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Abstract. An analytical solution in the form of infinite series is developed for predicting time-dependent

three-dimensional seepage into ditch drains from a flat, homogeneous and anisotropic ponded field of finite size,

the field being assumed to be surrounded on all its vertical faces by ditch drains with unequal water level heights

in them. It is also assumed that the field is being underlain by a horizontal impervious barrier at a finite distance

from the surface of the soil and that all the ditches are being dug all the way up to this barrier. The solution can

account for a variable ponding distribution at the surface of the field. The correctness of the proposed solution

for a few simplified situations is tested by comparing predictions obtained from it with the corresponding values

attained from the analytical and experimental works of others. Further, a numerical check on it is also performed

using the Processing MODFLOW environment. It is noticed that considerable improvement on the uniformity of

the distribution of the flow lines in a three-dimensional ponded drainage space can be achieved by suitably

altering the ponding distribution at the surface of the soil. As the developed three-dimensional ditch drainage

model is pretty general in nature and includes most of the common variables of a ditch drainage system, it is

hoped that the drainage designs based on it for reclaiming salt-affected and water-logged soils would prove to be

more efficient and cost-effective as compared with designs based on solutions developed by making use of more

restrictive assumptions. Also, as the developed model can handle three-dimensional flow situations, it is

expected to provide reliable and realistic drainage solutions to real field situations than models being developed

utilizing the two-dimensional flow assumption. This is because the existing two-dimensional solutions to the

problem are actually valid not for a field of finite size but for an infinite one only.

Keywords. Analytical models; three-dimensional ponded ditch drainage; transient seepage; variable ponding;

hydraulic conductivity; specific storage.

1. Introduction

Subsurface drainage as a means of combating waterlogging

and salinity in irrigated lands has been a standard practice

for quite some time now [1–3]. Irrigation is a necessity in

many arid and semi-arid regions for augmenting agricul-

tural productivity [4, 5] but this practice has resulted in

reducing vast tracks of agricultural land to saline and

waterlogged soils in many regions of the world, including

India [2, 6–9]—to name a few). The salts present in a soil

column may be washed by forcing good quality irrigation

water through it and then draining the salt laden water via

subsurface drains [10–14]. Subsurface drains are now also

playing an increasingly important role in reducing the

emission of the greenhouse gas methane from paddy fields

[15, 16]. Also, since subsurface flow to a stream or a river

from the surroundings under a given hydro-geological

situation is similar to that of the flow to a ditch drain under

the same setting [17], subsurface drainage studies associ-

ated with a ditch drainage system should then be also useful

in analysing groundwater flow behaviour to a stream or

river under similar hydro-geological settings as well. Thus,

it is clear that subsurface drainage studies have multiple

uses and hence efforts need be directed to understand in

detail the hydraulics of flow associated with such a system.

This study will be focused on investigating the transient

hydraulics of flow associated with a three-dimensional

ponded ditch drainage system. Several steady-state theories

were proposed in the past defining steady two-dimensional

seepage of water into ditch drains from a continuously

ponded field under different hydro-geological settings

[3, 12, 18–32]. Extensive reviews of most of these two-

dimensional steady state solutions were given by Barua and

Alam [10], Afruzi et al [28] and Sarmah and Barua [12].

Barua and Alam [10] provided an analytical solution for

predicting two-dimensional seepage into a network of*For correspondence
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equally spaced ditch drains from a ponded field underlain

by an impervious barrier. This solution assumes the ditch

drains to penetrate all the way up to the impervious. A

notable feature of this solution is that it can account for a

variable ponding field at the surface of the soil. Xin et al

[13] utilized the SUTRA [33] finite-element codes to study

the effect of macro-pores in a continuously ponded sub-

surface drainage system by performing 3-D steady-state

simulations. Their study shows that the macro-pores inhabit

infiltration and hence decrease the leaching efficiency of a

ponded ditch drainage system.

Drainage from a uniformly ponded field is mostly con-

fined to areas close to the drains with very little water

movement taking place in locations further away from the

drains; this has been the conclusion of many drainage

studies [3, 10–12, 14, 18, 20, 23, 28, 29, 32, 34–36]—to

name only a few) of the past related to ponded drainage,

irrespective of whether drainage is being carried out using

tile or ditch drains. Thus, it is a challenge to leach a salt-

affected soil in a uniform way using a conventional con-

stant-depth ponded ditch drainage system since, under such

a system, the areas in the immediate vicinity of the drains

get over-washed and the areas away from the drains under-

washed. The uniformity of leaching of a soil column via a

ponded drainage system can be improved by washing it in

stages and subjecting the same to a sequential and/or

fractional ponding distribution at its surface [11, 14, 36].

However, instead of carrying out the leaching in stages,

subjecting the soil surface to a progressively increasing

ponding field away from the centre of the ditches to mid-

way between the drains may also lead to a good uniformity

of leaching of the soil profile. The main advantage of this

method is that the entire leaching procedure can be carried

out in a single step. The analytical works of Barua and

Alam [10] and Barua and Sarmah [29] provide a way to

work out the surface water ponding distribution required

specific to a leaching scenario for achieving a relatively

uniform cleaning of the soil profile via a ditch drainage

ponded system.

All the analytical solutions as mentioned earlier for the

ponded ditch drainage problem are based on the assumption

of two-dimensional flow in the drainage space. Thus, all

these solutions assume that the flow to the drains from a

ponded field is restricted to a vertical plane only orthogonal

to the drains, an assumption that intrinsically means that the

horizontal ponded field supplying water to the drains is of

an infinite size and that the drains removing water from the

field are also of infinite length. The finite-element mod-

elling studies of Brainard and Gelhar [17] (see also Mur-

doch [37] and Meigs and Bahr [38]) on subsurface flow to a

straight stream of finite length due to a steady recharge in

the surrounding soil, however, clearly demonstrate that

flow in such a situation is mostly three-dimensional in

nature, particularly if the anisotropy ratio of the soil is high.

Thus, two-dimensional vertical section models may not be

the best ones for analysing subsurface flow behaviour near

streams and ditches and three-dimensional models may be

the most appropriate ones to study such situations. As

mentioned earlier, mid-season drainage of paddy fields is

proving to be increasingly helpful in bringing about a

reduction in the emission of the greenhouse gas methane

from these fields; drainage also helps in providing a

desirable soil–air–water ambience in the root zone of

paddies. The size of the paddy plots in the Southeast Asian

countries, in general, is much smaller than that of USA and

Australia [39]. Hence, from what has been said before,

subsurface drainage from these ponded fields to surround-

ing open drains is expected to be mainly three-dimensional

in nature. In view of the same, an effort is being made here

to obtain an analytical solution for predicting transient

three-dimensional seepage from a finite-sized ponded field

to adjacent drains. It is hoped that this solution will lead to

better designs of open drains for reclaiming saline and

surface waterlogged soils as compared to designs based on

solutions derived with the two-dimensional flow assump-

tion. This is because, unlike a three-dimensional solution of

a drainage problem, which is valid for a field of finite size, a

drainage solution developed with the two-dimensional flow

assumption is actually valid (strictly speaking) for an infi-

nite-sized field only. Also, as subsurface flow to an open

ditch is similar to flow to a river or stream under identical

conditions, the proposed model is also expected to be

helpful in studying subsurface flow behaviour to a river or

stream when the surroundings get inundated with flood

water. It may also be used to check the convergence of

complex numerical codes involving three-dimensional

seepage to drains and rivers after reducing these codes to

the relatively simpler settings for which solutions have been

obtained in the present study. As an analytical solution

helps in providing a physical insight into a hydro-system, it

is hoped that the model proposed here would also lead to

having a better understanding of the interplay of various

parameters associated with the hydraulics of a three-di-

mensional ditch drainage system.

2. Mathematical formulation and solution

The geometry of the flow problem considered for study is

as shown in figure 1. A finitely sized horizontal soil column

of surface area L� B and thickness h is being drained by

four ditch drains placed on the four sides of the soil column,

the soil being imposed with a variable ponding field at its

surface and is being underlain by an impervious barrier. A

coordinate system as shown in the figure is imposed into the

system with the x-axis measuring positive towards the

Eastern boundary, y-axis measuring positive towards the

Northern boundary and z-axis positive measuring vertically

downwards towards the impervious barrier. The water level

heights on the North, South, East and West boundary drains

are taken as H1; H2; H3 and H4; respectively, all these
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Figure 1. Geometry and sectional views of a three-dimensional ditch drainage system subjected to a variable ponding distribution at the

surface of the soil, the soil being flanked on four of its sides by ditch drains with specified water level depths in them.
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distances being measured from the origin O, as can be

observed in the sectional views of the flow problem. The

unequal water level heights in the ditches can be main-

tained with the help of adjustable gates and weirs with

different weir heights. The water level height of the col-

lecting drain(s) should be lower than the lowest water level

height of the four surrounding drains (i.e., North, South,

East and West boundary drains). The ponding pyramid of

N0 depths at the surface of the soil is being introduced by

constructing N0 ponding strips with the help of bunds and

the ponding depth at the ith strip is denoted as di
ð1� i�N0Þ: Ditch bunds of width ex and ey are provided

along the edges of the ditches so as to prevent the ponding

water from flowing directly to the ditches; these bunds,

however, for simplicity like in Kirkham [19, 20], are

assumed to be impervious and of negligible size in the

mathematical treatment. It should be noted that for a pon-

ded soil column having a uniform and negligible ponding

depth over it, the side bunds are not really required as in

such a situation the water will not roll over directly to the

ditches from the surface of the soil.

