicted results for different collocation 
points on each boundary

Fig. 17  Temperature profile in the Z direction for different material 
variations

Fig. 18  a Predicted temperature 
and b Predicted flux for expo-
nential material variation for the 
functionally graded unit cubic
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Fig. 19  a Predicted temperature 
and b Predicted flux for trigono-
metric material variation for the 
functionally graded unit cubic

Fig. 20  a Predicted temperature 
and b Predicted flux for quad-
ratic material variation for the 
functionally graded unit cubic

Fig. 21  Comparison of different optimizers for deep collocation 
method

Fig. 22  Convergence graph for DCM with increasing hidden layers
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5.3  Case 3: Cube with a 3D material gradation

Now, we consider a cube with the following three-dimen-
sional thermal conductivity variation:

The iso-surfaces of the 3D variation of the thermal conduc-
tivity is illustrated in Fig. 25. The analytical solution for 
this variation is

The boundary conditions at the six faces of the cube are 
listed in Table 8.

The predicted temperature and flux distributions are 
shown in Fig.  26. The predicted relative error of the tem-
perature across the cube is 5.215360e-03, see also Fig. 27.

5.4  Case 4: Irregular‑shaped annular sector

Next, we present results for an irregular-shaped annular sec-
tor as depicted in Fig. 29. The inner radius is 0.3, the outer 
radius is 0.5, the top surface is at Z = 0.1 and the thermal 
conductivity for the geometry varies exponentially accord-
ing to

The variation of the thermal conductivity k(z) is illustrated 
in Fig. 28. The temperature is specified along the inner 
radius as Tinner = 0 , and outer radius as Touter = 100 ; all 

(31)
k(x, y, z) =(5 + 0.2x + 0.4y + 0.6z + 0.1xy

+ 0.2yz + 0.3zx + 0.7xyz)2

(32)

�(x, y, z)

=
xyz

(5 + 0.2x + 0.4y + 0.6z + 0.1xy + 0.2yz + 0.3zx + 0.7xyz)

(33)k(z) = 5e(3z)

Fig. 23  Loss vs iteration using transfer learning with different mate-
rial variations

Table 5  Relative error and training time for material variation with 
transfer learning

Results Material variation

Exponential Exponential Quadratic Trigono-
metric

Without TL With TL With TL With TL

Relative 
error

4.2846e-06 3.9015e-06 3.7033e-06 3.6562e-06

Training 
time

45.5s 9.1s 22.4s 18.3s

Fig. 24  Loss vs iteration using 
transfer learning with different 
material parameters
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other surfaces are insulated. The boundary conditions of 
the geometry are shown in Fig.  29.

The results of the predicted temperature can be found in 
Figs. 30 and 31 and is compared to a FEM solution using 
the commercial software package ABAQUS, as no analytical 
solution is available for this problem. The temperature along 
the radial direction at the edge is plotted and compared with 
results obtained by ABAQUS in Fig. 32.

6  Conclusion

We presented a transfer learning-based deep collocation 
method (DCM) for solving the problems of potential in non-
homogeneous media. It avoids classical discretization meth-
ods, such as FEM, and treats the problem as minimization 
problem, minimizing a loss function which is related to the 
underlying governing equation. Thanks to the nonlinear acti-
vation function, the approach enables us to discover complex 
nonlinear pattern. The DCM requires sampling inside the 
physical domain. Therefore, we obtained a suitable sampling 
method for selected problems. To find the most favorable 
configuration of the neural network for specific problems, we 
carried out a sensitivity analysis quantifying the influence of 
algorithm-specific parameters on specific outputs such as the 
relative error in the L2 norm. For different material variation 
forms and material parameters, a material transfer learning is 
embedded into the framework to enhance the robustness and 
generality of this deep collocation method. To demonstrate 
the performance of the proposed DCM, various benchmark 
problems including the heat transfer and a representative 
potential problem are studied.