The distance of the ith bund, as measured from the origin

O, in the x- and y- directions are taken as dxi and

dyi½1� i� 2ðN0 � 1Þ; N0[ 1�; respectively. It should be

noted that for N0 ¼ 1; there will be no inner bunds on the

surface of the soil and the ponding depth will then be a

uniform one. For mathematical simplicity, like the side

bunds, the widths of the inner bunds are also assumed to be

of negligible size (i.e., they are considered as infinitesi-

mals). The directional conductivities of the soil column

along the x-, y- and z-directions are taken as Kx; Ky and Kz;
respectively and Ss denotes the specific storage of the soil

column. For an isotropic soil, the hydraulic conductivity

will be the same in all the three directions; the conductivity

of such a soil is denoted here as K. The ponding depths in

between the bunds are assumed to be non-changing with

time and the soil is assumed to be fully saturated. The

constancy of the ponding depths in the ponding strips can

be maintained by constantly feeding the surface of the soil

with irrigation water; that way, the loss of water to the soil

due to infiltration can be balanced at all times. Additionally,

it is also supposed that the ponding distribution at the

surface and the water level in the ditches are inputted

instantaneously into the system, the water previously been

assumed to be standing flash with the saturated horizontal

field. With the above assumptions and nomenclature in

place and further, naming the hydraulic head function as /

and the time variable as t, the initial and boundary condi-

tions for the three-dimensional flow problem of figure 1 can

be expressed as

/ðx; y; z; t ¼ 0Þ ¼ 0; 0\x\L; 0\y\B; 0\z\h;

ðIÞ

/ðx; y; z; t[ 0Þ ¼ �z; 0\x\L; y ¼ B; 0\z\H1;

ðIIaÞ

/ðx; y; z; t[ 0Þ ¼ �H1; 0\x\L; y ¼ B; H1 � z\h;

ðIIbÞ

/ðx; y; z; t[ 0Þ ¼ �z; 0\x\L; y ¼ 0; 0\z\H2;

ðIIIaÞ

/ðx; y; z; t[ 0Þ ¼ �H2; 0\x\L; y ¼ 0; H2 � z\h;

ðIIIbÞ

/ðx; y; z; t[ 0Þ ¼ �z; x ¼ L; 0\y\B; 0\z\H3;

ðIVaÞ

/ðx; y; z; t[ 0Þ ¼ �H3; x ¼ L; 0\y\B; H3 � z\h;

ðIVbÞ

/ðx; y; z; t[ 0Þ ¼ �z; x ¼ 0; 0\y\B; 0\z\H4;

ðVaÞ

/ðx; y; z; t[ 0Þ ¼ �H4; x ¼ 0; 0\y\B; H4 � z\h;

ðVbÞ

o/ðx; y; z; t[ 0Þ

oz
¼ 0; 0\x\L; 0\y\B; z ¼ h;

ðVIÞ

/ðx; y; z; t[ 0Þ ¼ d1; 0\x\L; 0\y\dy1; z ¼ 0;

ðVIIaÞ

/ðx; y; z; t[ 0Þ ¼ d1; 0\x\L; dyð2N0�2Þ\y\B;

z ¼ 0;

ðVIIbÞ

/ðx; y; z; t[ 0Þ ¼ d1; 0\x\dx1; dy1\y\dyð2N0�2Þ; z ¼ 0;

ðVIIcÞ

/ðx; y; z; t[ 0Þ ¼ d1; dxð2N0�2Þ\x\L;

dy1\y\dyð2N0�2Þ; z ¼ 0;
ðVIIdÞ

/ðx; y; z; t[ 0Þ ¼ dj; dxðj�1Þ\x\dxð2N0�jÞ;

dyðj�1Þ\y\dyj; z ¼ 0;
ðVIIeÞ

/ðx; y; z; t[ 0Þ ¼ dj; dxðj�1Þ\x\dxð2N0�jÞ;

dyð2N0�j�1Þ\y\dyð2N0�jÞ; z ¼ 0;
ðVIIfÞ

/ðx; y; z; t[ 0Þ ¼ dj; dxðj�1Þ\x\dxj;

dyj\y\dyð2N0�j�1Þ; z ¼ 0;
ðVIIgÞ

/ðx; y; z; t[ 0Þ ¼ dj; dxð2N0�j�1Þ\x\dxð2N0�jÞ;

dyj\y\dyð2N0�j�1Þ; z ¼ 0;
ðVIIhÞ
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/ðx; y; z; t[ 0Þ ¼ dN0
; dxðN0�1Þ\x\dxN0

;

dyðN0�1Þ\y\dyN0
; z ¼ 0;

ðVIIiÞ

where 2� j�N0 � 1:
It is now proposed to obtain an analytical solution to the

equation governing three-dimensional transient groundwa-

ter flow in a saturated, homogeneous, anisotropic and

compressible soil subject to the above boundary and initial

conditions. For such a soil, the governing equation of

groundwater flow can be expressed as [40]

Kx

o
2/

ox2
þ Ky

o
2/

oy2
þ Kz

o
2/

oz2
¼ Ss

o/

ot
; ð1Þ

where the symbols pertaining to Eq. (1) have already been

defined. Falling on the separation of variable method [41], a

solution of Eq. (1) can be expressed as [42]

where

ðKa
x Þ

2 ¼
Kx

Kz

; ð3Þ

ðKa
y Þ

2 ¼
Ky

Kz

; ð4Þ

X ¼

ffiffiffiffiffi

Kz

Kx

r
� �

x ¼
x

Ka
x

; ð5Þ

Y ¼

ffiffiffiffiffi

Kz

Ky

s !

y ¼
y

Ka
y

; ð6Þ

LX ¼

ffiffiffiffiffi

Kz

Kx

r
� �

L; ð7Þ

BY ¼

ffiffiffiffiffi

Kz

Ky

s !

B; ð8Þ

Nm1
¼

m1p

LX
; ð9Þ

Nn1 ¼
1� 2n1

2

� �

p

h

� �

; ð10Þ

Nm2
¼

m2p

LX
; ð11Þ

Nn2 ¼
1� 2n2

2

� �

p

h

� �

; ð12Þ

Nm3
¼

m3p

BY

; ð13Þ

Nn3 ¼
1� 2n3

2

� �

p

h

� �

; ð14Þ

/ðX; Y ; z; tÞ ¼
X

M1

m1¼1

X

N1

n1¼1

Am
1
n
1

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm
1
Þ2 þ ðNn

1
Þ2

q

ðBY � YÞ
h i

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm
1
Þ2 þ ðNn

1
Þ2

q

BY

h i sinðNm
1
XÞ sinðNn

1
zÞ

þ
X

M2

m2¼1

X

N2

n2¼1

Bm2n2

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm
2
Þ2 þ ðNn

2
Þ2

q

Y
h i

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm
2
Þ2 þ ðNn

2
Þ2

q

BY

h i sinðNm
2
XÞ sinðNn

2
zÞ

þ
X

M3

m3¼1

X

N3

n3¼1

Cm3n3

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm3
Þ2 þ ðNn3Þ

2
q

ðLX � XÞ

� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm3
Þ2 þ ðNn3Þ

2
q

LX

� � sinðNm3
YÞ sinðNn3zÞ

þ
X

M4

m4¼1

X

N4

n4¼1

Dm4n4

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm4
Þ2 þ ðNn4Þ

2
q

X

� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm4
Þ2 þ ðNn4Þ

2
q

LX

� � sinðNm4
YÞ sinðNn4zÞ

þ
X

M5

m5¼1

X

N5

n5¼1

Fm5n5

cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm5
Þ2 þ ðNn5Þ

2
q

ðh� zÞ

� �

cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm5
Þ2 þ ðNn5Þ

2
q

h

� � sinðNm5
XÞ sinðNn5YÞ

þ
X

P

p¼1

X

Q

q¼1

X

R

r¼1

Epqr sinðNpXÞ sinðNqYÞ sinðNrzÞ exp �
ðkpqrÞ

2
t

ðK1Þ
2

" #

; ð2Þ

Analysis of three-dimensional transient seepage into ditch… 773



Nm4
¼

m4p

BY

; ð15Þ

Nn4 ¼
1� 2n4

2

� �

p

h

� �

; ð16Þ

Nm5
¼

m5p

LX
; ð17Þ

Nn5 ¼
n5p

BY

; ð18Þ

Np ¼
pp

LX
; ð19Þ

Nq ¼
qp

BY

; ð20Þ

Nr ¼
1� 2r

2

� �

p

h

� �

; ð21Þ

ðkpqrÞ
2 ¼ ðNpÞ

2 þ ðNqÞ
2 þ ðNrÞ

2; ð22Þ

ðK1Þ
2 ¼

Ss

Kz

� �

; ð23Þ

M1; N1; M2; N2; M3; N3; M4; N4; M5; N5; P; Q and R

are all integers tending to infinity and Am
1
n
1
; Bm

2
n
2
; Cm3n3 ;

Dm4n4
; Fm5n5 and Epqr are constants to be determined using

the relevant boundary and initial conditions. It is worth

noting here that Eq. (2), by its very definition, satisfies

boundary condition (VI). Appendix 1 provides the complete

procedure of determining these constants utilizing the ini-

tial and boundary conditions. Once these constants are

determined, the velocity distributions in the x-, y- and z-

directions, Vx; Vy and Vz; in the drainage space can next be

worked out by applying the Darcy’s law to the hydraulic

head expression (after first converting it to the real space by

making use of Eqs. (5) and (6)) of Eq. (2); the relevant

expressions for the same are

Vxðx; y; z; tÞ ¼ �Kx

o/

ox
ð24Þ

Vyðx; y; z; tÞ ¼ �Ky

o/

oy
ð25Þ

and

Vzðx; y; z; tÞ ¼ �Kz

o/

oz
: ð26Þ

In the same way, Darcy’s law can be applied to evaluate

the top discharge function, Q
f
top; at the surface of the soil;

thus, Q
f
top can be represented as follows:

Q
f
topðx;y; tÞ ¼�Kz

Z

x

ex

Z

y

ey

o/

oz

� �

z¼0

dxdy

¼�Kz

X

M1

m1¼1

X

N1

n1¼1

Am1n1

Ka
xK

a
yNn1

Nm1

� �

cos
Nm1

ex

Ka
x

� �

� cos
Nm1

x

Ka
x

� �� �

(

�

cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm1
Þ2þðNn1Þ

2
q

B�ey
Ka
y

� �

� �

� cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm1
Þ2þðNn1Þ

2
q

B�y

Ka
y

� �

� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm1
Þ2þðNn1Þ

2
q

B
Ka
y

� �

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm1
Þ2þðNn1Þ

2
q

þ
X

M2

m2¼1

X

N2

n2¼1

Bm2n2

Ka
xK

a
yNn2

Nm2

� �

cos
Nm2

ex

Ka
x

� �

� cos
Nm2

x

Ka
x

� �� �

�

cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm2
Þ2þðNn2Þ

2
q

y

Ka
y

� �

� �

� cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm2
Þ2þðNn2Þ

2
q

ey
Ka
y

� �

� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm2
Þ2þðNn2Þ

2
q

B
Ka
y

� �

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm2
Þ2þðNn2Þ

2
q

þ
X

M3

m3¼1

X

N3

n3¼1

Cm3n3

Ka
xK

a
yNn3

Nm3

� �

cos
Nm3

ey

Ka
y

 !

� cos
Nm3

y

Ka
y

 !" #

�

cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm3
Þ2þðNn3Þ

2
q

L�ex
Ka
x

� �

� �

� cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm3
Þ2þðNn3Þ

2
q

L�x
Ka
x

� �

� �

sinh
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It is worth noting at this stage that Q
f
top diverges when x

or y or both fall exactly on an inner bund separating two

unequal ponding depths at the surface of the soil. To prove

this assertion, Q
f
top may be determined exactly at an inner

bund, say at x ¼ dx1 separating the ponding depths d1 and

d2 ðd1 6¼ d2Þ; and then the nature of this function be anal-

ysed for convergence for this setting. Towards realizing this

end, Fm5n5 of Eq. (39) can be substituted in Eq. (27); this

yields a term like
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Now, for a particular value of n5; it is easy to see that

both tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
q
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and
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tend to 1

when m5 is made to increase without any upper margin, that

is
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If it is supposed that tanh
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reach approximately 1 after summing up to

approximately four terms of m5 for a given value of n5, then

the above infinite series can be expressed as 4
LXBY

� �

P

M5

m5¼5
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a
y

Nm5
ðNn5

Þ2
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cos2ðNm5
SX1Þ cosðNn5YÞ cosðNn5SYð2N0�2ÞÞ:If

now Nm5
of Eq. (17) is plugged into this series, then it

reduces, after some simplification, to the form

x ðsayÞ ¼
4d1

pBY

� �

X

M5!1

m5¼5

Ka
xK

a
y

m5ðNn5Þ
2

" #

� cos2ðm5paÞ cosðNn5YÞ cosðNn5SYð2N0�2ÞÞ;

where a ¼ SX1=LXð0\a\1Þ: As cos2ðm5paÞ lies between
0 and 1 for all possible values of m5 [i.e.,

0� cos2ðm5paÞ� 1, m5 2 1; 2; 3;. . .f g; in the expression

for x; m5 starts from 5], there can be two possibilities for a

particular value of a; namely, cos2ðm5paÞ 6¼ 0 for any

value of m5 2 5; 6; 7;. . .f g or cos2ðm5paÞ ¼ 0 for a subset

of positive integers, say, mn1; mn2; mn3; . . .f g belonging to

the set m5 2 5; 6; 7;. . .f g (i.e., mni 2 5; 6; 7;. . .f gÞ: Con-

sidering the first case first and letting Mmin ¼minimum of

cos2ðm5paÞ for any m5 2 5; 6; 7;. . .f g; the following

inequality then can be written:

Mmin
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: However,
P
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m5¼5

1
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� �

diverges and hence the

left hand and the right side of the inequality too. In other

words, x diverges when cos2ðm5paÞ 6¼ 0:

Now, to prove the divergence of x when cos2ðm5paÞ ¼ 0

for any m5 2 mn1; mn2; mn3; . . .f g the infinite series of x

can be split into two parts as follows:

xðsayÞ ¼
4pd1
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Naturally, the first term of the above series is zero as

cos2ðm5paÞ ¼ 0 for all m5 belonging to the subset

mn1; mn2; mn3; . . .f g: Also, the following inequality is valid

for all m5 2 5; 6; 7;. . .f gn mn1; mn2; mn3; . . .f g ¼ mp1;
�

mp2; mp3; . . . g (say):
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where M
0

min ¼ minimum of cos2ðm5paÞ for

m5 2 mp1; mp2; mp3; . . .

� �

: But here also

M
0

min
4d1
pBY

� �

Ka
xK

a
y

ðNn5
Þ2

� �

cosðNn5YÞ cosðNn5SY6Þ
1

mp1
þ 1

mp2
þ 1

mp2

�

þ. . .Þ diverges; thus x; and hence Q
f
topðx ¼ dx1; y; tÞ;

diverges for both the scenarios when cos2ðm5paÞ 6¼ 0 and

cos2ðm5paÞ ¼ 0: A similar procedure can be adopted to

show the divergence of Q
f
top when it is being measured

exactly at any other inner bunds.

Thus, the total discharge, Qtop; infiltrating through the

surface of the soil at any instant of time t for situations

where d1 6¼ 0 can next be easily worked out by simply

substituting x ¼ L� ex and y ¼ B� ey in Eq. (27), that is

Qtop ¼ Q
f
topðx ¼ L� ex; y ¼ B� ey; tÞ: ð28Þ

Thus, it can be seen that, at a point of piecewise dis-

continuity, be it at the edges of the field or exactly at an

inner bund separating two dissimilar water level heights,

the discharge function (as well as the velocity functions)
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blows up. However, a point of jump discontinuity can be

avoided by considering a deleted neighbourhood (naturally,

smaller the size of this neighbourhood, greater the accu-

racy) and that is why ex and ey are to be chosen with finite

values should there exist jump discontinuity points at the

edges of the field (say, when d1 is non-zero). The same is

also true when an inner bund separates two different water

level heights (i.e., say when di�1 6¼ diÞ: However, since the
top boundary condition utilized for deriving the hydraulic

head function assumes a known ponding distribution

throughout the surface of the soil (i.e., treats the surface

boundary as a purely Dirichlet boundary as in Kirkham

[19, 20]), naturally, the application of this solution for

finite-sized side and inner bunds will lead to error. This

error, however, can be made virtually non-existent if the

widths of the bunds are treated as infinitesimals. This is also

true for most of the leaching scenarios where the widths of

side bunds are generally much lower than that of the

spacing between the ditches (Kirkham [19, 20], Warrick

and Kirkham [27]). It is important to note here that if the

soil is being subjected to a negligible ponding head at the

surface of the soil (i.e., dj ¼ 0Þ; no bund will then be

required at the surface of the field and the proposed solution

will then be strictly accurate. It is worth remarking here

that, even for the case of zero ponding (i.e., by assuming

zero depth of ponding over the surface of the soil) and

steady-state flow, there currently exists no analytical solu-

tion to the three-dimensional ditch drainage problem. Thus,

when d1 ¼ 0; the lower limits of integration of the integral

of Eq. (27) can then be treated as zero (i.e., ex ¼ ey ¼ 0Þ but
when d1 6¼ 0; side bunds are then a necessity (as otherwise,

water from the surface will just directly flow to the drains)

and hence some finite values of the side bunds

(ex 6¼ 0; ey 6¼ 0Þ need to be put in the integral, as otherwise

the integral will diverge (as shown earlier). As ex and ey can

be given a much smaller value as compared with the

spacing between the ditches (Kirkham [19, 20], Warrick

and Kirkham [27]) for a typical leaching scenario, the error

resulting due to consideration of finite values of ex and ey is

expected to be quite limited for such a situation. Now, as

far as the upper limits of Eq. (27) are concerned, as long as

both the limits do not fall exactly on points of jump dis-

continuity separating different water level heights (i.e.,

exactly on locations separating, say, di�1 6¼ diÞ; the integral
will converge as has been proved before. However, in the

case where even one of the upper limits falls exactly on a

point of piece discontinuity, say at x ¼ dx1 separating the

ponding depths d1 and d2 ðd1 6¼ d2Þ; the integral will then,

as shown before, diverge. For such a situation, the upper

limit of x may be taken as dx1 � e; where e ! 0 (but not

exactly zero; that is by considering a point in the deleted

neighbourhood of dx1Þ: If the upper limits fall on any other

point other than the piecewise continuous points, the inte-

gral will converge.