Table 6  Relative error of 
temperature with varying 
material parameters

k0 �

3 2 1

Without TL With TL Without TL With TL Without TL With TL

6 1.9416e-05 8.6204e-06 1.7244e-05 8.2445e-06 3.8324e-06 3.1974e-06
5 1.8445e-05 1.9075e-05 6.8346e-06 9.9521e-06 1.9358e-06 2.7892e-06
4 1.4026e-05 8.0790e-06 6.8956e-06 1.6358e-05 4.8229e-06 2.3579e-06

Table 7  Computation time with 
varying material parameters (s 
or sec)

k0 �

3 2 1

Without TL With TL Without TL With TL Without TL With TL

6 6.9715e+01 1.8325e+01 4.6163e+01 1.0890e+01 4.7989e+01 5.4962e+00
5 5.6954e+01 1.2305e+01 4.0428e+01 1.0409e+01 4.3479e+01 4.9966e+00
4 6.4699e+01 1.3876e+01 5.3908e+01 6.9735e+00 3.8583e+01 6.1923e+00

Fig. 25  Representation of iso-surfaces for the three-dimensional vari-
ation of thermal conductivity k(x,y,z)

Table 8  The boundary conditons of cube with a 3D material grada-
tion

Boundary condition

Dirichlet Neumann

�(0, y, z) = 0 q(1, y, z) = −0.2zy(25 + 2y + 3z + zy)

�(x, 0, z) = 0 q(x, 1, z) = −0.1xz(50 + 2x + 6z + 3xz)

�(x, y, 0) = 0 q(x, y, 1) = −0.1xy(50 + 2x + 4y + xy)
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Appendix A: Data flow for this study

The data flow inside all three modules is depicted in Fig. 33. 
The first module is based on the DCM. The second module 
includes a parametric study on the influence of algorithm-
specific parameters including numbers of collocation points 
and parameters for the deep learning configurations on pre-
dictive accuracy, which in turn provides guidance for fur-
ther applications of the DCM. For the parametric analysis, 
a two-step Morris screening method and EFAST method are 
adapted providing qualitative and quantitative measures of 
importance and interaction of DCM-specific parameters. To 
facilitate and improve the generality and robustness of the 
presented model, data are finally imported into a material 
transfer learning model to transfer and expand the learned 
knowledge between different material variations.

Fig. 26  Distributions of a 
temperature; and (b)flux for the 
cube with 3D material variation

Fig. 27  Temperature profile in diagonal line for the cube with a 3D 
material gradation

Fig. 28  Profile of thermal conductivity in z direction. The exponential 
variation of the conductivity is k(z) = 5e(3z)

Fig. 29  Annular sector subjected to thermal boundary conditions
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Appendix B: Activation function 
and sampling method for comparison

The following table shows a list of classical activation func-
tions and its graphs that studied in this application, which 
will help to choose a suitable activation for physics-informed 
neural networks (Table 9).

Various sampling methods are used to generate sequence 
of points within a cube. The purpose of the sampling method 
is to generate training datasets for the DCM and improve the 
training of the network. Proper sampling will help in case 
the neural network is only trained on fixed points and prevent 
a biased trained model, which may have a better prediction 
on random new data (Table 10).

Fig. 30  Temperature distribu-
tion for irregular-shaped FGMs 
obtained by a deep collocation 
method; and b ABAQUS

Fig. 31  Flux distribution 
for irregular-shaped FGMs 
obtained by a deep collocation 
method; and b ABAQUS

Fig. 32  Temperature comparison along the right top edge (indicated 
by the arrow)
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Table 9  Activation function Table B1: Activation function
Activation function Explicit function form Function figure Derivatives of function figure

Tanh f(x) = e2x−1
e2x+1 -3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Tanh Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Derivatives Tanh Functions

Sigmoid f(x) = 1
1+e(−x)

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Sigmoid Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Derivatives of Sigmoid Functions

Swish f(x) = x
1+e(−βx)

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Swish Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Derivatives of Swish Functions

LeCuns Tanh f(x) = 1.7159× tanh( 23x) -3 -2 -1 1 2 3

-3

-2

-1

1

2

3

LeCuns Tanh Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Derivatives of LeCuns Tanh Functions

Bipolar sigmoid f(x) = ex−1
ex+1

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Bipolar sigmoid Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Derivatives of Bipolar sigmoid Functions

Mish f(x) = x× tanh(ln(1 + ex))
-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Mish Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Derivatives of Mish Functions

Arctan f(x) = tan−1(x)
-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Arctan Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Derivatives of Arctan Functions

Silu f(x) = x× sigmoid(x)
-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Silu Functions

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Derivatives of Silu Functions
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Fig. 33  Data flow in physics-informed deep collocation method and sensitivity analysis

Table 10  Sampling method Table B2: Sampling method
Sampling method points figure Sampling method points figure

Latin hypercube Monte Carlo

Random Halton Sequences

Hammersley Sequence Korobov Lattice

Sobol Sequence
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