For better clarity of presentation, the top discharge

function can also be normalized in percentage form by

dividing Q
f
top by Qtop and then multiplying the resultant by

100; denoting such a function as Q
nf
top; an expression for the

same can thus be represented as

Q
nf
top ¼

Q
f
top

Qtop

 !

� 100: ð29Þ

It will now be shown that Qtop diverges if d1; the ponding
depth in the first annular strip (figure 1), is non-zero but ex
and/or ey is zero at the same time. For that, we substitute

Fm5n5 of Eq. (39) in Eq. (28); this results in an expression

having a term, for ex ¼ 0; like
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where Nm5
¼ m5p=LX and Nn5 ¼ n5p=BY : Now, for a par-

ticular value of m5; it can be seen that
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of the above

series tend to 1 when n5 is allowed to increase continually,

that is
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an infinite series, which, as is known, diverges. Since this is

true for any chosen value of m5;it can thus be concluded

that

2
BY

� �
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, and hence Qtop, always diverges if d1 is not

zero but ex is zero at the same time. In a similar way, it can

also be shown that d1 6¼0 and ey¼0 at the same time, also,

makes Qtop diverge.

It is worth noting at this point that the volume of water

seeping through the surface of the soil or being fed to a

drainage ditch during a specific time T can also be easily

determined, by carrying out a time integral on the discharge

function of interest for the duration T: Thus, the volume of

water seeping through the surface of the soil in time T can

be calculated as

Voltop ¼

Z

T

0

QtopðtÞdt: ð30Þ

In the same way, the volume of water seeping into the

North, South, East and West ditches in time T can also be

determined by carrying out time integrals of the relevant

discharges for the concerned duration.

The path traversed by a water particle from the surface of

the soil to a ditch can be traced by following an iterative

procedure as given by Grove et al [43]. This procedure also

gives the time of travel of a fluid particle between any two

locations in the pathline of the particle. This methodology

can be used to trace not only a streamline but also a

streamsurface as well, a streamsurface being the locus of

infinite number of streamlines being originated from a

continuous line segment (Hultquist [44, 45]. It is to be

noted that the pathlines and the streamsurfaces shown in

figure 4–8, 11 and 12 have been traced using the method as

just mentioned.

3. Verification of the proposed solution

A few checks are now performed to establish the validity of

the analytical solution proposed here. In the first instance, a

comparison is being made between the hydraulic heads as

obtained from this solution and the corresponding values

obtained from an earlier analytical solution of the fully

penetrating ponded ditch drainage problem developed uti-

lizing the two-dimensional flow assumption. It is to be

noted that the three-dimensional ponded drainage problem

considered here should approximately reduce to that of a

two-dimensional one in a vertical plane located further

away from the Northern and Southern boundaries of fig-

ure 1, if B is given a very large value. Thinking on this line,

a comparison study was carried out between the hydraulic

head predictions as obtained from the proposed solutions

and the corresponding values obtained from Barua and

Alam’s solution for a specific drainage situation of figure 1

in a vertical plane passing midway (i.e., the vertical plane

located at y ¼ 25 mfrom the origin where the flow was

expected to be approximately two-dimensional in nature for

the considered drainage situation) between the Northern

and Southern boundaries of the flow domain. Figure 2

shows the comparison of this model. As can be seen, the

hydraulic heads as obtained from the developed model

match closely with the corresponding values as obtained

from Barua and Alam’s solution for the chosen flow situ-

ation, thereby showing that the proposed solution is cor-

rectly developed. Also, for this drainage situation,
Qtopðx¼0 to L;y¼25 to 26;t!1Þ

2Kh
ratios work out to be 0.741, where

the discharges in the above ratios have been taken between

the vertical planes passing through y ¼ 25 m and

y ¼ 26 m:On the other hand, this ratio, when evaluated

utilizing using Fukuda’s [22] and Youngs’ [3] analytical

solutions, turns out as 0.743 and 0.742, respectively –

values that are very close to the value of 0.741 obtained

from the model proposed here and thereby providing with

another check on the validity of the proposed solution.

Further, Fukuda also found this ratio as 0.720 from his

experimental observations. Thus, the close matching of this

ratio as obtained from the proposed model with the iden-

tical ratio obtained from Fukuda’s experimental results can

also be treated as an experimental verification of the solu-

tion being proposed here.

In order to ascertain once again the correctness of the

developed analytical model, a numerical check on the

developed model was also performed by drawing an

appropriate numerical model utilizing the Processing

MODFLOW [46] codes. Figure 3 shows comparison of

numerically obtained hydraulic heads corresponding to a

time step for a chosen ponded drainage situation of figure 1

to the corresponding analytical values; as may be seen, the

analytically predicted hydraulic heads are in close confor-

mity with the numerically obtained values, thereby showing

once again that the proposed solution has been correctly

developed.

4. Discussion

From figures 4–8 it is clear that flow to a ditch drainage

system from a ponded field of finite and limited size is

mostly of a three-dimensional nature, particularly in areas

close to the drains. It can also be observed from figure 8

that, even for drainage situations where two parallel vertical

faces of the flow domain are separated from each other by a

relatively large distance as compared with the separation

distance between the other two faces, three-dimensional

nature of the pathlines still prevails, mainly again in loca-

tions close to the drains. However, from this figure (i.e.,
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figure 8) it is also evident that, in a vertical plane located

further away from the longer side boundaries, flow can

roughly be approximated as a two-dimensional one without

introducing any appreciable error when measured vis-à-vis

a three-dimensional model. It may also be noticed that the

flow situation as shown in figure 1 can also very well

represent subsurface flow to a straight river reach from a

flooded field of negligible depth of flood water over the

surface of the soil. In fact, Brainard and Gelhar [17] also

performed similar studies using the finite-element method

for predicting three-dimensional seepage of water into a

straight river reach of finite length from a horizontal field

receiving a uniform recharge at the water table. Their

numerical studies, however, as just mentioned, assume a

uniform recharge input at the water table whereas the

analytical models proposed here assume a known ponding

distribution at the surface of the soil. It is also clear from

figure 4a and b that an increase in the vertical conductivity

causes not only the pathlines to penetrate relatively deeper

into a drainage space but also brings about a considerable

reduction in the water particle travel times along the

pathlines as well. The travel times are also, expectedly,

found to decrease with the increase of the ponding head at

the surface of the soil, as can be clearly seen in figures 4b

and 6. Also, from figures 4b and 5, it can be seen that by

merely changing the level of water in the ditches, extensive

changes in the pathline distribution as well as on the travel

times of water particles can be brought about; whereas the

pathline originating from the coordinate (2,4,0) exits

through the Northern boundary for the flow situation of

figure 4b, a mere change of ditch water levels in the North,

South, East and West drains for this flow scenario from 0.5

to 0.25, 0.5, 0.75 and 0.75 m, respectively, has now caused

the (2,4,0) pathline to exit through the Western boundary

(figure 5).

Further, the travel times for these drainage situations are

also significantly different from each other. Another

important variable, so far as the travel times of water par-

ticles in a ponded drainage is concerned, is the thickness of

the soil column overlying the impervious barrier. Other

factors remaining the same, an increase in this thickness

may result in a substantial increase of the water particle

travel times along the pathlines, as has been aptly demon-

strated through the drainage situations of figures 4b and 7.

Figure 9 shows the variations of Qtop=2Kh ½K ¼

ðKxKyKzÞ
1=3� with time for a few flow situations of figure 1.

From these figures, it is apparent that the time taken by a

three-dimensional ponded ditch drainage system to attain

steady state may be considerable if the directional con-

ductivities of the soil are low and the specific storage is

high. This is all the more true for situations where the

Figure 2. Comparison of hydraulic head contours as obtained from the proposed analytical solution with the corresponding values as

obtained from the analytical solution of Barua and Alam [10] at time t ¼ 15 s and at y ¼ 25 m(i.e., at the mid-plane between the

Northern and Southern boundaries) when the flow parameters are taken as L ¼ 6 m, B ¼ 50 m, h ¼ 1 m, Ss ¼ 0:001 m�1; H1 ¼ 0:5 m,

H2 ¼ 0:5 m, H3 ¼ 0:75 m, H4 ¼ 0:5 m, Kx ¼ 5 m/day, Ky ¼ 1 m/day, Kz ¼ 1 m/day, dj ¼ 0:1 m, ex ¼ 0:1 m and ey ¼ 0:1 m: —

Transient hydraulic head contour as generated by the proposed analytical solution of Eq. (2) * Transient hydraulic head contour as

generated by the analytical solution of Barua and Alam [10].
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ditches are dug relatively deeper into the ground. These

graphs also show that, considering all the other factors to

remain the same, a decrease in vertical hydraulic conduc-

tivity of a soil column may result in a considerable increase

in the transient state duration of a three-dimensional pon-

ded drainage system, particularly in areas where the

thickness of the soil is large and the drains are dug all the

way through it. As the hydraulic conductivities of most of

the natural deposits along the bedding planes are generally

higher than that across it [47, 48] and lowly conductive

soils like glacial tills, dense clays and clayey paddy soils

are also quite common in nature [49–52] and further since

the specific storage of soils like glacial tills and lacustrine

clays can also be quite high [53–57], the transient state

duration of a three-dimensional ditch drainage system may

be quite high for many drainage situations.

Figure 10 shows the variation of the normalized top

discharge function for a drainage situation of figure 1 for

two different times. It is interesting to note from this fig-

ure that the discharge distribution at the surface of a ponded

soil in a three-dimensional ditch drainage system at a very

early time of simulation is relatively much more uniform

than that corresponding to a later time. This uniformity,

however, breaks down at large times and as may be

observed in figure 10, the percentage of water seeping from

different surficial locations of a uniformly ponded drainage

scenario may be a pretty uneven one at a large time of

simulation of the system, with most water seeping into the

drains being contributed from locations lying close to the

drains. However, by subjecting a suitable ponding distri-

bution over the surface of the soil specific to a drainage

situation, a much better uniformity of seepage at the surface

of the soil can be brought about. This is amply demon-

strated in figure 12 where, as may be observed, the impo-

sition of a variable ponding field of the type as shown has

resulted in a relatively much more uniform distribution of

discharge at the surface of the soil as compared with the

situation when the ponded surface is being subjected to

only a uniform ponding depth. Figures 11 and 12 further

show that the introduction of the variable ponding also

causes the uniformity of the travel times of water particles

moving along different streamlines to improve consider-

ably. This uniformity is more pronounced when travel

times of the particles are traced to a relatively short vertical

distance from the surface of the soil. Thus, to reclaim a salt-

affected soil within a specified time, the proposed solution

0. 50 m=xε

Northern 

Boundary

Western

Boundary Contour surface for

φ at 02 s=t
Southern

Boundary

Eastern

Boundary

x′

x′

y ′

y ′

(0,0,0)

0. 50 m=yε

z

x y

= 0.2 mjδ = 0.2 m

= –0.05 m

jδ

L = 6 m B = 5 m 
Z = 0 m 

*   Transient hydraulic head s as generated by MODFLOW

Depth of ponding and height of the ditch bunds are not in scale; all other dimensions are in scale 

#    For better visibility, contour surface is shown for only a portion of the flow space

Figure 3. Comparison of hydraulic head contour surface as obtained from the proposed analytical solution with the corresponding

MODFLOW generated contours at time t ¼ 20 s when the flow parameters are taken as L ¼ 6 m, B ¼ 5 m, h ¼ 1 m, Ss ¼ 0:001 m�1;
H1 ¼ 0:5 m, H2 ¼ 0:5 m, H3 ¼ 0:5 m, H4 ¼ 0:5 m, Kx ¼ 1 m/day, Ky ¼ 1 m/day, Kz ¼ 0:2 m/day, dj ¼ 0:2 m, ex ¼ 0:05 m and ey ¼

0:05 m: * Transient hydraulic heads as generated by MODFLOW. Depth of ponding and height of the ditch bunds are not in scale; all

other dimensions are in scale. # For better visibility, contour surface is shown for only a portion of the flow space.
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can be suitably utilized to work out appropriate ponding

distribution and depth and spacing of ditch drains so that

adequate quantities of water seep through different loca-

tions of the drained soil column within the desired time. It

is also worth noting here that purely vertical earthen ditch

drains of large depth may exhibit instability, particularly

when installed in loosely bonded soils. However, this

should not be a major impediment to the application of the

proposed solution as it has been mainly developed for

designing drainage ditches for reclaiming root zones of salt-

affected cropped fields, which for most of the crops are

mostly restricted within a few metres from the top of the

soil (Lundstrom and Stegman [58]; Hoorn and Alphen [1];

Ayars et al [59, 60]—to cite a few). The solution provided
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Figure 4. Travel times of water particles (in days) on a few pathlines starting from the surface of the soil to the recipient ditches under

steady state condition when the parameters of figure 1 are taken as L ¼ 5 m; B ¼ 5 m; h ¼ 1 m; H1 ¼ 0:5 m; H2 ¼ 0:5 m; H3 ¼ 0:5 m;
H4 ¼ 0:5 m; dj ¼ 0 m, g ¼ 0:3; (a) Kx ¼ Ky ¼ Kz ¼ 1 m/day (b) Kx ¼ Ky ¼ 1 m/day and Kz ¼ 0:1 m/day:
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here can also be utilized to design ditch drains for deter-

mining the upper limit of fall of water level of a water-

logged soil at the surface of a flooded field. Consider, for

example, the flow situation as mentioned in figure 6; for

this situation, the volume of water seeping from the surface

of the soil in the first 1 h has turned out to be 0.1378 m3 and

in the first 5 h to be 0.6924 m3 . Thus, the upper limit of fall

of water will be 5.738 mm at the end of the first hour and
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Figure 5. Travel times of water particles (in days) on a few pathlines starting from the surface of the soil to the recipient ditches under

steady state condition when the parameters of figure 1 are taken as L ¼ 5 m; B ¼ 5 m; h ¼ 1 m; H1 ¼ 0:25 m; H2 ¼ 0:5 m; H3 ¼
0:75 m; H4 ¼ 0:75 m; dj ¼ 0 m, g ¼ 0:3; Kx ¼ Ky ¼ 1 m/day and Kz ¼ 0:1 m/day:
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Figure 6. Travel times of water particles (in days) on a few pathlines starting from the surface of the soil to the recipient ditches under

the steady state condition when the parameters of figure 1 are taken as L ¼ 5 m; B ¼ 5 m; h ¼ 1 m; H2 ¼ 0:5 m; H1 ¼ 0:5 m; H3 ¼
0:5 m; H4 ¼ 0:5 m; dj ¼ 0:1 m, g ¼ 0:3; Kx ¼ Ky ¼ 1 m/day and Kz ¼ 0:1 m/day:
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28.840 mm at the end of 5 h. These values are upper limits

of fall because while determining them it is intrinsically

assumed that the depth of ponded water of 0.1 m over the

surface of the soil remains constant throughout the

simulation times. In reality, however, the depth of ponding,

and hence the water-head over the surface of the soil, will

fall with the increase of time, resulting in less volume of

water seeping into the drains in a fixed time in comparison
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Figure 8. Travel times of water particles (in days) on a few pathlines starting from the surface of the soil to the recipient ditches under

steady state condition when the parameters of figure 1 are taken as L ¼ 5 m; B ¼ 24 m; h ¼ 1 m; H1 ¼ 1 m; H2 ¼ 1 m;H3 ¼ 0:25 m;
H4 ¼ 0:25 m; dj ¼ 0 m, g ¼ 0:3; Kx ¼ Ky ¼ 1 m/day and Kz ¼ 0:1 m/day:
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Figure 7. Travel times of water particles (in days) on a few pathlines starting from the surface of the soil to the recipient ditches under

steady state condition when the parameters of figure 1 are taken as L ¼ 5 m; B ¼ 5 m; h ¼ 2 m; H1 ¼ 0:5 m; H2 ¼ 0:5 m; H3 ¼ 0:5 m;
H4 ¼ 0:5 m; dj ¼ 0 m, g ¼ 0:3; Kx ¼ Ky ¼ 1 m/day and Kz ¼ 0:1 m/day:
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with the volume of water seeping into the drains as

obtained using the constant ponding depth assumption.

Nevertheless, an estimation of upper limit of fall of water

level at the surface of a waterlogged soil via a ditch drai-

nage system gives valuable information as it provides

insight about the efficacy of the chosen drainage system in

controlling surface waterlogging of the concerned soil

profile.

5. Conclusions

An analytical solution has been developed for predicting

three-dimensional transient seepage of water into ditch

drains surrounding a horizontal, saturated, homogeneous

and anisotropic soil medium being subjected to a variable

ponding distribution at the surface of the soil. The solution

has been based on the assumption of existence of a hori-

zontal impervious barrier at a finite distance from the sur-

face of the soil. The separation of the variable method in

association with a careful mix of double and triple Fourier

runs have been made use of to obtain solution to the con-

sidered problem. Double Fourier runs have been made for

tackling the boundary conditions and the triple Fourier run

has been made to negotiate the initial condition of the

problem. The transient expressions for the hydraulic head,

top and side discharges pertinent to the problem can be

easily reduced to that of the steady state by simply allowing

the time variable in them to go to infinity; this will make

the exponential terms in them to disappear, living behind

only the steady-state terms. The validity of the proposed

solution has been checked for a few simplified situations by

comparing predictions as obtained from the proposed

solutions with the corresponding predictions obtained from
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Figure 9. Variation of Qtop=2Kh ratio where K ¼ ðKxKyKzÞ
1=3

h i

with time as obtained from the proposed analytical model for different

values of h (with h ¼ H1 ¼ H2 ¼ H3 ¼ H4 i.e., ditches are running empty) when the parameters of figure 1 are taken as L ¼ 20 m;
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the analytical and experimental works of others. A

numerical check on the developed model has also been

carried out using the PMWIN platform.

The solution presented here is new and pretty compre-

hensive in nature in that it includes most of the leading

parameters of the three-dimensional ditch drainage prob-

lem. Further, as stated before, this solution is valid for a

field of actual size; this is in contrast with the existing two-

dimensional solutions of the problem, which, in the right

sense, are actually valid for a field of infinite size only.

From the study, it is clearly seen that flow to ditch drains

from a ponded field is mostly three-dimensional in nature,

particularly in areas lying close to the drains. Even for a

ponded drainage situation where the separation between

two of its opposite drainage boundaries is kept quite large,

the three-dimensional nature of the pathlines can still pre-

vail, again mainly in locations adjacent to the drains.

However, on a parallel vertical plane lying further away

from both the boundaries, two-dimensional flow situation

can roughly be assumed without introducing any appre-

ciable error in the hydraulics associated with this plane. It is

also observed from the study that the time taken by a three-

dimensional ponded ditch drainage system to go to steady

state may be considerable for a soil with low directional

conductivities and high specific storage, particularly for

situations where the ditches are installed relatively deeper

into the ground. Further, the hydraulics associated with

such a system has been observed to be sensitive to the

spacing and water level heights of the ditches as well as on

the nature and magnitude of the ponding field being

imposed at the surface of the soil. It is seen that by just

playing with the level of water in a ditch, noticeable

changes to the distribution of pathlines in locations close to

the ditch as well as to the overall discharge to the ditch can

be brought about. This is an important observation as it

demonstrates that the flow in a three-dimensional ditch

drainage space can be visibly altered by just changing the

water level heights of the drains. It has also come out of the

study that by suitably playing with the ponding field at the

surface of a ponded ditch drainage system, significant

improvement in the uniformity of the distribution of the

flow lines as well as on the water particle travel times along

these flow lines can be achieved. This observation has

significance since reclaiming a salt-affected soil by a pon-

ded ditch drainage system by subjecting it to only a uniform

ponding depth at the surface of the soil most often leads to

uneven washing of the soil profile with the regions close to

the drains over-washed and regions away from the drains

under-washed. Further, as the model proposed here is of a

general nature in the sense that it can accommodate three-

dimensional flows, variable ponding distributions and

unequal water level heights of the drains, it is expected to

provide better drainage solutions for cleaning salt-affected

soils as compared with drainage solutions developed uti-

lizing more stringent assumptions. The solution proposed

here can also be used to design ditch drains for draining a

waterlogged field by a desired amount at the surface within

a stipulated time and is, thus, important from the point of

view of reclamation of a flooded and waterlogged field as

well.

Figure 10. Variations of Q
nf
top as obtained from the proposed analytical model for two different times t ¼ 4 s and t ¼ 40 s when the

parameters of figure 1 are taken as L ¼ 6 m; B ¼ 6 m; h ¼ 1 m; H1 ¼ 0:5 m, H2 ¼ 0:5 m, H3 ¼ 0:5 m, H4 ¼ 0:5 m, Kx ¼ Ky ¼ Kz ¼

1 m/day, Ss ¼ 0:001 m, dj ¼ 0:1 m, ex ¼ 0:05 m, ey ¼ 0:05 m:
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List of notations

Am1;n1 ;Bm2;n2 ;Cm1;n1 ;
Dm4;n4 ;Epqr;Fm1;n1 :

constants with m1 ¼ 1; 2; 3; . . .;
n1 ¼ 1; 2; 3; . . .; m2 ¼ 1; 2; 3; . . .;
n2 ¼ 1; 2; 3; . . .;m3 ¼ 1; 2; 3; . . .;
n3 ¼ 1; 2; 3; . . .; m4 ¼ 1; 2; 3; . . .;
n4 ¼ 1; 2; 3; . . .; m5 ¼ 1; 2; 3; . . .;
n5 ¼ 1; 2; 3; . . .; p ¼ 1; 2; 3; . . .;
q ¼ 1; 2; 3; . . .; r ¼ 1; 2; 3; . . .

h depth of the soil column, L

H1 height of water in the Northern

ditch as measured from the surface

of the soil, L

H2 height of water in the Southern

ditch as measured from the surface

of the soil, L

H3 height of water in the Eastern ditch

as measured from the surface of the

soil, L

H4 height of water in the Western

ditch as measured from the surface

of the soil, L

K =(KxKyKz)
1/3 equivalent hydraulic

conductivity of soil, LT-1

Ka
x

 �2 =Kx/Kz, anisotropy ratio of soil in

the x-direction, dimensionless

Ka
y

� �2 =Ky/Kz, anisotropy ratio of soil in

the y-direction, dimensionless

Kx hydraulic conductivity of soil in

the x-direction, LT-1

Ky hydraulic conductivity of soil in

the y-direction, LT-1

Kz hydraulic conductivity of soil in

the z-direction, LT-1

(K1) =
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ss=Kz;
p

L-1 T1/2

M distance in metres, L

M1, N1, M2, N2, M3,

N3, M4, N4, M5, N5,

P, Q and R:

number of terms to be summed in

the series solution, 1,2,3,…

N0 number of divisions of the ponding

surface at the top of the soil

QN ;QS;QE;QW : discharge through the Northern,

Southern, Eastern, Western faces

of the soil column of figure 1,

L3T-1

Q
f
top

top discharge function defined for

the surface of the soil of figure 1,

L3T-1

Qtop discharge through the top surface

of the soil of figure 1, L3T-1

Q
nf
top

top discharge function expressed as

a percentage of Qtop, dimensionless

L distance between the adjacent

drains in the x-direction in the real

space of figure 1, L

LX distance between the adjacent

drains in the X-direction in the

computational space of figure 1, L

B distance between the adjacent

drains in the y-direction in the real

space of figure 1, L

BY distance between the adjacent

drains in the Y-direction in the

computational space of figure 1, L

dxi distance of the ith ð1� i�N0�1Þ
inner bund from the origin O in the

x-direction of figure 1 in the

real space, L

SXi =dxi=K
a
x ; L

dyi distance of the ith ð1� i�N0�1Þ
inner bund from the origin O in

the y-direction of figure 1 in the

real space, L

SYi dyi=K
a
y ; L

Ss specific storage of soil, L-1

Vx velocity distribution for the flow

domain of figure 1 in the x-direction,

LT-1

Vy velocity distribution for the flow

domain of figure 1 in the y-direction,

LT-1

Vz velocity distribution for the flow

domain of figure 1 in the z-direction,

LT-1

t time variable for the flow problem

of figure 1, T

x coordinate as measured from the

origin O of figure 1 in the

East-West dirction in the real space

X ¼ x=Ka
x ; L

y coordinate as measured from the

origin O of figure 1 in the

North-South dirction in the real

space

bFigure 12. A few stream surfaces and travel times (in days) of

water particle on a few pathlines starting from the surface of the

soil when the parameters of figure 1 are taken as L ¼ 6 m; B ¼
6 m; h ¼ 1 m, H1 ¼ 0:5 m, H2 ¼ 0:5 m, H3 ¼ 0:5 m, H4 ¼
0:5 m, Kx ¼ Ky ¼ Kz ¼ 1 m/day, dx1 ¼ 0:75 m, dx2 ¼ 1:25 m,

dx3 ¼ 2:25 m, dx4 ¼ 3:75 m, dx5 ¼ 4:75 m, dx6 ¼ 5:25 m, dy1 ¼

0:75 m, dy2 ¼ 1:25 m, dy3 ¼ 2:25 m, dy4 ¼ 3:75 m, dy5 ¼

4:75 m, dy6 ¼ 5:25 m, d1 ¼ 0 m, d2 ¼ 0:1 m, d3 ¼ 0:22 m,

d4 ¼ 0:45 m:
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Y ¼ y=Ka
y ; L

z coordinate as measured from the

origin O of figure 1 in the

downward direction in the real

space, L

di ponding depth at the ith segment

on the surface of the soil, L

ex width of the ditch banks in the

x-direction in the real space of

figure 1, L

ey width of the ditch banks in the

y-direction in the real space of

figure 1, L

/ hydraulic head distribution for the

flow domain of figure 1

(with th Northern boundary as a

ditch drainage boundary), L

Appendix 1. Determination of coefficients

of the hydraulic head function of Eq. (2)

In this section, the coefficients appearing in Eq. (2) will be

determinedutilizing the appropriate initial and boundaryvalue

conditions mentioned in the definition of the problem. To

evaluate Am
1
n
1
; boundary conditions (IIIa) and (IIIb) can be

made use of; application of the same to Eq. (2) at Y ¼ 0 gives

X

M1

m1¼1

X

N1

n1¼1

Am
1
n
1
sinðNm

1
XÞ sinðNn

1
zÞ ¼ �z; 0\X\LX;

0\z\H2;

X

M1

m1¼1

X

N1

n1¼1

Am
1
n
1
sinðNm

1
XÞ sinðNn

1
zÞ ¼ �H2; 0\X\LX ;

H2 � z\h:

Thus, Am
1
n
1
can be evaluated by running a double Fourier

series in the domain covered by 0\X\LX and 0\z\h;

this yields an expression for Am
1
n
1
as

Am1n1 ¼ �
2

Lx

� �

2

h

� �
Z

LX

0

Z

H2

0

z sinðNm1
XÞ sinðNn1zÞdXdz

2

4

þ

Z

LX

0

Z

h

H2

H2 sinðNm1
XÞ sinðNn1zÞdXdz

3

5::

ð31Þ

Simplification of the above integrals yields

Am
1
n
1
¼ �

2

Lx

� �

2

h

� �

1� cosðNm1
LXÞ

Nm1

� �

sinðNn1H2Þ

ðNn1Þ
2

" #

: ð32Þ

Similarly, an application of boundary conditions (IIa)

and (IIb) to Eq. (2) gives Bm
2
n
2
as

Bm
2
n
2
¼ �

2

Lx

� �

2

h

� �

1� cosðNm2
LXÞ

Nm2

� �

sinðNn2H1Þ

ðNn2Þ
2

" #

:

ð33Þ

Likewise, boundary conditions (Va) and (Vb) and (IVa)

and (IVb) can be utilized to evaluate the constants Cm3n3

and Dm4n4 of Eq. (2); the relevant expressions for the same

can be expressed as

Cm
3
n
3
¼ �

2

BY

� �

2

h

� �

1� cosðNm3
BYÞ

Nm3

� �

sinðNn3H4Þ

ðNn3Þ
2

" #

ð34Þ

and

Dm
4
n
4
¼ �

2

BY

� �

2

h

� �

1� cosðNm4
BYÞ

Nm4

� �

sinðNn4H3Þ

ðNn4Þ
2

" #

:

ð35Þ

Next, to work out the constants Fm5n5of Eq. (2), boundary

conditions (VIIa) to (VIIj) can be made use of; applying the

same to Eq. (2), the following set of equations can be

realized:

X

M5

m5¼1

X

N5

n5¼1

Fm5n5 sinðNm5
XÞ sinðNn5YÞ ¼ d1; 0\X\LX ;

0\Y\SY1; z ¼ 0;

X

M5

m5¼1

X

N5

n5¼1

Fm5n5 sinðNm5
XÞ sinðNn5YÞ ¼ d1; 0\X\LX ;

SYð2N0�2Þ\Y\BY ; z ¼ 0;

X

M5

m5¼1

X

N5

n5¼1

Fm5n5 sinðNm5
XÞ sinðNn5YÞ ¼ d1; 0\X\SX1;

SY1\Y\SYð2N0�2Þ; z ¼ 0;

X

M5

m5¼1

X

N5

n5¼1

Fm5n5 sinðNm5
XÞ sinðNn5YÞ ¼ d1;

SXð2N0�2Þ\X\LX; SY1\Y\SYð2N0�2Þ; z ¼ 0;

X

M5

m5¼1

X

N5

n5¼1

Fm5n5 sinðNm5
XÞ sinðNn5YÞ ¼ dj;

SXðj�1Þ\X\SXð2N0�jÞ; SYðj�1Þ\Y\SYj; z ¼ 0;

X

M5

m5¼1

X

N5

n5¼1

Fm5n5 sinðNm5
XÞ sinðNn5YÞ ¼ dj;

SXðj�1Þ\X\SXð2N0�jÞ; SYð2N0�j�1Þ\Y\SYð2N0�jÞ;

z ¼ 0;
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X

M5

m5¼1

X

N5

n5¼1

Fm5n5 sinðNm5
XÞ sinðNn5YÞ ¼ dj;

SXðj�1Þ\X\SXj; SYj\Y\SYð2N0�j�1Þ; z ¼ 0;

X

M5

m5¼1

X

N5

n5¼1

Fm5n5 sinðNm5
XÞ sinðNn5YÞ ¼ dj;

SXð2N0�j�1Þ\X\SXð2N0�jÞ; SYj\Y\SYð2N0�j�1Þ;

z ¼ 0;

ð2� j�N0 � 1Þ

X

M5

m5¼1

X

N5

n5¼1

Fm5n5 sinðNm5
XÞ sinðNn5YÞ ¼ dN0

;

SXðN0�1Þ\X\SXN0
; SYðN0�1Þ\Y\SYN0

; z ¼ 0;

where

SXi ¼

ffiffiffiffiffi

Kz

Kx

r
� �

dxi ð36Þ

and

SYi ¼

ffiffiffiffiffi

Kz

Ky

s !

dyi; ½i ¼ 1; 2; 3; . . .; ð2N0 � 2Þ� ð37Þ

Thus, Fm5n5 can be evaluated by running a double Fourier

series in the space defined by the intervals 0\X\LX and

0\Y\BY ; this yields an equation for evaluating Fm5n5 as

Fm5n5 ¼
2

BY

� �

2

LX

� �

d1

Z

LX

0

Z

SY1

0

sinðNm5
XÞ sinðNn5YÞdXdY

2

4

8

<

:

þ

Z

LX

0

Z

BY

SYð2N0�2Þ

sinðNm5
XÞ sinðNn5YÞdXdY

þ

Z

SX1

0

Z

SYð2N0�2Þ

SY1

sinðNm5
XÞ sinðNn5YÞdXdY

þ

Z

LX

SXð2N0�2Þ

Z

SYð2N0�2Þ

SY1

sinðNm5
XÞ sinðNn5YÞdXdY

3

7

5

þ
X

j¼N0�1

j¼2

dj

Z

SXð2N0�jÞ

SXðj�1Þ

Z

SYj

SYðj�1Þ

sinðNm5
XÞ sinðNn5YÞdXdY

2

6

4

þ

Z

SXð2N0�jÞ

SXðj�1Þ

Z

SYð2N0�jÞ

SYð2N0�j�1Þ

sinðNm5
XÞ sinðNn5YÞdXdY

þ

Z

SXj

SXðj�1Þ

Z

SYð2N0�j�1Þ

SYj

sinðNm5
XÞ sinðNn5YÞdXdY

þ

Z

SXð2N0�jÞ

SXð2N0�j�1Þ

Z

SYð2N0�j�1Þ

SYj

sinðNm5
XÞ sinðNn5YÞdXdY

3

7

5

þdN0

Z

SXN0

SXðN0�1Þ

Z

SYN0

SYðN0�1Þ

sinðNm5
XÞ sinðNn5YÞdXdY

9

>

=

>

;

:

ð38Þ

Simplification of the above integrals gives an expression

for Fm5n5 as

Fm5n5 ¼
2

BY

� �

2

LX

� �

d1
1� cosðNm5

LXÞ

Nm5

� ��	

�
1� cosðNn5SY1Þ

Nn5

þ
cosðNn5SYð2N0�2ÞÞ � cosðNn5BYÞ

Nn5

� �

þ
cosðNn5SY1Þ � cosðNn5SYð2N0�2ÞÞ

Nn5

� �

�
1� cosðNm5

SX1Þ

Nm5

þ
cosðNm5

SXð2N0�2ÞÞ � cosðNm5
LXÞ

Nm5

� ��

þ
X

j¼N0�1

j¼2

dj
cosðNm5

SXðj�1ÞÞ � cosðNm5
SXð2N0�jÞÞ

Nm5

� �� �

�
cosðNn5SYðj�1ÞÞ � cosðNn5SYjÞ

Nn5

�

þ
cosðNn5SYð2N0�j�1ÞÞ � cosðNn5SYð2N0�jÞÞ

Nn5

�

þ
cosðNn5SYjÞ � cosðNn5SYð2N0�j�1ÞÞ

Nn5

� �

�
cosðNm5

SXðj�1ÞÞ � cosðNm5
SXjÞ

Nm5

�

þ
cosðNm5

SXð2N0�j�1ÞÞ � cosðNm5
SXð2N0�jÞÞ

Nm5

��

þ dN0

cosðNm5
SXðN0�1ÞÞ � cosðNm5

SXN0
Þ

Nm5

�

�
cosðNn5SYðN0�1ÞÞ � cosðNn5SYN0

Þ

Nn5

�


:

ð39Þ

There still remain the constants Epqr to be determined.

Towards this end, the initial condItion (I) can be applied to

Eq. (2); the pertinent expression for evaluating these con-

stants can then be expressed as
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X

P

p¼1

X

Q

q¼1

X

R

r¼1

Epqr sinðNpXÞ sinðNqYÞ sinðNrzÞ

¼ �
X

M1

m1¼1

X

N1

n1¼1

Am1n1

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm1
Þ2 þ ðNn1Þ

2
q

ðBY � YÞ

� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm1
Þ2 þ ðNn1Þ

2
q

BY

� � sinðNm1
XÞ sinðNn1zÞ

�
X

M2

m2¼1

X

N2

n2¼1

Bm2n2

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm2
Þ2 þ ðNn2Þ

2
q

Y

� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm2
Þ2 þ ðNn2Þ

2
q

BY

� � sinðNm2
XÞ sinðNn2zÞ

�
X

M3

m3¼1

X

N3

n3¼1

Cm3n3

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm3
Þ2 þ ðNn3Þ

2
q

ðLX � XÞ

� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm3
Þ2 þ ðNn3Þ

2
q

LX

� � sinðNm3
YÞ sinðNn3zÞ

�
X

M4

m4¼1

X

N4

n4¼1

Dm4n4

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm4
Þ2 þ ðNn4Þ

2
q

X

� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm4
Þ2 þ ðNn4Þ

2
q

LX

� � sinðNm4
YÞ sinðNn4zÞ

�
X

M5

m5¼1

X

N5

n5¼1

Fm5n5

cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm5
Þ2 þ ðNn5Þ

2
q

ðh� zÞ

� �

cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm5
Þ2 þ ðNn5Þ

2
q

h

� � sinðNm5
XÞ sinðNn5YÞ:

ð40Þ

Now, performing a triple Fourier run in the space defined

by the intervals 0\X\LX ; 0\Y\BY and 0\z\h; an

expression for the constants Epqr can then be worked out as

Epqr ¼ �
2

LX

� �

2

BY

� �

2

h

� �

Z

LX

0

Z

BY

0

Z

h

0

X

M1

m1¼1

X

N1

n1¼1

Am1n1

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm1
Þ2 þ ðNn1Þ

2
q

ðBY � YÞ

� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm1
Þ2 þ ðNn1Þ

2
q

BY

� �

8

>

>

<

>

>

:

� sinðNm1
XÞ sinðNn1zÞ sinðNpXÞ sinðNqYÞ sinðNrzÞdXdYdz

þ

Z

LX

0

Z

BY

0

Z

h

0

X

M2

m2¼1

X

N2

n2¼1

Bm2n2

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm2
Þ2 þ ðNn2Þ

2
q

Y

� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm2
Þ2 þ ðNn2Þ

2
q

BY

� �

� sinðNm2
XÞ sinðNn2zÞ sinðNpXÞ sinðNqYÞ sinðNrzÞdXdYdz

þ

Z

LX

0

Z

BY

0

Z

h

0

X

M3

m3¼1

X

N3

n3¼1

Cm3n3

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm3
Þ2 þ ðNn3Þ

2
q

ðLX � XÞ

� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm3
Þ2 þ ðNn3Þ

2
q

LX

� �

� sinðNm3
YÞ sinðNn3zÞ sinðNpXÞ sinðNqYÞ sinðNrzÞdXdYdz

þ

Z

LX

0

Z

BY

0

Z

h

0

X

M4

m4¼1

X

N4

n4¼1

Dm4n4

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm4
Þ2 þ ðNn4Þ

2
q

X

� �

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm4
Þ2 þ ðNn4Þ

2
q

LX

� �

� sinðNm4
YÞ sinðNn4zÞ sinðNpXÞ sinðNqYÞ sinðNrzÞdXdYdz

þ

Z

LX

0

Z

BY

0

Z

h

0

X

M5

m5¼1

X

N5

n5¼1

Fm5n5

cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm5
Þ2 þ ðNn5Þ

2
q

ðh� zÞ

� �

cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNm5
Þ2 þ ðNn5Þ

2
q

h

� �

� sinðNm5
XÞ sinðNn5YÞ sinðNpXÞ sinðNqYÞ sinðNrzÞdXdYdz

�

:

ð41Þ

Identifying the first, second, third, fourth and fifth triple-

integrals of Eq. (41) as Ið1Þ; Ið2Þ; Ið3Þ; Ið4Þ and Ið5Þ; respec-
tively, and then simplifying them yields an expression for

Epqr as

Epqr ¼ �
2

LX

� �

2

BY

� �

2

h

� �

Ið1Þþ
h

Ið2Þ þ Ið3Þ þ Ið4ÞþIð5Þ
i

;

ð42Þ

where

Ið1Þ ¼
X

M1

m1¼1

X

N1

n1¼1

Am
1
n
1
Ið1Þa I

ð1Þ
b Ið1Þc : ð43Þ

For Nm
1
¼ Np

Ið1Þa ¼
LX

2
ð44Þ

and for Nm
1
6¼ Np

Ið1Þa ¼ 0; ð45Þ

I
ð1Þ
b ¼

Nq

ðNm
1
Þ2 þ ðNn

1
Þ2 þ ðNqÞ

2
: ð46Þ

For Nn
1
¼ Nr

Ið1Þc ¼
h

2
ð47Þ

and for Nn
1
6¼ Nr

Ið1Þc ¼ 0: ð48Þ

Ið2Þ ¼
X

M2

m2¼1

X

N2

n2¼1

Bm2n2
Ið2Þa I

ð2Þ
b Ið2Þc : ð49Þ

For Nm
2
¼ Np

Ið2Þa ¼
LX

2
ð50Þ

and for Nm
2
6¼ Np

Ið2Þa ¼ 0; ð51Þ

I
ð2Þ
b ¼ �

Nq cosðNqBYÞ

ðNm
2
Þ2 þ ðNn

2
Þ2 þ ðNqÞ

2
: ð52Þ

For Nn
2
¼ Nr

Ið2Þc ¼
h

2
ð53Þ

and for Nn
2
6¼ Nr

Ið2Þc ¼ 0: ð54Þ
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Ið3Þ ¼
X

M3

m3¼1

X

N3

n3¼1

Cm3n3 I
ð3Þ
a I

ð3Þ
b Ið3Þc ; ð55Þ

where

Ið3Þa ¼
Np

ðNm3
Þ2 þ ðNn3Þ

2 þ ðNpÞ
2
: ð56Þ

For Nm
3
¼ Nq

I
ð3Þ
b ¼

BY

2
ð57Þ

and for Nm
3
6¼ Nq

I
ðbÞ
3 ¼ 0: ð58Þ

For Nn
3
¼ Nr

Ið3Þc ¼
h

2
ð59Þ

and for Nn
3
6¼ Nr

Ið3Þc ¼ 0: ð60Þ

Ið4Þ ¼
X

M4

m4¼1

X

N4

n4¼1

Dm4n4
Ið4Þa I

ð4Þ
b Ið4Þc ; ð61Þ

where

Ið4Þa ¼ �
Np cosðNpLXÞ

ðNm4
Þ2 þ ðNn4Þ

2 þ ðNpÞ
2
: ð62Þ

For Nm
4
¼ Nq

I
ð4Þ
b ¼

BY

2
ð63Þ

and for Nm
4
6¼ Nq

I
ð4Þ
b ¼ 0: ð64Þ

For Nn4 ¼ Nr

Ið4Þc ¼
h

2
ð65Þ

and for Nn4 6¼ Nr

Ið4Þc ¼ 0: ð66Þ

Ið5Þ ¼
X

M5

m5¼1

X

N5

n5¼1

Fm5n5 I
ð5Þ
a I

ð5Þ
b Ið5Þc ; ð67Þ

where for Nm
5
¼ Np

Ið5Þa ¼
LX

2
ð68Þ

and for Nm
5
6¼ Np

Ið5Þa ¼ 0: ð69Þ

For Nn5 ¼ Nq

I
ð5Þ
b ¼

BY

2
ð70Þ

and for Nn5 6¼ Nq

I
ð5Þ
b ¼ 0 ð71Þ

and

Ið5Þc ¼
Nr

ðNm5
Þ2 þ ðNn5Þ

2 þ ðNrÞ
2
: ð72Þ

All the coefficients of Eq. (2) are thus determined and the

boundary value problem of figure 1 hence stands solved.

Further, like in the determination of the top discharge

function, Darcy’s law can also be applied to evaluate the

time-dependent discharges being received through the

Northern, Southern, Eastern and Western faces of the dit-

ches; naming these discharges as QN ; QS; QE and QW ;
respectively, their expressions, thus, can be represented as

QNðtÞ ¼ �Ky

Z

h

0

Z

L

0

o/

oy

� �

y¼B

dxdz; ð73Þ

QSðtÞ ¼ Ky

Z

h

0

Z

L

0

o/

oy

� �

y¼0

dxdz; ð74Þ

QEðtÞ ¼ �Kx

Z

h

0

Z

B

0

o/

oy

� �

x¼L

dydz ð75Þ

and

QWðtÞ ¼ Kx

Z

h

0

Z

B

0

o/

oy

� �

x¼0

dydz: ð76Þ

Further, by performing time integrals on the concerned

discharges functions, the volume of water seeping through

the top and vertical faces of the studied ponded system

within a desired time interval can also be worked out.
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